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S U M M A R Y  
Previous techniques for judging the significance of a palaeomagnetic fold test are 
either invalid or insufficiently flexible. It is shown that under appropriate cir- 
cumstances an isolated-observation test may be added to the range of statistical tests 
used to judge a fold test. A powerful new test is developed based on a test statistic 
that is sensitive to correlation between the distribution of site-mean directions about 
the overall mean direction and the tectonic corrections. This test is sufficiently 
flexible that it should cover most circumstances. 
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1 INTRODUCTION 

The fold test (Graham 1949) has, for a long time, been a 
standard field test in palaeomagnetism for determining 
whether a magnetization was acquired pre- or post-tectonic 
folding. For 15 years this test was applied sporadically and 
without any well-defined criterion for judging its significance 
until McElhinny (1964) suggested using the ratio of Fisher’s 
precision parameter (Fisher 1953) pre- and post-folding. The 
test, using McElhinny’s criterion, became standard practice 
wherever possible and thereby created substantially 
improved discipline in palaeomagnetic investigations. 17 
years later McFadden & Jones (1981) showed that 
McElhinny’s criterion is invalid and presented a different 
criterion for judging a fold test. However, palaeomagnetism 
continued to evolve and palaeomagnetists were investigating 
the ancient magnetization in rock formations that had been 
subjected to complex folding, rather than the relatively 
simple folding envisaged in the McFadden & Jones test. 
Consequently there are now several instances of fold tests 
being applied where the folding has been too complex to 
lend itself to the McFadden & Jones test. Investigators have 
therefore reverted to the McElhinny (1964) test even though 
they recognize it is invalid, but often justifying its use on the 
basis that the criterion is typically very conservative 
(McFadden & Jones 1981). Therefore in most cases the 
conclusions will have been correct when the test was judged 
to be significant, but undoubtedly there are several instances 
when the test was incorrectly judged not to be significant. 

The intent of this paper is to provide valid criteria for 
judging the significance of fold tests. The plural is used 
because it would appear there is no single criterion 
appropriate for all cases. In some cases it is just a matter of 
identifying a test that already exists as being the appropriate 
test. A powerful new test (based on correlation between the 
distribution of magnetic directions and the tectonic 

information) is developed here to cater for most of the more 
complicated situations. Taken together it is hoped that these 
tests will cover almost all circumstances and, perhaps, be 
suggestive of an appropriate test for any cases that might not 
be covered. 

Throughout this paper the term ‘limb’ is used to refer to 
an area, in a tectonically deformed region, that has suffered 
no internal deformation. Thus all parts of a limb may be 
returned to the original undeformed attitude by the 
application of a single tectonic correction. However, even 
with a very simple fold, sites close to the axis will be on 
‘curved’ surfaces and so each site may require its own 
tectonic correction-which is equivalent to each site being 
on a separate ‘limb’. In this paper no restriction is placed on 
the complexity of the overall deformation (folding). The 
phrase ‘correct relative attitudes’ is used to refer to the 
relative attitudes of the limbs at the time of acquisition of 
the magnetization, and ‘incorrect’ to refer to any other 
relative attitudes. 

2 TEST WITH MULTIPLE SITES PER LIMB 

If there are multiple palaeomagnetic sites available for each 
of the fold limbs then it is possible to perform the fold test 
as laid out by McFadden & Jones (1981), provided the 
populations of site-mean directions on each limb share a 
common precision K. 

If there is not a common K then, as noted in McFadden & 
Jones (1981), one should investigate a little more closely 
before applying a fold test. For example, it may be that the 
folding is more complex than originally recognized, 
requiring a reassignment of some sites to additional limbs 
with their own tectonic corrections. If, after further 
investigation, it is concluded that the tectonics are correctly 
accounted for, a fold test can still be performed using the 
correlation test developed later in this paper, provided there 
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is a total of a least five sites reasonably distributed across the 
limbs. If there are multiple sites on each limb then it is still 
possible to make use of a test suggested by Watson (1983). 
To apply this test, if there are r limbs with n, sites on the ith 
limb let 

