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The power and utility of palcomagnetic analyses stem largely from the ability to quantify such 
parameters as the degree oftoration of a rock body, or the orientation of an anisotropy axis. Until recenfiy, 
estimates for uncertainty in these palcomagnetically determined parameters derived from assumptions 
concerning the underlying parametric distribution functions of the data. In many geologically important 
situations, the commonly used parametric distribution functions fail to model the data adequately and the 
uncertainty estimates so obtained are unreliable. Such essentials as the test for common mean require data 
sets consistent with a spherically symmetric underlying distribution; their application in inappropriate 
circumstances can result in flawed interpretations. Moreover, the almost universally used approximation 
for a cone of 95% confidence for the mean of a sample drawn from a Fisher distribution is quite biased 
even for moderate dispersions (n = 25). The availablity of inexpensive, powerful computers makes 
possible the empirical estimation of confidence regions by means of data resampling techniques such as 
the bootstrap. These resampling schemes replace analytical solutions with repeated simple calculations. 
We describe a bootstrap approach for the calculation of uncertainties for means or principal directions 
of paleomagnetic data. The method is tested on means of simulated Fisher distributions with known 
parameters and is found to be reliable for data sets with more than about 25 elements. Because a Fisher 
distribution is not assumed, the approach is applicable to a wide range of palcomagnetic data and can 
be used equally well on directions or associated virtual poles. We also illustrate bootstrap techniques 
for the discrimination of directions and for the fold test which enable the use of these powerful tests on 
the wider range of data sets commonly obtained in paleomagnetic investigations. 

INTRODUCTION 

Since Fisher [1953] first gave a detailed account of the 
probability distribution named after him, paleomagnetists have 
relied on it for the statistical analysis of directional data. 
The assumption is that the distribution underlying the data is 
symmetric about a mean direction; this effectively prohibits 
bimodal or elliptically distributed data sets. Thus, many 
data sets must be subjectively edited in order to satisfy the 
constraints of Fisher's distribution. Probability distributions 
less restrictive than Fisher's have been proposed; in some 
ways these are more appropriate for palcomagnetic data 
(see Fisher et al., [1987] for a comprehensive review). For 
example, Bingham [1964] introduced a distribution that allows 
both bimodal and elliptical data. The modes are assumed 
to be antipodal and to have the same dispersion. However, 
the calculation of the confidence regions is computationally 
taxing and most implementations rely on interpolation of 
tabulated parameters limiting the data sets for which Bingham 
parmeters can be calculated. The Kent distribution (FB5 
of Kent [1982]) is also elliptical in shape and can be either 
unimodal or bimodal, but a method for the determination of 
confidence regions is available only for the unimodal case. 

The very nature of the Earth's magnetic field produces 
directional data that are not amenable to standard para- 
metric analysis. Records of reversals in field polarity are 
characterized by bimodal data with intermediate directions 
which often depart from spherical symmetry. Such behavior 
is therefore intrinsic even to data of very high quality. 
Moreover, recent compilations of palcomagnetic data by 
Schneider and Kent [1988] suggest that there may be long 
term differences between the average normal and reversed 
fields, producing nonantipodal modes and violating the basic 
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premise of the Bingham approach. Even if directional data 
are distributed in a spherically symmetric fashion (although 
many data sets are not), the associated virtual geomagnetic 
poles carmot be, owing to the mapping function relating the 
two. This distortion leads many paleomagnetists to calculate 
confidence ellipses for the associated paleomagnetic poles by 
stretching the circular confidence regions derived from Fisher 
statistics. These confidence ellipses often do not reflect 
the actual distribution of the virtual poles. Therefore, it is 
not just "bad" paleomagnetic data that are poorly suited for 
standard statistical treatment, it is a significant proportion 
of paleomagnetic data. What is required is a technique for 
estimating confidence regions that is less constrained by the 
few available parametric models with theoretical solutions. 

The availablity of inexpensive, powerful computing re- 
sources makes it possible to estimate confidence regions 
empirically by means of data resampling techniques such 
as the bootstrap and jackknife [Efron 1982; Tichelaar and 
Ruff, 1989; Wu, 1986]. These resampling schemes replace 
analytical solutions with repeated simple calculations which 
can be used to provide confidence intervals for a given 
parameter. Several articles have proposed bootstrap schemes 
for directional data [e.g. Davison, et al., 1986; Hall, 1987; 
Ducharme et al., 1985; Fisher and Hall, 1989]. We propose a 
practical bootstrap approach suitable for most paleomagnetic 
data that provides a compact representation of confidence 
intervals. Our method also lends itself well to the test 
for common mean and the fold tests, both of fundamental 
importance to paleomagnetic data analysis. 

STATISTICS OF PALEoMAGNETIC DIRECTIONAL DATA: 
PARAMETRIC APPROACHES 

The Fisher Distribution 

Currently available techniques for statistical analysis of 
paleomagnetic data have been thoroughly reviewed by Fisher 
et al. [1987] to which the reader is referred for a 
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comprehensive discussion. We will briefly describe the 
methods which are of interest to the present discussion. First 
and foremost is the classical approach of Fisher [1953], 
discussed by many textbooks (see, for example, McElhinny, 
[ 1973], and Tarling, [ 1981]). The power of the approach 
derives from its solid statistical traderpinnings and the appeal 
stems from its simplicity; most parameters of interest can be 
determined (at least approximately) using a hand calculator. 

Data are assumed to be distributed according to the Fisher 
probability density ftmction: 

,cos0 
where c is a constant of integration, • is a positive 
concentration parameter, and 0 is the angular separation of a 
particular direction away from the true mean direction. This 
distribution is circularly symmetric about a mean direction 
with maximum probability near the mean and minimum 
probability at its antipode. The parameters of interest are 
calculated as follows: 

Denote the data set composed of unit vectors by X. Let 
X contain n vectors, the kth vector being designated as 
with Xk composed of the cartesian coordinates z•i so that 
X• = (z•l,z•2, zk3). The length of the resultant vector, R, is 
given by 

k:l k=l 

The maximum likelihood direction for a Fisher distribution is 

the mean and is given by 

i = (2) 
k=l 

The concentration parameter • is estimated by • _• k = 
(n- 1)/(n- R) in most paleomagnetic applications (but see 
McFadden, [1980], Fisher et al., [1987] for a discussion of 
other approximations) and ranges from 0-• c•; as • goes to 
infinity, the dispersion goes to zero. Fisher [1953] shows that 
for R > n - 2 the semi-angle of a cone of 95% confidence 
(a95) for the mean direction can be estimated by 

= cos (20r - o) R 

For many paleomagnetic applications, a95 is further 
approximated by 

, 140 
c•95 = (4) 

which is usually considered to be reliable for k larger than 
about 7 (see, for example, McElhinny, [1973]). 

