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1. Introduction

Because I began my work on directional data while in

Professor Moran's Department, it seems appropriate to take

up the topic again for this volume in his honour. My motivation

then was palaeomagnetism which has since greatly grown in

scientific importance. The original direction of magnetization

of rocks proved to be an invaluable clue to the discovery

of plate tectonics. Later, discussions with ornithologists

about the navigational and homing ability of birds led me

to an interest in directions in two dimensions. In the inter-

vening 25 years, many statisticians have created a sizeable

literature, and a book (Mardia, 1972), on the statistics

of directions. Though the theory often applies to an arbitrary

number of dimensions, we will consider only 2 and 3 dimensions.

Almost all the parametric work has been based on one

distributional type, introduced in another context by von Mises

(1918) for the circle and developed for palaeomagnetism by

Fisher (1953).

The nomenclature is unfortunate because Arnold (1941) in

an unpublished M.I.T. Ph.D. Thesis derived the distribution

named after Fisher and gave the maximum likelihood estimation

procedures for both the von Mises and Fisher distributions.

He also derived the Brownian motion densities (6) and (7).

The von Mises density is

vm(,,)- 2K) Io(g) exp Kcos (1)

where K 1 0 and I (K) is a Bessel function. The observed

direction r makes an angle 8 with the "mean" direction

uz so re1Jacose.
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The Fisher density is, with K>O,

4wsinh K exp (Kcose) (2)

using spherical polar coordinates (6,0) so that rv=cos6. In both

cases, K is a "concentration" parameter. When K = o, the density

is constant. When K is large, the probability is concentrated

about e a 0. The exponential form makes inference procedures

easy to develop. It is symmetric about the mean, or polar,

direction. It shares some statistical characterizations of the

Gaussian distribution, which it is, approximately, for large K.

See e.g. Mardia (1975). More important,the exponential form of

(1) and (2) makes statistical inference procedures fairly easy to

develop.

Multipolar forms may be created by replacing e and by pe,

. p an integer. When p=2, the density is proportional to

exp (K cos2e) (3)

and gives bipolar (K > o) and girdle distributions (K < o) on

the sphere. Its generalization has density proportional to

exp (K1 X 1
2 + K 2 x22 + K3 x3 2) (4)

where x = (x1 , x2, x3 ) is the observed unit vector referred to

three orthogonal axes. If the data is x(1 ), ...x (n ), then the

statistics of (3) and (4) depend upon the elgen values and vectors

n ()x (), whereas the statistics of (1) and (2) are based onof x x

Z x( ) . Here x is a column vector, x' its transpose.
1

!i Fisher pointed out that the distributions (1) and (2) can be!
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obtained from a multivariate Gaussian by conditioning as will

be explained in the beginning of 12. The distributions (3) and

(4) also come from a Fisherian construction. Let X1,X2,X3  have

the Joint density

(2r)-3/2(a1 a2 a3) l/2exp-1/2(xl/02+x 2/02+X2/a 2

If R2  X + X2 + X then the distribution of the direction of1ieto 2o3

X when R is conditioned to be unity is the Bingham distribu-

tion. If a1 = a2 , this reduces to (3). If al a 02 > 3, it

clearly makes (3) a girdle distribution with the probability con-

-tcentrated around a great circle in the xl-X 2 plane.

There has always been the possibility of constructing den-

sities which are the exponentials of higher order polynomials in

the components of x. It is natural to rearrange these to obtain

exp EapSp(e0.)

where Sm(e,*) are surface harmonics and e & # are spherical polar

angles. Recently Beran (1979) has suggested how, despite the

complicated norming factor, to find maximum likelihood estimates

of the ap s. Our efforts to apply his method will be reported in

Watson (1981). For p>2, these distributions cannot have a Gaussian

origin. It is not known whether they could arise from diffusions

of the types mentioned below.

On the unit circle, one may get distributions by "rolling

up" distributions on the line. This was a topic of interest to



mathematicians in the 30's and 40's - see e.g. Levy (1939),

Haviland (1941), Wintner (1947). Arnold (1941) in his thesis

considered this process and diffusion and suggested (1), (2), (3)

and (6). Thus a density f(x) on the line becomes, on the unit

circle,
hcx)'c f(x + 2wp). (5)

If the Gaussian is used, this procedure leads to the Brownian

density (6) mentioned in the next paragraph. The procedure has

no analogue on the sphere since it is not a developable surface. It is

-- an interesting conjecture that distributions on ruled surfaces

will, one day, be generated from linear densities.