Xi = x i ,  + . . . +xi, ,  
I: = yi, + . . . + yjn, 

and 

R, = ( X z  + Y t  + Z~)” ’ ,  

where (xii, y , ,  zii) are 

(2) 
the direction cosines of the jth 

site-mean direction on the ith limb. 
k, = (n, - l)/(nz - RJ, let 

S,= klR, + .  . . + k,R,, 

8=  k l X l  + * . . + k,X, 
P=k,Y,+ . . .+k ,Y,  , { 2 = k l Z l  +.  . . + k,Z, I 

and 

R, = (8‘ + P’ + 2’)”’. 
One may now use the test statistic 

V = 2(Sr - Rw). 

If the K, are all the same (=K) then 

V = 2 ~ ( c  R, - R) 

Then, using 

(3) 

(4) 

(7) 

where R is just the vector sum of all the individual site-mean 
unit vectors. V is zero if all the site-mean directions are the 
same, and increases with increasing dispersion of the 
site-mean directions. Thus the null hypothesis of a common 
mean direction may be rejected if V is too large. To 
determine this, V may be compared with the upper 
lOO(1 - a) per cent point of the x-~,-~, distribution, 
provided each of the ni is at least 25. Unfortunately it is rare 
to have each n, this large and, as shown by Watson (1984), 
V does not have a convenient distribution in small samples. 
However, with today’s wide availability of computing power 
the inconvenience of a distribution need no longer be an 
impediment to the use of a statistic, and the question of 
whether V is ‘too large’ could be answered by simulation as 
follows. 

(1) Calculate the observed value V, of V. 
(2) Assuming Fisher distributions (Fisher 1953), under 

the null hypothesis of a common mean direction, simulate a 
new set of observations (xii,  yii, zii) by choosing re,, and twii 
from a set of pseudo-random numbers uniformly distributed 
in the interval [0,1] and then calculating 

[ 0, = 2 arc sin I 
[there are several similar equations for generating 
pseudo-random variates from a Fisher distribution, but this 
particular form gives the best performance; see Fisher, 

Lewis & Willcox (lYSl)], 

q..=2nt .. 

and 
PI,’ 

xii = cos eij cos qij 
yij = cos 8, sin qij . 

(3) Calculate the simulated value vl of V. 
(4) Repeat steps (2) and (3) to obtain 1000 simulated 

values v,,  . . . , v ~ ~ .  
(5) Sort the simulated values vl, . . . , vl, into ascend- 

ing order as V,, . . . , V,, [in practice this is actually 
performed concurrent with step (4) by creating a linked-list]. 

(6) To test at the lOO(1- a) per cent level, let A be the 
largest integer not exceeding [1000(1- a) + 11 and reject 
the null hypothesis if Vo > V,. 

As specified in McFadden & Jones (1981), if the null 
hypothesis of a common mean direction can be rejected in 
the in situ position, but not in the unfolded position, then 
this is evidence that the magnetization was acquired before 
the folding occurred. Conversely, if the null hypothesis can 
be rejected in the unfolded position but not in the in situ 
position, then this is evidence that the magnetization was 
acquired after the folding occurred. If the null hypothesis 
cannot be rejected in either position then this test does not 
give evidence regarding the age of acquisition of the 
magnetization. If the null hypothesis can be rejected in 
both the in situ and unfolded positions, but not in some 
intermediate position, then this is suggestive of the 
magnetization being syn-deformational (Perroud 1983; 
McClelland Brown 1983; Schwartz & Van der Voo 1984; 
Kent & Opdyke 1985; Schmidt & Embleton 1985; Granirer, 
Burmester & Beck 1986; Miller & Kent 1986; Torsvik et al. 
1986) or the result of internal strain of a pre-existing 
magnetization (Facer 1983; Spariosu, Kent & Keppie 1984; 
Kodama 1986a,b; Van der Pluijm 1987). 