The Bingham Distribution 

The Bingham distribution [Bingham, 1964; 1974] was 
popularized by Onstott [1980] for use in paleomagnetic 
studies because it allows bimodal and elliptically distributed 
data. Here we call on the matrix of sums of squares and 
products first introduced by Watson [ 1960]. This matrix, when 
normalized by n, is usually referred to as the "orientation 
matrix" [e.g., Scheidegger, 1965]. The orientation matrix 'l' 
of X is a second-order symmetric matrix where 

T = lXTX (S) 

The orientation matrix is similar to a moment of inertia 

matrix with unit mass assigned to each data point on the 
sphere. When diagonalized, both yield the same eigenvectors, 
7i, where i = 1, 2, 3. However, the largest eigenvalue of the 
orientation matrix corresponds to the direction of the smallest 
moment of inertia, or the direction most heavily weighted 
by the data. Additionally, the eigenvalues of the orientation 
matrix conveniently sum to 1. The eigenvectors associated 
with the largest, the intermediate, and the smallest eigenvalues 
will be referred to as the principal (71), the major (72), and 
minor (7a) eigenvectors with the corresponding eigenvalues, 
r•, r2, and ra. Bingham showed that the maximum likelihood 
estimate for the true mean direction of a Bingham distributed 
sample is the principal eigenvector of T (not the vector mean 
as calculated in equation (2)). The Bingham probability 
density ftmction is given by 

c(•2, •3)-1e (• • cøs• 4•+ •3 sin• 4•)sin• 0 
Here, n2 and n3 are negative concentration parameters. 
Again, 0 is the angle between a given direction and the true 
mean direction (here estimated by the principal eigenvector 
of T ), and ,5 is an angle in the plane perpendicular to the 
true direction with ,5 = 0 parallel to the major eigenvector 
in that plane. The parameters n2 and n3 are unfortunately 
onerous to estimate. However, Mardia and Zemroch [1977] 
have computed values for many cases of interest and look-up 
tables are available in terms of calculated eigenvalues (ri) 
of the orientation matrix T. Bingham provides no explicit 
expression for the probability density of the mean, hence 
computing confidence regions about the mean is somewhat 
problematical. However, when the variances about the 
principal direction of T are small (when n2 and n3 << 0), 
the confidence regions can be estimated. As discussed by 
Fisher et al. [1987], the variances about the major and minor 
eigenvectors, respectively, may be approximated by 

^2 1 ^2 1 

a2 = 2(•2)(r2 -- rl) a3 = 2(•a)(ra -- r•) 
The lengths of the major and minor semiaxes of the 95% 
confidence ellipse are then s2 = •2x/• and s3 = b3x/• where 
g =-21n(0.05). The semiangles subtended by these axes are 
•95 = sin-•(s2) and */95 = sin-•(s3). These semiaxes are 
parallel to the major and minor eigenvectors respectively of 
the orientation matrix with declinations and inclinations of 

Dec½, Inc½ and Dec,, Inc, respectively. 

The Kent Distribution 

There are many cases where the appropriate Bingham con- 
centration parameters cannot be calculated. The probability 
distribution ftmction is also different from the Fisher distri- 

bution, even for the spherically symmetric case. Kent [1982] 
proposed an alternative probability distribution ftmction which 
is the elliptical analogue of the Fisher distribution. 

c(•, 3)- 1 e '•cøsø +•sin: 0cos2• 
Here, 0 and ,5 are as before, • is a concentration parameter 
similar to the Fisher •, and /• is the "ovalness" parameter. 
When /• is zero, the Kent distribution reduces to a Fisher 
distribution. Calculation of approximate confidence ellipses 
is more straightforward than for the Bingham technique and 
does not require the numerical evaluation of messy integrals. 
The parameters of interest are calculated as follows: The 
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data are first rotated into the satnple coordinates by the 
transformation 

X' = r T X 

where I' '- (71, 72,7a), and the columns of F are 
called the constrained eigenvectors of (•[, T). The vector 
71 is proportional to •, whereas 72 and •a (the major and 
minor axes) diagonalize T as much as possible subject to 
being constrained by 71 (see Kent [1982] but note that his z l 
corresponds to za in conventional paleomagnetic notation). 
Then the following parameters may be computed 

E , ^2 -1E ,2 •: r• -1 l:kl , 0' 2 = rt (Zk2) , 
i k 

0'3 = n (zkat) 2 (6) 

As defined here, • = R/n to a very good al•proximation. Also to good approximation, 822 = •2, and 8• = •3. The 
semiangles •'95 and rt95 subtended by the major and minor 
axes of the 95% confidence ellipse are then 

•'• = sin- 1 (0'2 vr•, rt• = Sill- 1 (0'3 V/if) (7) 
here 9 = -21n(0-05)/(n•2) ß 

As discussed in the introduction, each of these techniques 
has some advantages as well as some drawbacks when applied 
to real (i.e. nonideal) data. We now describe a technique 
for estimating confidence regions which postpones the need 
for restrictive parametric assumptions to the distribution of 
the mean which is more likely to be "well behaved" than the 
data themselves. 

A BOOTSTRAP APPROACH 

For purposes of illustration, we have chosen what may be 
regarded as a "typical" paleomagnetic data set. The data 
are those from the KUL section published by Tauxe and 
Opdyke [1982] and are plotted on an equal area projection 
in Figure 1. Although these were treated using Fisher 
statistics by the authors, the data have several features which 
make them less than ideal candidates for such an analysis. 
Fisher statistics are only appropriate for data sets drawn 
from unimodal spherically symmetric distributions. The data 
shown in Figure 1 are not. As with most paleomagnetic data 
sets, this one is bimodal and requires separation of the data 
into normal or reversed modes. Whereas this poses no great 
problem for many directions, it is not always straightforward 
for intermediate directions. The data belonging to the normal 
mode in Figure 1 are manifestly asymmetric in distribution 
as will be shown. We plot the data from Figure 1 on a 
quantile-quantile (QQ) plot in Figure 2 as described by Fisher 
et al. [1987]. Data associated with each mode are rotated to a 
coordinate system with the mean direction as the pole and are 
then sorted by magnitude; the inclination values are converted 
to "coinclinations" (0) or degrees away from the mean. 
Then, declination and coinclination values are plotted against 
expected values based on a Fisher distribution. The spherical 
symmetry of the Fisher distribution about the pole means 
that declinations should be uniformly distributed on [0, 2a-], 
and it can be shown that 1- cos0 should be approximately 
exponentially distributed. QQ plots should be approximately 
linear if the designated distribution is a good model for the 