Another simple process for generating circular from linear

or planar distributions is to use bi-linear (or linear fractional)

transformations. This suggests e.g. putting x = tan 6/2 which

sends the standard cauchy into the uniform distribution. There

are also some connections with number theory - see e.g. Stapleton

(1963) and Schmidt (1977). We will discuss these on another

occasion. We turn now to the major other source of distributions -

diffusion processes.

If a particle starts at 6 a 0 and executes symmetrical

Brownian motion on the circumference of a unit circle with a

variance a per unit time, the density at e at time t is

br2 (0,V) 1 exp { -t 2} (6)

p -M 2,/' 2)cos p6)

1/1+2ep /~
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where V a a2 t. On the line the density would be Gaussian with

mean zero and variance V; this density when substituted in (5)

gives an alternative form of (6). A symmetrical Brownian motion,

starting at the e a 0 point of a spherical coordinate system,

yields a density on a sphere of unit radius given by

br3( .v) 8 !#9- (2p + 1) exp(-p(p+l)V/4) Pp(cos e) (7)
Pao

where Pp (cos e) is the pth Legendre polynomial in cos 6. These

distributions are the probabilistic, rather than statistical,

Gaussian analogues of the circle and sphere. In a later section

we will see other diffusion processes which lead to the dis-

tributions mentioned earlier.

Some other distributions have been suggested.

Scattering theory of course provides them in physics. Kendall

(1974) studied a model of bird navigation and derived the

(complicated) distribution of the angle where the bird first

hits Its (circular) home territory - the Lack distribution.

In passing he discusses briefly the off-set or displaced normal

distribution which has arisen in other contexts. We will call it

the angular Gaussian in the next section. The angular Gaussian

has been suggested in two studies of the precision of palaeo-

magnetic measurements -- Harrison (1980), Briden and Arthur (1980),

the latter paper providing approximate statistical methods.



The mathematical and, particularly, the arithmetic re-

lationships between the von Mises-Fisher, Brownian motion and

angular Gaussian distributions is the subject of this paper.

2. The angular Gaussian

Fisher observed that his distribution may be derived from
a Gaussian by conditioning. If X has a trivarlate Gaussian

distribution with mean vector u and covariance matrix a2 1, setL R a Ixl, L a X/R, X= /llUl.

Then the joint density of R and L is

R2  exp 2 (R2+ Il1 2)) exp RI L'X

so the density of L on the unit sphere, conditional upon fixed

R has the form (2) with K - Rll/a 2 , cos e -' 1X. It is more

surprising that he did not comment on the way palaeomagnetic

directions are actually obtained. The three components of the

magnetic intensity (let it be X) are measured by rotating the

specimen in the same apparatus. Hence the above distribution

for X is appropriate but the unconditional distribution of

L is what is required! Setting S - R/o and m - Iul/a, this is

a93 (L,,xm) )3/2 2 exp f S2+m2-2SmL '  dS (8)

It is a function only of L'A cos 0 and so rotationally

symmetric about the mean direction X. m is an a concentration para-

meter. The statistical aspects of (8), and its relation to

palaeomagnetic work, are discussed in Watson (1980). Of course
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if measurement error is not the only source of variability in the

components of X , X may well have a general Gaussian distribu-

tion and distributions more complicated than (8) and (9) arise.

ag2 (LA,m) J S exp 1 (S 2 + m2 -2SmL' dS (9)

0L

The densities (8) and (9) give the angular Gaussian distributions

on the sphere and circle respectively.

The Fourier expansion for the von Mises density (1) is

vm(8,K)- 1 -_K) exp (tpe) (10)10

'fir (1 + 2 ( cos (pe)

since I (K) - I(K). Thus the Fourier expansion of ag2(L,A,m)p -p

with cos e L'X is therefore

g !.i e1P0  J I (S2 + M2 SI(Sm)dS.
g2(L,X,m) 11YP

or 0 e
a 2(em) 9{0(m) + 20 g o (

where

9 (2 M (Sm) ex p I (S2 + m2)J dS (12)

Similarly, the spherical harmonic expansion of ag3 (L,Am) or

ag3(",,m) follows from the expansion of (2). This like (7) was

given by Roberts and Ursell (1960) and is
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24 + 1 1p + I(K)) Pp (Cose). (13)

Hence the expansion of (8) is

ag3 6,0,m)= I 2p + 1 g(3)(m) P (Cose) (14)
-N 0 47r p

where

g(3)(m) . S2exp - (S2 + m2 ) sinhSm Ip + I(Sm) dS (15)