[ 2.. 11 = sin 8.. I ]  

3 TEST ON A N  ISOLATED OBSERVATION 

If there are two limbs with N sites on the first limb and only 
one site on the second limb (the isolated observation), then 
it is not possible to estimate the precision on the second 
limb and so the tests in Section 2 cannot be used. The 
correlation test developed later in this paper would also be 
inappropriate. However, if the limbs are in their ‘correct’ 
positions, the isolated observation should be just another 
random observation from the same distribution as the set of 
observations from the first limb. Thus it is simply a matter of 
testing whether the isolated observation is discordant with 
the other observations. 

McFadden (1982, equation 14) has shown that if yo is the 
angle between the isolated observation and the mean 
direction of the N unit site-mean vectors from the first limb, 
and if R, is the resultant length of the vector sum of those N 
site-mean directions from the first limb, then 

where p is the probability of obtaining an angle y greater 
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dispersion of the magnetic vectors then it is possible to 
detect this information through correlation of the magnetic 
directions with the tectonics. This leads to an effective and 
very flexible test. 

The flexibility of the test is such that the definition of the 
test statistic can be tailored to the investigator’s particular 
geological circumstances whilst retaining the same distribu- 
tion (and therefore critical values) under the null 
hypothesis. Two definitions of the test statistic are presented 
here, the choice being based on my perception of their 
generality and ease of explanation. The distribution of the 
test statistic is developed within the first definition. 

Table 1. Example of an outlier test used to judge a fold test. 

In siru Unfolded Tectonic corrections 

Declination Inclination Declination Inclination Direction Of Dip 

177.5 10.5 180.9 6.8 259.9 21.3 
201.0 8.1 202.0 -0.2 262.8 16.3 
196.4 0. I 195.2 -6.6 268.3 20.9 
185.1 11.5 187.3 2.2 248.9 19.2 
324.3 85.7 196.6 13.9 193.3 75.1 

yo = 14.3’ 
Prob(y> 14.3’) = 0.204 

dip 

yo = 85.4‘ 
Prob(y > 85.4’) = 0.0005 

than yo. If p is too small (e.g. less than 0.05 for 95 per cent 
confidence) then the isolated observation may be judged as 
discordant. 

An example is presented in Table 1 from the Mount 
Eclipse Sandstone of the Ngalia Basin in central Australia 
(C. Klootwijk, personal communication). Each of the five 
sites actually has its own tectonic correction, but four of 
these corrections are very similar and the fifth is quite 
different. It is therefore sensible to treat the first four limbs 
as if they were one and test the observation from the fifth to 
see if it is discordant. Clearly the isolated observation is 
discordant in the in situ position, but not discordant in the 
unfolded position, which suggests that the magnetization 
was acquired before the folding occurred. 

4 A CORRELATION TEST 

Consider now the situation where we have N sites, each on a 
separate limb with its own tectonic correction. Certainly it 
is not possible to estimate the between-site precision on any 
limb and so the above tests cannot be used. Indeed, because 
of the inability to obtain any estimate of the between-site 
dispersion that is known to be free of tectonic effects, it 
appears at first sight to be an impossible task to identify a 
valid criterion for a fold test. However, even though the 
McElhinny (1964) test is invalid, it does express in a very 
vivid way an intuitive recognition that there is useful 
information present. 

In the previous tests the question really being asked is ‘is 
the overall dispersion of the site-mean directions consistent 
with the observed dispersions of within-limb site-mean 
directions, assuming that the individual site-mean directions 
are random observations from Fisher distributions sharing a 
common mean direction?’. This question is then asked 
independently in the in situ and unfolded positions. In the 
circumstance of a fold test this ignores some powerful 
information, which is that if we are performing the test with 
the limbs in relative attitudes different from those in which 
the magnetization was acquired then the directions of 
magnetization are not entirely random, but have been 
moved from their random positions in known directions. 