Fig. 1. Equal-area projection of directional data from the KUL section 
of Tauxe and Opdyke [1982] (in stratigraphic coordinates). North is at 
the top and vertical is at the center of the projection. Solid symbols 
are lower hemisphere, and open symbols are upper hemisphere. 

data. A more quantitative measure of the goodness of fit 
to the Fisher model is given by the parameters Mu(V,•)= 
V, (v/-•- 0.567 + 1.623/v/-n-), for the uniform distribution on 
the circle and Me(D,) = (D, - 0.2/n)(v/-• = 0.26 + 0.5/x/• 
for the exponential distribution (here n is the number of 
data, D,• is the Kolmogorov Smimov statistic, and Vn is the 
Kuiper statistic; both statistics are measures of the departure 
of the empirical cumulative distribution function of the data 
from the expected theoretical function). Critical values are 
M•, = 1.207 and Me = 1.094 at the 5% probability level (see 
Fisher et al., [1987]) and are used here to determine whether 
the data are Fisherian in distribution. The declinations of the 

normal mode fail the test with M•, = 1.234. Such bimodal, 
asymmetrically distributed data could perhaps be treated with 
Bingham statistics; however, the modes are not antipodal. In 
fact, the angle between the modes is approximately 156 ø, 
and the dispersion and ellipticity of the two modes appear to 
be different. Thus the principal assumptions of the Bingham 
distribution may also have been violated. 

The data set shown in Figure 1 is by no means atypical 
and suggests that the search for a more flexible means of 
estimating confidence intervals is not unwarranted. Indeed, 
several articles have appeared recently which suggest various 
"bootstrap" approaches for the analysis of directional data 
(see, for example, Fisher and Hall, [1989] and references 
therein) and anisotropy data (Constable and Tauxe, [1990]). 
Bootstrap methods to estimate the confidence in a particular 
parameter generally proceed as follows [see Efron, 1982]. A 
"pseudosample" is created by randomly drawing data (with 
replacement) from the original data set. Each pseudosample 
is the same size as the original data set, and each data point 
may occur a number of times in a given pseudosample. The 
parameter of interest is calculated for each pseudosample, 
and the variability of the parameter for all the bootstrap 
pseudosamples is used to estimate the confidence interval of 
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Fig. 2. Quantile-quantile plots of data from Figure 1. Data are divided into two modes and transformed to the mean. 
Declinations are plotted against a uniform model quantile and inclinations against an exponential model quantfie. The 
slope of the two quantiles is given by rn, the intercept by b and the correlation coefficient from a linear regression by 
R. M•, and Me are parameters described in the text for discrimination of Fisher distributions. Large values indicate 
non-Fisherian behavior. The normal mode is plotted on top and the reversed mode below. The declinations of the normal 
mode are not uniformly distributed and the distribution is therefore not Fisherian. 

the parameter. Davison et al. [ 1986] point out that bias can 
occur in the bootstrap estimates when particular data elements 
occur more frequently than others when averaged over the 
entire set of pseudosamples. This problem can be remedied 
by employing a "balanced" bootstrap whereby a number of 
replicates of the original data are concatenated into one long 
"source array". The data are then shuffled, and subsets of the 
same size as the original data are taken off sequentially to 
serve as pseudosamples. This ensures that each data point is 
used the same number of times in the set of bootstrap samples 
(i.e., it eliminates any potential bias in the random sampling 
procedure used). In practice we found that "balancing" had 
no effect on our results. 

The advantage of the bootstrap is that it circumvents 
(or at least postpones) the need for parametric assumptions 
and substitutes repetitive calculations for analytical solutions. 
Watson [1983] discusses a bootstrap method for calculating 
confidence intervals for spherically symmetric, unimodal 
distributions. A slightly different approach for circular 
and spherical data was taken by Ducharme et al. [1985]. 
Fisher and Hall [!989] provide an excellent discussion of 
the various approaches and advocate a method analogous to 
"Studentizing" samples. In their implementation, the mean 
is calculated for each of 2000 "balanced" bootstrap samples 
and the resulting distribution is contoured and presented 
graphically as a grey-scale image in equal-area projection. 
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The nonparametric approach of Fisher and Hall [1989] has 
great appeal and certainly should be followed. However, 
in practice, paleomagnetists desire a more compact way of 
expressing confidence regions which necessitates parameter- 
ization at some level. Also, tests for discrimination of 
directions and dispersion (e.g. the test for common mean 
and fold tests) are essential tools for paleomagnetic analysis. 
Thus paleomagnetists have been reluctant to venture away 
from the rigor of tests provided for Fisher distributions such 
as the fold tests of Watson and Irving [1957] and McFadden 
and Jones [1981] and the tests for common mean of Watson 
[1956] and McFadden and Lowes [ 1981]. The approach we 
outline here is quite similar to that of Fisher and Hall [1989] 
in that we use a balanced bootstrap resampling scheme to 
"map out" the variability of the mean. The variability in the 
mean is much less than that in the original data. We can then 
imagine that a kind of spherical analogue of the Central Limit 
Theorem is operating so that the population of bootstrap 
means is asymptotically distributed according to a Kent dis- 
tribution (the spherical analog of a two-dimensional normal) 
and estimate the associated confidence ellipses. Although 
Hall [1987] shows that elliptical confidence regions estimated 
from general bootstrap routines fail to capture deviations from 
normality, we have examined distributions of bootstrap means 
from a large number of paleomagnetic data sets and have 
found them all reasonably well approximated by an ellipse. 

We will illustrate our approach using the data set shown in 
Figure 1. We will use the same notation as in the previous 
section where the number of data points is r•, the data set 
is denoted X and the kth unit vector is Xk. We construct 
pseudosamples using a balanced bootstrap, whereby No copies 
of X are concatenated together into a source array which 
is then shuffled by randomly selecting two elements and 
swapping their positions. This is repeated No times. Then, 

Fig. 3. Equal-area projections of mean directions for 500 bootstrap 
samples generated from the data of Figure 1. Dots axe lower hemi- 
sphere projections, and plus signs axe upper hemisphere projections. 
The inset shows the bootstrap confidence intervals for the mean. The 
projection is in stratigraphic coordinates. 

sequential slices of length n are taken as pseudosamples. We 
denote the lth pseudosample, or "bootstrapped" sample, by 
X•' and its kth vector by Xt*•. For each bootstrapped sample 
we wish to calculate an estimate of the mean direction for 
each of the modes. In order to do this, the data must be 
separated in some objective fashion into normal and reversed 
modes. To this end, we compute the eigenparameters of the 
orientation matrix of the pseudosample. The plane normal 
to the principal eigenvector separates the data into two 
hemispheres, each containing a mode of the pseudosample. 
This plane is used as the c•terion for modal separation. 
Since this equatorial plane is •alculated for each bootstrapped 
sample, intermediate directions may change allegiance from 
one mode to the other in different bootstrapped samples 
reflecting a genuine ambiguity with regard to their "proper" 
place. A mean direction, Xt, is estimated for each of the 
modes using equations (1) and (2) as described in the section 
on Fisher statistics. 