0

*'1

- - The angular Gaussian is a special case of distributions

obtained by integrating the length of a vector. Thus let f(z)

be the density function of vectors z in Rq and set z - y t

where y is the length of z. Then the distribution of the direction

t on Op, the surface of the unit sphere is Rq, is

g(L) 1 J y q-1 f(yt) dy

This family of distributions is examined in Watson (1981).

i • i i i i ... ." . . - l ,
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3. Some mathematical relations between distributions

The classical way of matching two distributions with the same

mean on the line is to adjust the parameters so they also have the

same variance. It is easy mathematically but need not lead to a

good probabilistic match. For directions the analogue is to match

E cos'O i.e. make the p - I terms in the Fourier (or spherical)

expansions equal. Now that computing is easy, this or other

methods may be used and compared. As we will see, it is not

possible to improve much on E cos 8 matching for several defini-

tions of a good match.

Roberts & Ursell (1960) began this work by showing that

the Brownian distribution (7) and the Fisher distribution (2)

*matched well if one chose K and V so that E cos e was equal

for both. Comparing (7) and (13) this means they are related by

3/2( exp (-V/2) (16)

Since both are rotationally symmetric, the merit of the matching

could be judged by supIFI(6,K)-BR 3 (O,V)I where FI(8,K) and BR3 (e,v)

are cumulative distributions of e easily obtained from (2) and

(7) respectively. They found that then the suprenmm never

exceeds (slightly over) .02 which it takes when exp-V/2 - 1/2.

The author suggested to Stephens that he do the same in

his thesis for the circular distributions (1) and (6). The

matching relationis, comparing (6) and (10),
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1 = exp (-V/2) (17)

Stephens (1963) found that the sup IVM(e,K) - BR2 (e,V)I never

exceeded .0125 which was attained for the matched pair K = 1.4,

V = 1.09. Further, he found that the matching could hardly be

improved beyond that implied by (17). The relationships (16)

and (17) may be simolified when K - o and K -1

These fascinating results led to a number of papers. Hart-

man and Watson (1974) showed that there is, in any number of

.. dimensions, a distribution depending on K and the dimensionality,

for the diffusion time t so that the time mixture of the Brownian
distribution is exactly equal to the von Mises-Fisher distribu-

tion. The Brownian distributions are infinitely divisible. Kent

(1977, 1979, 1980) showed that this mixing distribution is in-

finitely divisible so that this is also true of the von Mises-

Fisher distribution. J. Pitman (personal communication) has shcwn

that it is not unique.

Kent (1978 ) showed that the von Mises(Fisher) distribution

is the equilibrium distribution of the analogue of the Ornstein-

Uhlenbeck process on the circle (sphere). The generator of this

diffusion on the circle, e.g., is

G = I d2 /de2 - X sin e d/de . (18)

Reuter (unpublished, Kent 1978) showed that the von Mises(Fisher)

arises if a diffusion with drift starts at the origin and stops

when it hits the unit circle (sphere).
Recently, Yor (1979) has given the explicit formula for a

mixing distribution and a probabilistic explanation using two
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dimensionai Brownian motion. The formula was first obtained by

Kendall and appears in Kent's Ph.D. Thesis (1976) but was not

published. From (6) and (10), the von Mises will be a mixture

of Brownians if and only if for all integers p

Sp pV/2 di K(V) (19)
:- . I (K)

00

where nK(V) is a probability distribution. Yor and Kendall showed

4 that

dri M 1 exp(7r2/2V) K K (V)dV (20)

r 3/2 (2V) 10 (I)

where

K(V) = xp x2/2V-cosh slnhx sin7rxdx. dx. (20')

Hartman and Watson (ibid) give a formula for obtaining from

(20) a mixing distribution in any .rumber of dimensions.

The angular Gaussian is, like the von Mises-Fisher, a mixture

of Brownians. For the circle, the density is

a (em) 2= (1+2 c (m)cospe, (21)

1 p

where

oC p =Jexp (.S 2+m2)) 1 (sin)sds (22)

0

Using the Kendall-Yor formula for I (sm) and inverting theP

order of integration, we see immediately that the mixing density

for the angular Gaussian is
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( exp (T n.s+m) Ism (u)Io(sm)sds (23)

It is a density because

exp (2+2 s I o(mS) (24)

is a density for the length of a normal vector, in

fact. Similar results are easily obtained for ag3.

Further, the angular Gaussian distributions may be infinitely

divisible, because the further mixing distributions (24) and

its higher dimension analogues are infinitely divisible. R2 isi
infinitely divisible but we have here mixed with R!