Clearly, if the limbs are in the ‘correct’ relative attitudes 
(i.e. the same relative attitudes as when the magnetization 
was acquired) then the distribution of site-mean directions 
about the overall mean should contain no information 
about (i.e. should not be correlated with) the tectonics. 
Conversely, if the limbs are in ‘incorrect’ relative attitudes 
then the distribution of site-mean directions will contain 
information about the tectonics, and if the tectonic 
deformation has been substantial relative to the natural 

4.1 Definition 1 

As shown in Fig. 1, let p be the unit vector representing the 
overall mean direction, and let mi be the unit vector 
representing the ith site-mean direction. Associated with mi 
is the tectonic correction for the limb this site is from. If Fig. 
1 is showing the in situ p and mi, then the desired tectonic 
correction is that which would transform mi to its unfolded 
position. Conversely, if Fig. 1 is showing the unfolded 
directions of p and mi, then the desired tectonic correction 
is that which would transform mi to its in situ position. 
Apply this tectonic correction to p to obtain the 
‘shifted-mean’ q. Now define the unit vector ui as 

and the unit vector vi as 

(9) 

ui is therefore perpendicular to p ,  is in the plane defined by 
p and mi, and is in the direction from p to mi. Similarly, vi 
is perpendicular to p, is in the plane defined by p and ti, 
and is in the direction from p to 4. Some may find this 
easier to visualize by recognizing that if the system were 
viewed in a frame of reference with p perpendicular, then 
both ui and vi would be horizontal and would, respectively, 
represent the ‘declinations’ of mi and ri relative to p.  Now 

Figure 1. Basic geometry for testing whether there is a correlation 
between the distribution of magnetic directions and the tectonic 
corrections. See text for definitions. 
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define ei as the angle between ui and vz, so that 

CQS ei = ui * vi. (11) 
If the limbs are in their ‘correct’ relative attitudes, ui 
contains no information about (i.e. is not correlated with) 
vi. Thus if we make the minimal, and very reasonable, 
assumption that the magnetic directions are drawn from a 
population with a uniform azimuthal distribution about the 
mean (although this does not require a Fisher distribution, it 
is certainly consistent with that distribution), then Bi is 
simply a random observation drawn from a population that 
is uniformly distributed in the interval [0,2n], and 

E{COS ei) = 0, (12) 

where E{ . } represents the expectation of the variable in 
the brackets. Conversely, if the limbs are in their ‘incorrect’ 
relative attitudes, ui will have been ‘dragged‘ towards vir so 
there will be a correlation between ui and vi giving 

E{cos ei} > 0. (13) 

Thus a sensible test statistic for the fold test is 

Table 2. Critical values of the 
test statistic 5. 

Confidence limit 
95% 99% N 

N 

lj = cos ei, 
i= l  

(14) 

and we would reject the null hypothesis of no correlation if 
5 is too large. The null hypothesis is of course equivalent to 
the hypothesis that the limbs are in their ‘correct’ relative 
attitudes, and rejection of this null hypothesis is equivalent 
to accepting the alternative hypothesis that the limbs are not 
in the same relative attitudes as when the magnetization was 
acquired. 

Under the null hypothesis the distribution of is 
obviously symmetrical and has zero mean. Lord (1948) has 
derived the distribution function FN(lj) of 5 in the form 

(15) 

where Jo(t) is the Bessel function of order N. This form is 
particularly convenient for computation, and the 95 and 99 
per cent confidence limits for 5 presented in Table 2 have 
been calculated using it. Although, for completeness, the 
table has been presented for values of N as low as 2, it is not 
recommended that the fold test be performed with N < 5. 
For large N the distribution clearly approximates a normal 
distribution. Since for N = 1 the distribution has zero mean 
and variance 112, the approximating normal distribution has 
zero mean and variance N / 2 .  Thus for large N the 95 and 99 
per cent confidence limits for 5 are given by 1 . 6 4 5 m  and 
2 . 3 6 2 m  respectively. 

It must be recognized that if p is beneath the horizontal 
and the limbs are in their ‘incorrect’ relative attitudes, then 
ui would have been ‘pushed away’ from vi, so 151 should be 
used for comparison with the values in Table 2. 