Five hundred bootstrap means generated in this way for 
the data shown in Figure 1 are plotted in Figure 3. As 
is most often the case, the population of bootstrap means 
is approximately elliptical and is even more so when more 
pseudosamples are taken. In general, the number of bootstrap 
samples, Nb, should be sufficient to ensure that the distribution 
of possible means is adequately represented (something like 
n e is desirable according to Hall [ 1988]). 

ESTIMATION OF BOOTSTRAP CONFIDENCE REGIONS 

Once Nb mean directions have been calculated for each 
mode based on the bootstrapped samples, we calculate the 
mean of the bootstrapped means •,* which should very nearly 
equal •, the mean of the original data set. Disagreement 
may be an indication that N• is too small. We then compute 
the orientation matrix and the constrained eigenvectors of 
F for the set of bootstrapped mean directions. For sufficiently 
large N• the principal direction of the orientation matrix 
coincides very nearly with the Fisher mean. Inspection of 
plots of bootstrap means from a wide variety of paleomagnetic 
data sets (like those shown in Figure 3) has led us to the 
conclusion that the distribution of the bootstrap means is 
nearly always elliptical, suggesting that a Kent model could 
be applied to each mode of bootstrap means to parameterize 
the confidence region. The approximate 95% confidence 
regions can thus be estimated as follows. For the present case 
we are interested in the distribution of bootstrapped means, 
so N• is used instead of n in equation (6) to calculate • and 
Be' since we are interested in the confidence in the mean of 
the original data and not the confidence in the mean of the 
means, the appropriate value for •/=-21n(0.05)/• •. These 
values in equation (7) give the approximate 95% confidence 
ellipse for the sample mean direction. The confidence ellipses 
calculated in this way are shown in the insert to Figure 3. 

Testing of Bootstrap Confidence Regions on Simulated Data 

Before accepting the bootstrap method as an improvement 
over the conventional approach to estimating confidence 
regions, it is desirable to understand how it performs. We 
tested it on a variety of simulated data sets drawn from Fisher 
distributions with assorted samples sizes, n, and concentration 
parameters, •. A sample simulated from a Fisher distribution 
is shown in Figure 4a. The true mean direction is the 
vertical. In Figure 4b, we plot 100 means calculated from 
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Fig. 4. Equal-area projections. (a) A typical Fisher distribution with 
• = 10 and n = 50. (b) Means of 500 bootstrap samples. (c) Mean of 
the data shown in Figure 4a with bootstrap (solid line) and c•95 (dotted 
line). 

except the more accurate means of computing Fisherian rtg5 
produce confidence regions that are biased too small. There 
is no excuse for using a[5; it is not difficult to compute 
the vastly more accurate approximation found in equation 
(3), and one can then obtain extremely reliable confidence 
regions if the distribution underlying the data is Fisherian. 
Comparing the results for the two bootstrap methods allows 
us to determine that for an underlying Fisherian distribution 
the bias is substantially greater for the Kent elliptical regions 
than for the Fisher circles when the sample size is small 
(this is to be expected since small samples will show greater 
departures from spherical symmetry). The bias in both 
bootstrap estimates is essentially independent of n for fixed 
n, but for fixed • it decreases fairly rapidly with increasing 
n, so that by n = 25 it has reached what we would regard as 
an acceptable level. It should be noted that one would not 
normally use the bootstrap method on data unless they exhibit 
significant departures from an underlying Fisher model. The 
Fisher simulations shown here thus represent a worse than 
average case in terms of the expected bias. 

Application to Paleomagnetic Data 

We are now in a position to compare the confidence 
regions calculated by the bootstrap method outlined here with 

the bootstrap pseudosamples, and in Figure 4c we show the 
elliptical bootstrap confidence region, here called bg, (solid 
line), and the circular region (dotted line) commonly used by 
paleomagnetists, corresponding to a• in equation (4). 

If the calculated regions are true 95% confidence regions, 
we would expect that if we performed 100 such simulations 
then on the average 95 of the calculated confidence regions 
should include the true mean. (So the sample shown in 
Figure 4 happens to be one of the approxiamtely 5% of data 
sets whose confidence regions do not include the true mean.) 
If on average fewer than 95 enclose the true mean, then the 
confidence regions are biased too small; if more, then they 
are too large. One might expect that the elliptical confidence 
regions will be too small for our simulated data sets, 
because we are assuming an elliptical form for the underlying 
distribution, when in fact it is spherically symmetric. We 
would also expect the bias to decrease as the number of 
data contributing to the mean increase and we obtain a better 
sampling of the underlying distribution. We find that this 
is indeed the case. Figure 5a shows the average (and one 
standard deviation in the mean) number of points lying outside 
the confidence region as a function of n (for • = 50), and 5b 
shows them as a function of • (for n = 10). The cordidence 
regions are computed by four different methods. The solid 
line at 5 is what one would expect for an unbiased result. 
The squares represent the number of means lying outside the 
a o• cone of confidence for a Fisher distribution computed 
using equation (3), the triangles those computed using the 
approximation in equation (4), while the diamonds are those 
obtained from the bootstrap method and the assumption that 
the bootstrap means are drawn from a Kent distribution. The 
octagons were also obtained by a bootstrap technique, but 
one in which it was assumed that the bootstrapped mea. ns 
were distributed according to a Fisher distribution rather 
than the elliptical Kent. It is clear that all the methods 
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Fig. 5. (a) Average number of points lying outside 95% confidence re- 
gions as a function of n, the number of data contributing to the Fisher 
mean based on simulations from Fisher distributions. Solid line rep- 
resents the unbiased result; squares, give Fisherian confidence cones 
calculated using equation (3); triangles, approximation to Fisher result 
given by equation (4); octagons, bootstrap means with an assumed 
Fisher distribution; diamonds, bootstrap means with an assumed Kent 
distribution. (b) Same as Figure 5a but as a function of n. Error 
bars are one standard deviation in the mean of the confidence confi- 

dence regions calculated for 100 sets of 100 simulations each. 
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Fig. 6. (a) Data from Figure 1 plotted with estimated 95% confidence regions. Projection same as in Figure 1 with 
conventions of Figure 3. (b) Comparison of 95% confidence regions calculated by the method proposed in the text 
(bootstrap) and by Fisher and Bingham methods. Data are normal mode, rotated such that the eigenvectors of the 
orientation matrix (I') of the set of bootstrap means serve as axes. The center of the diagram is the principal axis and 
major and minor axes point left-fight and up-down respectively. The principal eigenvector for the set of bootstrap means 
also coincides with the mean of the original data (see text). (c) Same as for Figure 6b but reversed mode. 

confidence regions calculated by standard parametric methods 
on some "real" data. The data from Figure 1 are shown again 
in Figure 6a with the bootstrap confidence regions. Now, 
we rotate the normal and reversed data so that the major 
and minor eigenvectors for each mode lie in the plane of the 
projection; the principal direction (here parallel to the mean) 
is therefore at the center of the diagram. Figure 6b shows the 
normal mode with the corresponding confidence regions and 
Figure 6c shows the reversed mode. 