1 -Returning to (18), we see that Kent's construction is of

a circular variant of the Orstein-Uhlenbeck process - the restoring

force towards the origin is proportional to sine, and his

equilibrium distribution is simply the Boltzman distribution since the

potential energy is proportional to co!,e. Formally, the equi-

librium density then satisfies

1 d2 f d
- - (Xsinof) = 0 (25)

So that the density f is proportional to

exp(2Xcose)

If, however, the restoring force is proportional to sin2e , we get

attraction (A > o) to e =7r as well as e = 0 , and the equilibrium

density is proportional to

exp(Xcos26)
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which is the circular variant of (3). A more elaborate

construction gives the Bingham distribution (4).

"I

-i
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4. Arithmetic and Graphical Comparisons of Distributions

The definitions of the von Mises-Fisher, Brownian and angular

Gaussian densities only suggest that they may be numerically similar

when their concentration parameters are either very small or very large.

If they can always be matched very closely by appropriate choices

of their concentration parameters, then for statistical analysis it

should matter little which is used even if a specific family is in-[1 :dicated by stochastic modelling. We may then use the distribution

which is most convenient. For example it is much easier to simulate
the Brownian and angular Gaussian on the circle than the von Mises

-,, distribution since they require only the generation of one and two

4 Gaussians respectively and simple algorithms. On the sphere, the angular

Gaussian and Fisher distributions are easier than the Brownian since

they require only three Gaussians and three uniforms, respectively, and

* a simple algorithms. For statistical mathematics other "rankings"

obtain. Of course the distributions of some statistics calculated

from samples from different parents might be rather different even

* if the parent populations are "well" matched i.e. could not be

distinguished with available data. Such statistics should not be used

since they are too sensitive to oarental form. Hence the athmetical

comparisons of this section have many uses.
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Kendall (1974) plotted sheaves of von Mises and Brownian

densities and one Ecose matched pair of densities. In the dis-

cussion of his paper, John Kent showed graphs of Ecose matched

triplets -- von Mises, Lack (derived from a bird model) and

Brownian densities. The peaks at e-o and in the tails are in

that order, while in the middle of the range it reverses. The

degree of agreement depends upon K since the agreement becomes

perfect as K - o and K -1 =.

" We wish to add the angular Gaussian to those comparisons,

and to consider the spherical versions as well. Further Ecose

matching may be supplemented by other methods. We also tried

(a) eye matching of densities (subjective)

(b) matching so that the supremum of the difference of the

cumulative distributions of e was a minimum (objec-

tive, obtained a computer search).

We begin with the circular versions. As mentioned earlier

Stephens made the Brownian - von Mises Ecose comparisons.

To match the circular angular Gaussian to the von Mises by

equating values of Ecose, m and K must be related by

JexPOxp 1 (s2+m 2))I(sm)sds. (26)

0

From asymptotic expansions, we have

11 (e) K(1 2), K7(1- -,K 0
0

"- m1 K Ni.

lmil nl I I#
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To get limiting expressions for the right-hand side of (26) we

may, for m - o, use

1 1 4sm * 1()2r+1
ii~sm) Zr(r+2)r(r+1)

rzo

and, for m - ,use

I (sm) -~. (27rsm) 10 - 3 )exp sm

Some calculations then yield the limiting forms of (26)

(27)

Criterion (a) suggests we look at the formulae for the den-

sities, von ilises for K 0 as approximately

S(1+KCOSe)

*while the angular gaussian is, for m o

f Is(1+mscose)exp(-s2 /2)ds,
2 (1+ / m cose),

so we should set K = M (7r/2)'k as in (27). When K is large,

8 is trivially shown to be Gaussian with variance oc 1. When m

large, tane - 2/* where X2is Gaussian (0,1) and XIis Gaussian

(m,1) and, since e is small, tan 6 e . Hence e is
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asymptotically Gaussian (M, 2 Matching K = M , again as in

(27). We in fact found that "drawing" densities on a CRT and

matching the AG(m fixed) and VM (K to be found as K(m)) densities

by eye we got very similar K(m) to the values got by Ecose matching.

QFigure 1 shows a sheaf of angular Gaussians. Figure 2 shows

a sheaf of eye matched (Ecose match would be very similar) von

Mises distributions. The relationships may be seen when trans-

N parencies of these figures are overlaid. When matched pairs are

plotted together AG exceeds VM at 8-0 and w and is less in the

Amiddle of the range. With Kent's results, mentioned above, we

see that the angular Gaussian is the extreme member of the quadru-

plet -- but the density differences are small. It is in fact

hard to appreciate such pictures (see Figures 3b, 4b, Sb) -- per-

haps ratios of densities should be used.