This particular definition of the test statistic has the 
advantage that it requires only the minimum amount of 
information-for a simple fold one does not in fact need to 
know the actual amount of dip of the beds, just the 
directions of dip to test whether the magnetization could 
have been acquired with the beds in any given set of relative 
attitudes. This is because ri moves within a plane containing 
p and so vi is independent of the amount of dip. Thus one 

2 1.697 
3 2.076 
4 2.335 
5 2.609 
6 2.862 
7 3.086 
8 3.298 
9 3.497 
10 3.685 
11 3.865 
12 4.036 
13 4.200 
14 4.358 
15 4.510 
16 4.658 
17 4.801 
18 4.940 
19 5.075 
20 5.207 
21 5.335 
22 5.460 
23 5.583 
24 5.702 
25 5.820 
>25 1.645JNh 2 

1.937 
2.662 
3.180 
3.573 
3.919 
4.253 
4.562 
4.849 
5.120 
5.378 
5.624 
5.860 
6.087 
6.305 
6.516 
6.721 
6.919 
7.112 
7.300 
7.483 
7.662 
7.836 
8.007 
8.174 

!.326- 

has the flexibility of performing the test with the beds 
unfolded to any desired percentage by arbitrarily assigning a 
dip of say 5”. If there is correlation in both the unfolded and 
in situ positions then this flexibility makes it simple to 
investigate the possibility of synfolding magnetization by 
searching for the percentage of unfolding that gives the 
minimum value of 5. 

One point of importance here is that because we are 
seeking correlation with the tectonic corrections, it is critical 
that a consistent notation be used. In half of the tectonic 
dips are (randomly) given as negative (i.e., upwards) and 
the other half as positive, then this will randomly introduce 
180” flips in the given directions of dip, and will destroy any 
correlation. I have therefore adopted the convention that 
all dips must be positive (i.e. downwards). 

The effectiveness of this test has been compared with that 
of the McElhinny (1964) test by using 5000 random 
simulations as follows. In each simulation a sample of size 
N (chosen at random in the range 5-25) was chosen from a 
Fisher distribution with a mean direction chosen at random 
(uniform on the surface of the unit sphere) and a precision 
parameter K chosen at random in the range 10-50. A set of 
‘random tectonics’ was also chosen for each sample by 
choosing a random direction of dip (uniform in the interval 
[0,2n]) and a random dip angle (uniform in the interval 
[0, 11) associated with each direction of magnetization. The 
set of random dip angles was then scaled so that the 
maximum dip was equal to 1”. The limbs were then ‘folded’ 
according to these tectonics and the significance of the fold 
test judged according to each of the test criteria. The set of 
random dip angles was then rescaled so that the maximum 
dip was equal to 2”, the limbs ‘folded’ according to these 
increased tectonic corrections, and the significance of the 
fold test again judged according to the different criteria. 
This rescaling of the dip angles was continued until either 
the maximum dip angle reached 90” (very rare) or the fold 
test was judged to be significant at the 95 per cent 
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Table 3. Example data from the top of the Ngalia Basin. 
I n  Siru Unfolded Tectonic Corrections 

Declination Inclination Declination Inclination Direction Of Dip Dip 
1 89.0 
173.3 
190.9 
186.9 
169.3 
181.6 
145.9 
168.1 

56.4 
-51.5 
43.4 
10.7 

-15.0 
-6.9 

-32.9 
-47.6 

193.4 
180.3 
191.0 
187.7 
167.0 
180.3 
154.3 
177.5 

-11.8 
-11.3 
-6.1 
-4.3 

-13.9 
-8.0 
-8.1 
-16.0 

N = 8  

6, = 5.958 5, = 2.376 

199.1 
12.2 
191.2 
229.5 
265.0 
264.9 
12.0 
17.9 

68.7 
41.5 
49.5 
20.1 
9.0 
10.0 
32.8 
34.6 

confidence level according to each of the criteria. The result 
of this simulation test was that typically the correlation test 
required only about 40 per cent of the tectonic movement 
that the McElhinny (1964) test required. In almost all cases 
the correlation test showed significance at the 99 per cent 
level of confidence well before the McElhinny test showed 
significance at the 95 per cent level of confidence. 

An example of the use of the correlation test on data from 
the top of the Ngalia Basin is presented in Table 3 (C. 
Klootwijk, personal communication). In the in situ position el (the subscript 1 is used to distinguish this definition of 5 
from definition 2 given later) exceeds the critical value at 
the 99 per cent confidence level, a clear indication that there 
is correlation between the magnetic directions and the 
tectonics, so it is unlikely the magnetization was acquired 
with the limbs in these relative attitudes. Conversely, in the 
unfolded position, el is only 2.376, so there is no reason to 
reject the hypothesis that the magnetization was acquired 
before the folding occurred. 