The asymmetrically distributed normal data are not well 
modeled by the Fisher distribution as already noted (see 
Figure 2); hence the a95 cannot reflect the asymmetry (see 
Table 1 for parameters). The reversed mode, however, has 
fewer intermediate directions and is compatible with a Fisher 
distribution (Figure 2); in this case the Fisher and bootstrap 
confidence regions are quite similar. 

The difficulty with the Bingham approach for data sets 
whose modes are not antipodal and identically distributed is 
evident from the fact that the mean directions for each mode 

(plotted at the center of the diagram) are not the same as 
the direction of the principal eigenvector of the original data 

set (located at the center of the Bingham confidence regions). 
In Table 1 we list the confidence regions calculated by both 
the Bingham and Kent methods for the normal mode data 
taken alone. Please note that even when each mode is treated 

separately by the Bingham method, the principal eigenvector 
of the normal mode does not coincide with the Fisher or 

vector mean. 

The reason for this is straightforward; the mean is computed 
from the vector sum of the contributing directions and gives 
equal weight to each datum. In contrast, the principal 
eigenvector is the axis about which the data would have 
minimum moment of inertia if they were regarded as point 
masses. The moment of inertia associated with a point 
mass about a given axis is given by the product of the 
mass with the squared perpendicular distance from the axis; 
thus the principal axis is the one that minimizes the squared 
distances of the directions from it. In fact, Watson [1986] 
has shown that in some cases the principal direction is a 
more robust estimate of the true direction than is the mean. 

We illustrate this here with a simple example. In Figure 7 
we show a random sample drawn from a Fisher distribution 
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TABLE 1. Statistical Parameters for the Normal Mode of Data Shown in Figure 1 

Method ifec I•c rl• Dec, Inc, (• Decc Incc 
Bootstrap 341.5 39.0 11.9 90.0 20.4 6.3 120.0 44.0 
Fisher 341.5 39.1 (as• - 11.0, Op - 19.1, Orn - 12.8) 
Bingham 345.8 40.9 11.9 89.5 15.3 6.5 195.5 45.1 
Kent 345.8 40.9 11.6 89.5 15.3 6.3 195.5 45.1 

D•c and I•c are the estimated values for the true mean directions by each technique. 
Dec, and Inc, are the directions of the major semi-axes and Decc and Incc are for the 
minor semiaxes. 

with n = 25 and n = 20. Two extra data points are 
contributed with directions 850 away from the true direction 
(vertical). The mean for the data set has a declination 
of 330.8øand an inclination of 82.0 ø, while the principal 
direction is oriented with a declination and inclination of 

293.5 o and 85.0ørespectively. The principal direction is closer 
to the true direction, hence is less affected by the presence of 
outliers. 

The principal direction may therefore be a more robust 
estimate (i.e., not as sensitive to outliers) of the paleomagnetic 
direction of interest than is the mean. It should be noted 
that when the data distribution is symmetric the mean 
and principal axis will yield the same direction; however, 
even the most "ideal" paleomagnetic data sets will exhibit 
small departures from symmetry, so there will inevitably 
be differences between the mean and principal directions. 
Bootstrap confidence regions can be calculated for the 
principal direction in the same manner as described here 
for the mean. However, if the data distribution is not well 
modeled by an ellipsoid (e.g., if it exhibits strong asymmetry 
in the form of streaking) then it is likely that neither the mean 
nor the principal axis will provide a good estimate for the 
direction of interest. Van Alstine [1980] suggested the use of 
the mode as preferable; the mode is the maximum likelihood 

Fig. 7. A simple example illustrating the more robust nature of the 
principal direction as opposed to the mean (see text). 

or most probable direction and thus remains uninfluenced 
by strong asymmetries in the data. Bootstrapping of modal 
estimates in the manner described by Fisher and Hall [1989] 
might well be appropriate in such cases. 

The normal mode shown in Figure 6b is shown again in 
Figure 8a with the horizontal (north) and vertical directions 
shown as a triangle and a square, respectively, for reference. 
The Fisher cone of confidence (c•9•) and the bootstrap ellipse 

Fig. 8. (a) Data from Figure 6b, with bootstrap and Fisher confidence 
ellipses. The triangle is the horizontal north direction, and the square 
is the vertical. (b) Same data as in Figure 8a but transformed to 
virtual geomagnetic poles. The asterisk represents the sampling site. 
The dashed ellipse is the 95% confidence ellipse calculated from the 
c•95 (see tex0. The major semiaxis is Om, and the minor semiaxis is 
Op. The solid ellipse is the bootstrap confidence ellipse calculated by 
the proposed method. 
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of confidence (/395) are also shown. The directional data are 
transformed into virtual geomagnetic poles (VGPs). Since no 
strict assumptions are made about the underlying distribution 
of the data, we may compute the confidence regions for 
the VGPs using the same bootstrap algorithm as for the 
directions. This liberates us from the uncomfortable necessity 
of choosing which data set is Fisherian, the directions or 
the VGPs, when it is often evident that neither meets the 
necessary requirements. The VGPs associated with the normal 
mode are plotted in Figure 8b, along with the position of the 
geographic north pole (triangle) and the Greenwich meridian 
at the equator (square). The sampling site is shown as an 
asterisk. We plot the bootstrap confidence regions together 
with the Fisher confidence region distorted in the usual way 
[e.g. McElhinny, 1973)] i.e. 

cosO 

c9m = c•95 cos] 

Op = «a95(1 + 3cos20) 

where ] is the inclination of the mean, 0 is given by 
tan• = 2tan0, and C•95 is the angle giving the 95% circle of 
confidence of Fisher [1953] (equation (3) and Table 1). The 
parameter Om is the uncertainty in the paleomeridian (the 
minor semiaxis), and Op is the uncertainty in the paleoparallel 
(the major semiaxis) of the paleopole. Because of the 
nature of the asymmetry of the original data distribution, 
the ellipticity of the distorted Fisher confidence region is 
perpendicular to that of the actual distribution of VGPs. 