Matching method (b) leads us to more revealing pictures of

the differences of the cumulatives of the angular Gaussian, von

Mises and Brownian distributions. For the first two distribu-

tions, the supremum matched K is, for all m, slightly greater

than the eye -- or Ecose -- matched K . Of course the suprema

obtained are smaller than for these latter methods, As is seen

in Figure 3a, the supremum is .0125 the same as Stephenslvalue

at K=1.4, when the Brownian and von Mises are compared.

In Figure 3b, the corresponding densities are drawn. Figure 4

illustrates the worst situation found (at K=2.646, m-l.6) for the

angular Gaussian and the von Mises -- the supremum is less then
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in Figure 3a. In Figure 5, the worst case for Brownian and

angular Gaussian is shown.

Turning now to the sphere, Roberts & Ursell did Ecose match-

ing of the Fisher and Brownian distributions (the matching formula

being (16) above) and looked also at the matching method (b).

They found that the two methods give very similar results. Their

conclusion was, of course, that it should be safe to use the Fisher

distribution for statistics when the parental distribution was

really Brownian.

Figure 6 gives a sheaf of Fisher densities for e I.e.,

plots of

___ exp(Kcose) sine (28). 2sinhKc

for K 0 0(.25)1.5, 2(1)10. Figure 7 gives a sheaf of angular

Gaussians densities of e i.e., plots of
iw

1 . 2 22_js exp{-(s +m -2smcose))ds sine (29)
0

for m -0 (.2)1, 1.25(.25) 3. The matching is vivid only when

transparencies of those figures are overlaid. The worst case we

encountered is shown in Figure 8 where the difference of the

cumulatives (Figure 8a) and the densities (Figure 8b) are shown.

The supremum in Figure 8a is slightly less than .02 rather than

slightly over .02 as Roberts & Ursell found. This occurred for

a K of 4.56 which corresponds to a reasonably disperse cluster.

Our efforts at eye fitting of densities was much less successful
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here. The supremum fitted kappas are shown in the brief table

below:

m fitted K

.1 .160

.3 .482

.5 .815

.75 1.26
-. 1 1.74

1.5 2.94
3 9.4
4 16.4
5 25.4

These agree well with the formulae obtained from an Ecose

match, or by mathematically matching the density functions (28)

and (29). By calculations similar to those used earlier, we find

K " 4(2w)- m (K - o),

(30)
K m 2  (K ")

Thus the angular Gaussian is as good a match as the Brownian

to the Fisher distribution, and to the von Mises.
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LEGEND

FIGURE 1. A sheaf of angular Gaussian densities (formula 9)
for m-O(.2) 1.0, 1.25 (.25) 2.5

FIGURE 2. A sheaf of von Mises densities (formula 1) matched
by eye to the curves in Figure 1. Ecose matchings would be
very similar.

FIGURE 3. Three methods for assessing the best matching of the
Brownian and von Mises distributions when they are hardest
to match: v-1.06, K=1.4
(a) A plot of the difference BR-VM of the cumulative

distributions.
(b) Plots of the br and vm densities.
(c) A plot of the relative error, (BR-VM)/VM

*1

FIGURE 4. Three methods for assessing the best matching of the
angular Gaussian and the von Mises distributions when they

I are hardest to match: m-1.6, c-2.646
*(a) A plot of the difference AG-VM of the cumulative

distributions.
(b) Plots of the ag and vm densities.
(c) A plot of the relative error, (AG-VM)/VM

FIGURE 5. Three methods for assessing the best Ecose matching
of the Brownian and angular Gaussian distributions when
they are hardest to match: m-1.2, v-0.818 .
(a) A plot of the difference AG-BR of the cumulative

. distributions.
(b Plots of the densities ag and br
(ci A plot of the relative error, (AG-BR)/BR

FIGURE 6. A sheaf of Fisher densities (formula 2) for e for
KuO(.25) 1.5, 2(1) 10.

FIGURE 7. A sheaf of angular Gaussian densities (formula 8) for
e for m=O(.2) 1. 1.25 (.25) 3 .

FIGURE 8. Comparisons of the Fisher and angular Gaussian distribu-
tions when they are hardest to match: K-4.56 , m=2 .
(a) A plot of the difference of the cumulatives for 9 , AG-F,
(b) Plots of the two densities for e , ag3 (6) and fi(e)
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