A further example, suggesting synfolding magnetization, 
is presented in Table 4. Here El exceeds the critical value at 
the 99 per cent confidence level in both the in situ and the 
unfolded positions. However, if a partial unfolding is 
performed, El attains a minimum of 0.029 at 44 per cent of 
unfolding. Thus the evidence suggests that the magnetiza- 
tion was acquired during the folding or was the result of 
internal strain of a pre-existing magnetization. 

4.2 Definition 2 

The test statistic given under definition 1 is very effective if 
the tectonic corrections are such that the angle between the 

Table 4. Example suggesting synfolding magnetization. 
I n  Siru Unfolded 44% unfolded Tectonic comctions 

Decli- Inch- Decli- Incli- Decli- Incli- Direction 
nation nation nation nation nation nation ofdip Dip 
44.4 -56.2 7.2 -47.5 25.7 -54.6 131.9 29.2 
5.5 -58.8 15.2 -76.1 8.0 -66.5 357.3 17.7 
69.5 -41.3 287.0 -79.8 63.5 -66.2 76.4 57.3 
9.7 -81.7 149.3 -57.5 134.1 -78.8 337.5 39.3 

70.9 -58.0 65.6 -69.3 69.1 -63.0 81.3 11.6 
101.8 -64.4 226.2 -78.7 121.0 -77.8 85.2 33.5 
80.4 -79.9 77.5 -76.3 78.9 -78.3 249.3 3.7 
50.2 -52.3 111.7 -74.0 63.9 -64.9 23.5 34.1 
40.5 -84.0 110.1 -75.8 87.2 -81.9 315.2 13.4 
73.8 -7R.4 85.0 -49.9 82.1 -66.0 270.0 28.8 
55.7 -56.0 325.8 -63.9 25.2 -68.2 93.9 44.7 
339.3 -58.6 22.9 -56.1 359.3 -60.1 266.2 26.9 
48.6 -61.5 53.0 -53.5 50.8 -58.0 250.2 8.5 

N =  13 

5, = 5.924 6 ,  = 6.676 6 ,  = 0.029 

Figure 2. Choice of z1 for definition 2 of the test statistic. Circles 
represent the directions with the limbs in their correct relative 
positions and squares the directions with the limbs in incorrect 
relative positions. Solid symbols represent the individual site-mean 
directions and open symbols the overall mean directions. Smaller 
open symbols represent the ‘shifted-mean’. 

in situ overall mean and the unfolded overall mean is small 
relative to the movements of the individual site-mean 
directions mi. However, if the overall mean direction is 
shifted a large amount (this will happen if, for example, all 
of the directions of dip fall in a single quadrant) then this 
definition becomes substantially less effective. There is no 
problem with the limbs in their correct relative positions, 
but the choice of vi is poor with the limbs in their incorrect 
relative positions. This can easily be fixed by a more 
appropriate choice of 4, the ‘shifted-mean’. 

Consider the situation in Fig. 2(a), where a projection of 
four site-mean directions and their overall mean direction is 
shown in both the in situ and unfolded positions. The solid 
circles represent the directions of magnetization at the time 
of acquisition, and the solid squares represent the directions 
of magnetization with the limbs in their incorrect relative 
positions. Open symbols represent the respective overall 
means. It should be clear that definition 1 for the test 
statistic would show very little correlation for the ‘square’ 
directions in Fig. 2(a). 