COMPARING PALEOMAGNETIC DIRECTIONS 

The calculation of confidence regions for paleomagnetic 
data is largely motivated by a need to compare estimated 
directions with either a known direction (for example, the 
present field) or another estimated direction (for example, 
that expected from a particular paleopole). The first case 
is straightforward. If the known test direction lies outside 
the confidence interval computed for the estimated direction, 
then the estimated and known directions are different at the 
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coordinates of bootstrappexl means of both data sets combined. 
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specified confidence level. Similarly, in the second case, if 
the two confidence regions do not overlap, the two directions 
must be different at the given level of certainty. Also, when 
one confidence region includes the mean of the other set 
of directions, the difference in directions is not significant. 
However, when the two confidence regions overlap, but 
neither includes the mean of the other, determining the 
significance of the difference becomes more difficult. For 
special cases where the two data sets are Fisher distributed 
with the same dispersion, criteria that rely on the comparison 
of the R values for the two data sets separately and together 
have been developed to test the significance of the difference 
in data sets [Watson, 1956]. The statistic F is calculated as 
follows: 

F = (n - 2) (R• + Re - R) (8) 
(n- R• - R•) 

where R•, Re, and R are the resultant magnitudes of the 
first, second, and combined data sets, respectively, and n is 
the total number of data points in both data sets. F is then 
compared with the value given in an F table for 2 and 2(n-2) 
degrees of freedom. 

The Watson approach has been extended to include data sets 
with different dispersions by McFadden and Lowes [1981]; 
(see also McWilliams, [1984] and Demerest [1983]). In cases 
where the data are not Fisher distributed, however, discrim- 
ination of data sets with similarly overlapping confidence 
regions can be quite difficult. 

The test for common mean asks the question, "Can the 
means be discriminated from one another?" This question can 
be cast in terms of our bootstrapping scheme. If the set of 
bootstrap means is examined, are there two distinct groups or 
is there just one? We explore this idea by considering first 
several data sets simulated by drawing at random 20 directions 
from a Fisher distribution. First, we consider two data sets 
sharing a common true mean (the vertical) but having values 
of n of 10 and 50 respectively. The sample means and 
associated a[5 are shown in Figure 9. Now we generate 500 
bootstrap pseudosamples and calculate means for each. The 
Cartesian coordinates of the set of bootstrap means are plotted 
as histograms in Figure 9 for each individual population and 
combined. Because the directions are essentially vertical, the 
Z components had virtually no variation, being quite close 
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Fig. 10. Same as Figure 9 but data set with • of 10 rotated such that the mean lies outside the confidence interval of the 
other data set. 
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to 1; hence they were left off the figure to alleviate clutter. 
(Also since the resultant is normalized to 1, only two of the 
three Cartesian coordinates are independent). The combined 
histograms are unimodal but have sloping shoulders reflecting 
the presence of the two different dispersions. In Figure 10 
we show the case for two data sets having n of 10 and 50 
as before. Here, the mean of the data set with the higher 
dispersion lies outside the confidence region of the other, 
but its confidence region includes the mean of the tighter 
distribution. These data sets pass the test for common mean 
described above, and the histograms of the combined sets of 
bootstrap means are again unimodal. 

In Figure 11 we show two data sets, each with n = 10. 
Each mean lies outside the confidence region of the other 
and the test of Watson [1956] must be applied (equation (8) 
with F < 2.77). These data sets pass Watson's test for 
common mean (F = 2.03), and again the histograms of the 
combined bootstrap means are all unimodal. The data sets 
shown in Figure 12 (both n = 10), however, fail the test for 
common mean (F = 3.9). In this case, the histograms of 
the combined sets of Cartesian coordinates of the bootstrap 

means has two peaks consistent with the presence of two 
directions. There will of course be cases very close to the 
cutoff value in which the histogram test will be equivocal. 
For such cases, a more sophisticated approach is necessary. It 
is well known that the shape and number of modes observed 
in a histogram can be strongly dependent on the number 
and position of the bins selected. What is really required is 
an objective method for determining the number of modes 
(hence the number of directions) in the probability density 
function underlying the distribution of bootstrap means. The 
histograms of Cartesian components just provide a relatively 
crude estimate of this. Donoho [1988] describes a rigorous 
statistical test to determine the minimum number of modes 

required by the underlying density function. His test has 
the merit of being independent of the statistical distribution 
underlying the data and is ideal for the application required 
here. However, the computational algorithm has not yet been 
implemented. The computations involved are not trivial and 
increase rapidly with the number of modes. Until the Donoho 
test can be implemented, there will be ambiguous cases. 

We illustrate the bootstrap approach for a test for common 
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Fig. 11. Same as Figure 9 but both data sets have • of 10. One is rotated such that the mean of each data sets lies outside 
the cone of confidence of the other. The data sets pass the test for common mean. 
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mean with a data set from the Mojave block recently 
published by MacFadden et al. [1990]. These data are shown 
plotted on an equal-area projection in Figure 13. The first 
question that might reasonably be asked of the data is: Are 
these data Fisherian? A quantile-quantile plot of the data 
(Figure 14) shows that the reversed mode fails the test for 
Fisher distribution. A second question that springs to mind 
is: Are the reversed and normal modes amipodal? In other 
words: do the combined data sets of the normal mode and 

the antipodes of the reversed mode pass the test for common 
mean? Since the reversed mode is not Fisherian, the test 
is not clear cut. On the basis of the overlap of the Fisher 
confidence intervals for the means of the normal data and 

the antipodes of the reversed data (shown in Figure 15a), 
MacFadden et al. [1990] claimed that they were; i.e., the data 
were presumed to pass the test for common mean. However, 
as we noted earlier, simple overlap of confidence regions is 
inconclusive. The bootstrap confidence region of the antipode 
of the reverse mode just grazes that of the normal mode (see 
Figure 15b). In Figures 15c and 15d we use our bootstrap 
approach to examine the data and plot histograms of the 

Cartesian coordinates of the bootstrap mean directions as 
before. In Figure 15d, the coordinates of the reversed mode 
are transposed to the corresponding antipodes. If the normal 
and reverse directions are distinct, then we should be able 
to identify two distinct peaks or modes in at least one of 
the histograms of Figure 15d. It certainly looks as though 
this is possible for the Y component (the histogram shows 
twin peaks, even when the amipodes of the reversed data are 
used), strongly suggesting that these data fail the reversals 
test. 

On the basis of the data shown in Figure 13, MacFadden 
et al. [1990] postulate a rotation of the Mojave Block of 
some 20 ø. We calculate an expected direction based on a 
mean paleomagnetic pole calculated from the eight poles of 
comparable age, (early Miocene (12 Ma) to latest Oligocene 
(24 Ma)), compiled by Irving and Irving [1982]. We do not 
use the pole based on running averages (used by MacFadden 
et al.), because it is contaminated by data from completely 
different ages; however, the expected directions calculated for 
the Mojave Block are similar to those used by MacFadden et 
al. Since the data fail the reversals test and the reversed data 
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Fig. 13. Data of MacFadden et al. [1990] plotted on equal-area 
projections (see caption for Figure 1). 

are actually quite close to the expected direction, we feel that 
the significance of a 20 o rotation has been overestimated. 

In fact, one could use the bootstrap approach illustrated 
here to address the problem of rotation. One would use 
the directions predicted by poles chosen to represent the 
"expected direction" as one data set and the (unimodal) study 
data set as another. One would then bootstrap each data set 
separately and put the Cartesian coordinates of the bootstrap 
means together on a single diagram. If several modes are 
evident, then two directions can be discriminated. 

APPLICATION TO THE PALEOMAGNETIC FOLD TEST 

In the classic fold tests of Watson and Irving [1957], and 
McElhinny [1964], the estimated Fisher precision parameter 
k is calculated for the data both before (k) and after (k t) 
correction for bedding tilt. The question of whether or not the 
directions are better grouped after tilt correction is addressed 
by an F test comparing the ratio k•/k to the value from the œ 
tables for a given number of degrees of freedom. McFadden 
and Jones [1981] show that this approach is invalid because, 
generally speaking, if one of the data sets (say before tilt 
correction) is Fisher distributed then the rotation would distort 
the second data set out of a Fisher distribution; hence the 

assumptions for calculating k are violated. However, the 
proposed modification assumes that a fold test involves a 
single population which has been split into two populations, 
each Fisher distributed with the same k as the original 
population. Unfortunately, folds are often curved surfaces, 
and there are several structural corrections even for sites of 

the same "limb". Thus the number of "limbs" approaches the 
number of sites, and the McFadden and Jones test becomes 
cumbersome. 

The difficulties inherent in the fold test are illustrated in 
Figure 16 (data from McCabe et al., [1983]). Two limbs of a 
broad fold were sampled. Each site has its own tilt correction 
because of the curved nature of the fold. The directions 

from the two fold limbs are corrected for bedding attitude 
in steps, as was done by McCabe et al., [1983]. We have 
used the steps of 0%, 30%, 60%, and 100% unfolding for 
the present illustration. The only group which is Fisherian 
is that for 60% unfolding (see Table 2), and it seems that 
no parametric fold tests are applicable. We attempt here to 
develop tests using bootstrapped parameters that may have 
broader applicability than those based on Fisher distributions. 

We suggest two approaches to the problem; the first is 
analogous to the classic fold test in that it relies on the 
degree of dispersion present in the data set as a function of 
the degree of unfolding, while the second is similar to the 
technique used by McFadden and Jones in that it looks for 
differences in the mean directions. 

The complete data set at various degrees of unfolding 
was subjected to the bootstrap analysis described herein. 
The data are plotted on equal-area projections in Figure 
16 in a coordinate system given by I', the principal 
axes of the bootstrap means. Below each stereonet we 
plot histograms of the eigenvalues of the orientation matrix 
obtained for each pseudosample (the rt} ). The eigenvalues 
for the set of bootstrap means are listed in Table 3. As the 
data become better grouped, the histogram of the principal 
eigenvalues becomes narrower and better defined and it moves 
closer to 1. The shape of the intermediate and minimum 
histograms also change; the distinction between the major and 
minor eigenvalues (r2 and ra respectively) becomes blurred 
as the data distribution becomes more symmetric, and the 
intermediate eigenvalues move closer to zero. 

The eigenvalues • and • can be taken as estimates of 
the variances about the mean in the directions of the major 
and minor axes. If we assume that the components of the 
mean in the direction of 5• and -* 7a are normally distributed 
(this is asymptotically true according to Kent [1982]), then 
the ratio of the estimated variances in each direction during 
different degrees of unfolding can be reasonably expected to 
be F distributed. Hence the fold test as formulated here 

is also an F test with the ratio of the eigenvalues and the 
appropriate degrees of freedom. If, for instance, the ratio 
of the eigenvalues • before and after unfolding is greater 
than the F value for the appropriate number of degrees of 
freedom at some confidence level, then the hypothesis that 
the components of the means in the direction of 7• are drawn 
from the same distribution is rejected at that confidence level. 
Thus we could compare the ratios of the • and • for the 
various degrees of unfolding (shown in Figure 17) in order to 
test for significance of the difference in clustering of the data 
sets. Also shown is the traditional fold test for comparison. 
The • parameters do not change much with unfolding in this 
case. The •, however, behave very much like the k in the 
traditional approach. The slightly lower k values result from 
the fact that k "averages" • and • to some extent. 

In a different approach to the fold test we could investigate 
whether the mean directions from each limb of the fold can 

be discriminated at the various stages of unfolding. This 
would again be done as described for the test for common 
mean. The bootstrap means from each limb of the fold would 
be combined and plotted in the form of a single histogram for 
each Cartesian component. If the fold correction improves the 
grouping we should be able to find the degree of unfolding at 
which each histogram has only a single distinguishable mode, 
and the dispersion about that mode is a minimum. 

The best approach to determining whether there is a 
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Fig. 14. Quantile-quantile plot of data in Figure 13. See explanation of Figure 2. 

positive result to the fold test will almost certainly involve 
a combination of these two approaches. The method just 
described may be used to determine the optimum degree 
of unfolding that gives the most tightly grouped data as 
determined from the histograms of bootstrap means. Then the 
first method may be used to test whether there is a significant 
improvement in the clustering of the data after unfolding. To 
pass this fold test, the optimum degree of unfolding must be 
100% and there must be a significant F value for at least one 
of the two quantities •/•,' and •/•:•'. 