Consider now just observation 1, as shown in Fig. 2(b) 
and (c). If testing for correlation in the in situ position, 
apply to the overall mean of the unfolded position the 
rotation that makes m, from its unfolded position to its in 
situ position and call this zl. Similarly, if testing for 
correlation in the unfolded position, apply to the overall 
mean of the in situ position the rotation that takes m, from 
its in situ position to its unfolded position and call this q. 
Now, with this new choice of zl, define u1 and v1 exactly as 
under definition 1, and 8 will, in effect, be the angle 
between the two dotted lines in each of Fig. 2(b) and (c). If 
testing with the limbs in their incorrect relative positions, n, 
and v1 will clearly be correlated, so that 8 will be biased 
towards small values. Conversely, if testing with the limbs 
in their correct relative positions, 8 will be uniformly 
distributed in [0,2n]. Thus we may again choose f as 
defined by equation (14) and, under the null hypothesis, it 
will have exactly the same distribution as before. 
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Table 5. Example requiring second definition of E. 
I n  Situ Unfolded Tectonic Corrections 

Declination Inclination Declination Inclination Direction Of Dip 
Dip 

353 0 
355 0 
7 0  
13 0 

354 0 
4 0  

354 0 
358 0 
0 0  
34 0 

5, = ~1.582 

46.0 
40.0 
22.0 
40.0 
34.0 
33.0 
32.0 
25.0 
30.0 
34.0 

100.1 41.6 
90.4 40.8 
60.5 33.9 
21.5 43.1 
1 .o 42.1 
10.9 38.4 
25.1 55.4 
24. I 47.4 
25.7 47.3 
58.6 32.5 

N = 10 

5, = 7.41 1 

135.0 
133.0 
130.0 
125.0 
130.0 
127.0 
135.0 
133.0 
131.0 
134.0 

80.0 
82.0 
81.0 
10.0 
12.0 
11.0 
38.0 
40.0 
35.0 
36.0 

An example requiring this second definition is presented 
in Table 5 (R. Enkin, personal communication). Using the 
first definition, = 2.049, which does not exceed the 95 per 
cent confidence limit of 3.685, but using the second 
definition, E2 = 7.411, which easily exceeds the 99 per cent 
confidence limit of 5.120. 

This particular definition also works well in situations 
where the angle between the in situ overall mean and the 
unfolded overall mean is small. However, detection of 
correlation is most sensitive when one of the positions (in 
situ or unfolded) has the limbs in the correct relative 
positions. Thus if the magnetization was actually acquired 
somewhere between these two extremes (i.e. the magnetiza- 
tion is synfolding) the optimal procedure is not immediately 
obvious. An acceptable approach seems to be that if E2 
exceeds (or even approaches) the 95 per cent critical value 
in both of the extreme positions, a synfolding position 
should be sought using and then g2 for the in situ and 
fully unfolded positions should be recalculated using this 
intermediate position as the reference. 

4.3 General comments 

Two possible (and hopefully reasonably general) definitions 
of the test statistic have been presented, and it is hoped they 
will have reasonably general applicability. The particular 
definition of 8 used will of course affect the power of the 
test, and so it may be that neither of the definitions 
suggested here is optimal for a given situation. However, 
the requirements on 8 for validity of the test are minimal 
and so it should usually be possible to identify an optimal 
definition. 

It is important to note that there is no reference to the 
precision with which any magnetic direction is determined. 
All that is required is that each of the individual Oi be a 
uniform random variate in the interval [0,2n]. Thus it is 
actually possible to use magnetic directions from different 
hierarchical sampling levels in the one test, greatly 
enhancing the flexibility of the test. For example, assume 
there are six limbs, one with 30 sites, one with two sites, and 
the other four with only one site each. If the correlation test 
is performed with all 36 site-mean directions then the 30 
site-means from the one limb will completely swamp the 
others, and it is unlikely that any actual correlation will be 
discernible. However, this can easily be overcome by testing 
just six directions, each being a limb-mean. It is not critical 
that one limb-mean comes from 30 sites, one from two sites, 

while the remaining limb-means are just the individual 
site-means. 

5 CONCLUSION 

If the circumstances are appropriate, the significance of a 
fold test may be judged by testing whether the samples 
observed on different limbs could have been drawn from 
distributions sharing a common mean direction. However, 
in many instances this is not appropriate, and a new test has 
been developed here based on a correlation between the 
distribution of the magnetic directions about the overall 
mean and the tectonic information. This test is very flexible 
and can be used in most cases. 

Programs to perform the tests in this paper may be 
obtained from BMR via the author. 
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