DISCUSSION AND CONCLUSIONS 

Naturally, there are costs and benefits in adopting or 

(the direction of the mean and the concentration parameter) 
and this description is very informative. Also, there have 
been several extremely useful tests developed which allow 
discrimination of directions and dispersions for pairs of 
Fisher distributed data sets. The disadvantage of parametric 
assumptions is that many paleomagnetically interesting data 
sets are not Fisherian and the Fisher inferences can be 

misleading; tests based on flawed assumptions may lead to 
flawed interpretations. On the other hand, the advantage 
of a completely nonparametric bootstrap (such as that of 
Fisher and Hall [1989]) is that statistical inferences can be 
made without the concern for the distortions possible from 
parametric assumptions. The disadvantage is that a fairly 

rejecting various parametric assumptions. The advantage of sophisticated computer is required and that compact tabulation 
making parametric assumptions, in particular, Fisherian ones, of parameters describing the data set is impossible. Indeed, 
is that a data set may be described in terms of a few parameters each data set must be used in its entirety in order to make 
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described in text. (c) Cartesian coordinates of directions of the bootstrapped means of the data shown in Figure 13, 
(Nt, = 800). (d) Same as in Figure 15c but with the antipodes of the reversed mode. 

comparisons, making some sort of international archive for 
all published paleomagnetic data essential. The question then 
is, when, if ever, do the benefits of bootstrapping outweigh 
the costs? 

Before such a question can be seriously considered, 
the assumptions, benefits, and penalties must be clearly 
understood. To this end we review briefly what our bootstrap 
procedures are. Then we discuss the pros and cons of the 
method and conclude with recommendations on when this 

approach may be advantageous. The procedure for calculating 
approximate 95% confidence intervals is as follows: 

1. Draw a random sample (with replacement) from the 
original data of the same size (n) to serve as a pseudosample. 

2. Repeat step one a large number of times (say n2). 

3. Calculate the eigenparameters of the orientation matrix 
for each pseudosample and separate the data into two modes 
using the plane perpedicular to the principal eigenvector as 
the criterion for separation. 

4. Calculate a mean for each mode for all pseudosamples. 
5. Calculate approximate ellipses of 95% confidence for 

the set of bootstrapped means for each mode by assuming 
that they are Kent distributed. 

This is not a balanced bootstrap. We found in our 
simulations that balancing was much slower, required far 
more memory, and produced identical results to the procedure 
outlined above, provided the number of pseudosamples 
was large. Given the comparatively small memories on 
most personal computers, we favor a larger number of 
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Fig. 16. Fold test for data of McCabe et al. [1983]. Circles are equal-area projections in sample coordinates (see Figure 
6b and 6c). Circles are from the northern limb and triangles are from the southern limb. For each step of unfolding, data 
are treated by bootstrap technique described in the text with 800 bootstrap samples. Counted are the eigenvalues for each 
bootstrap sample (r,* in our notation). 

pseudosamples over balancing, based on the experience that 
our random number generator is not biased and the resulting 
bootstrap is therefore already well balanced. 

The final step above necessitates a parametric assumption 
about the distribution of the means. The nonparametric 
bootstrap of Fisher and Hall [1989] expresses the statistical 
behavior of a given data set by means of a grey-scale 
contoured image of the bootstrap means. However, it is 
often desirable to have a more compact representation of 
this behavior which can be shown in tabular form. Some 

parametric assumption must be made in order to provide 
such a representation. On the basis of examination of a 
wide assortment of paleomagnetic data sets and bootstrap 
means generated therefrom, we feel that the assumption of 
approximately elliptical cornours of the confidence intervals 
is a reasonable compromise. Thus we have not avoided 
parametric assumptions emirely, we have just postponed their 

TABLE 2. M•, and M, values for the Data in Figure 1 

Percent 

Unfolding M•, M, Fishefian? 

0 1.915 0.507 no 

30 1.575 0.468 no 

60 1.088 0.468 yes 
100 1.475 0.851 no 

application to the set of means, which are more likely to be 
"well behaved" than the directions. 

The advantages of our method are several. The procedure 
automatically divides data sets into modes and the data need 
not be edited "by hand". No a priori decisions must be 
made as to the allegiance of a particular intermediate poim 
to a particular mode as this may change from pseudosample 
to pseudosample. Furthermore, the technique applies equally 
well to directions or pole positions and generates confidence 
intervals which more accurately reflect elliptical data distri- 
butions than do Fisher confidence imervals. When applied 
to the principal directions of the pseudosamples, as opposed 
to the means, the resulting estimate of the true direction is 
more robust in the presence of outliers than is the mean. 
In addition, by examining histograms of the Cartesian coor- 
dinates of the bootstrapped means (or principal directions) 
of two data sets, the presence of a common mean can in 
most cases be unambiguously determined without resorting 
to parametric assumptions which often do not apply. Finally, 
using the eigenvalues of the average orientation matrix instead 
of n in the fold test eliminates the discomfort of calculating 
concentration parameters intended for spherically symmetric 
distributions on grossly asymmetrical data sets. 

There are also several disadvantages of our bootstrap 
technique. First of all, based on the results of our simulation 
experimems, bootstrapped confidence regions are in general 
too small, and for data sets smaller than about 25 (in each 
mode) the effect is probably unacceptably large. Of course 
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TABLE 3. Average Eigenvalues for the Data Shown in Figure 16 

Percent 

Unfolding 

0 0.875 0.020 0.117 0.019 0.009 0.002 
30 0.947 0.009 0.045 0.008 0.008 0.002 
60 0.9745 0.004 0.018 0.004 0.007 0.002 
100 0.930 0.015 0.063 0.015 0.007 0.002 

_ 

1 I I • I 1 
0 40 80 

% Unfolding 
Fig. 17. Plots of various parameters controlled by dispersion of the 
data. Primed values are for data corrected for tilt. 

the a•5 calculated with the usual approximation (equation 
(4)) are also too small, even if the data are drawn from a 
Fisher distribution. Second, each determination of a bootstrap 
confidence ellipse (using thousands of pseudosamples) takes 
about a minute on our laboratory computer (a Compaq 386/25 
running under Xenix). A version which runs on a Macintosh 
II (MacBoot) takes a few minutes. We anticipate that a 
PC-AT version (DosBoot) will take somewhat longer, and 
so bootstrapping is certainly slower than calculating Fisher 
or Kent confidence parameters. Also, a computer with a 
fairly hefty memory is required (at least 4Mb), but memory 
is getting cheaper every month and this should not be a 
major concern. A third disadvantage is that the procedure 
for separating normal and reverse mode data assumes that the 
modes are more than 900 apart and are fairly discrete. Girdle 
distributions will fail miserably under this method. 

Although this technique is much more automated and 
robust than the standard approaches, the user is encouraged 
(nay, emplored) to examine the data graphically, perhaps using 
the technique of Fisher and Hall [1989]. Quantile-quantile 
plots can also be useful, and if the Fisher shoe fits (as it often 
does), by all means wear it. Our technique performs nearly 
as well as the Fisher approach on Fisherian data but is much 
slower and is not necessary. Finally, data sets smaller than a 
few dozen are not suitable for bootstrapping. 
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