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Summary. The analysis of palaeomagnetic data where only inclinations are 
available is considered. Maximum likelihood estimates for the mean inclination 
lo and Fisher's precision parameter K are derived. It is shown that they are in 
all cases biased although the bias is small for low inclinations. The case of 
steep inclinations and small values of K is examined and it is shown that in 
this region I. and K are not separable as distinct variables, because the lack of 
declination information in this region leads to fundamental ambiguities. 
Unbiased estimates for lo and ( 1 / ~ )  are derived for the case where the portion 
of the distribution folded about the vertical is insubstantial. A worked 
example of the method, with calculation of confidence limits, is appended. 

1 Introduction 

Palaeomagnetic investigations are sometimes performed on vertical borecores which have 
been recovered as fragmentary pieces. Under these conditions even 'relative' declinations are 
unknown and the only available data are the measured inclinations of magnetization. In a 
normal palaeomagnetic investigation both declinations and inclinations are available and 
neither of these constitute redundant information. Consequently it should be expected that 
a correct analysis of inclination data only will be extremely difficult and even impossible 
under some circumstances. 

Initially it must be recognized that it is impossible to obtain an unconditional estimate of 
the true mean inclination which is unbiased, unless the true mean inclination happens to be 
zero. This is easily seen by considering the case of a true inclination of 90" (i.e. vertically 
down). Independent of the method of estimating the inclination of the true mean direction 
there will always be samples which will lead to an estimate less than 90". Since it is 
impossible to obtain an estimate in excess of 90" this leads immediately to the conclusion 
that it is impossible to obtain an unbiased estimate. Evidently the bias in the estimate will 
decrease as the inclination of the true mean direction approaches zero and also as the preci- 
sion of the observed population increases. However, it turns out that in many instances it is 
possible to obtain a conditional estimate for the inclination which is unbiased. 
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Given that it is impossible to obtain an unbiased estimate for the inclination the estimate 

which probably has the least bias is the maximum likelihood estimate (mle). Therefore a 
general solution for the mles is derived with the assumption that the full data set of decli- 
nations and inclinations is Fisher distributed (Fisher 1953). An unbiased conditional estimate 
for the inclination is derived for those cases where it is possible, together with an unbiased 
estimate for the inverse of the precision parameter. The equations necessary for determining 
the errors associated with these estimates are also derived. The remaining cases are examined 
numerically. 

P. L. McFadden and A. B. Reid 

2 The distribution 

If the individual directions are Fisher distributed then the density is given by 

where K is the precision parameter, 0 '  is the polar angle between an observation and the true 
mean direction and @' is the uniformly distributed azimuthal angle about the true mean 
direction. The simplest method of analysing the problem is to transform to a set of variables 
related to the downward vertical. Defining the variables Oo, 0 and @ as they were defined by 
Briden & Ward (1966), do is the complement of the inclination of the true mean direction, 
t9 is the complement of an observed inclination and @ is the azimuthal angle (about the 
downward vertical) of an observation. These variables are then related by the equations 

c o d =  c o d o  cod  t sineo sine COS@ 

sine sin@ 
tan@'= 

sineo cosd - coseo sine cos@ 

c o d  = c o d o  case ' + sine, sine ' COS$' 

sine' sin@' 
tan@ = 

sine, c o d  ' - sine ' COS@' 

and estimation of O0 is equivalent to estimation of I,, the inclination of the true mean 
direction. 

The Jacobian of the transformation is such that 

sinO'dO'd@' =sine de d@ (3) 
giving the density in terms of the variables 0 and @ as 

K 
P(f3, @)dOd@ = ~ exp [ ~ ( c o s e ~  c o d  t sineo sine cos@)] sine dB d@. (4) 4n s i n k  

The marginal distribution of 6 is then given by 
K 

P(e)de = ~ e x p ( ~  coseo c o d )  C sine dB 
2 sinhK 

where 
1 

G = - 
211 

exp(K sine, sine cos@) d@ 

 by guest on A
pril 25, 2016

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


Inclination data 309 
3 Previous analyses 

The first serious attempt at an analysis of this problem was given by Briden &Ward (1966) 
who derived the distribution given above. They presented a fairly ad hoc analysis whereby 
they calculated numerically the values of certain parameters for a range of values of do and 
K ,  producing from their results a nomogram and 28 tables for the estimation of do and K 
from an observed sample, together with estimates for the errors. In obtaining their error 
estimates they assumed a normal distribution of errors as well as linear dependences of errors 
in do and K .  Unfortunately these assumptions are not well satisfied over a wide range of 
cases. 

Kono (1980) has derived analytical expressions for estimates of do(Io) and K .  He does not 
state what type of estimates they are. He also asserts that 'the best estimate of precision 
parameter k, which is obtainable from (10) [his (lo)], and the cosine of angular error (6) are 
related through the equations derived by Fisher (1953); 

N - R  1/(N - 1) 
1-6=- [(i) - 1 1  

R 

N- 1 k=- 
N-R 

where p is the probability that the cosine of error angle is less than 6. . . . Confidence limits 
for k can be obtained by the method of Cox (1969).' The accuracy of this assertion is 
doubtful since it requires that the estimates be unbiased and that 

2 ~ R ( 1 - 6 ) - X f  

and 
2 1 X2(N-1)  

k 2K(N-1) 
--- 
where '-' is to be read as 'is distributed as' and x i  is the chi-square distribution with b 
degrees of freedom (McFadden 1980a). There is no indication in his analysis that the 
estimates are unbiased nor that they have the above distributions. In a normal palaeomagnetic 
analysis N specimens give rise to 2N independent data (the N inclinations and the N decli- 
nations) from which the true declination and inclination have, in effect, to be estimated 
before K is estimated, leading to the 2(N-1) degrees of freedom for the distribution of k. 
Given that only the inclinations are available there are only N independent data implying 
that whatever the distribution of the estimate k given by Kono (1980) it can have at most 
( N - 1 )  degrees of freedom. A similar argument shows that whatever the distribution of S it 
can have at most one degree of freedom. Consequently confidence limits for K cannot be 
obtained directly from the tables of Cox (1969, 1977). 

Monte Carlo experiments show that the estimates given by Kono (1980) are in fact 
biased. For example, 200 random samples of size 5 drawn from a Fisher population with true 
mean inclination 85" and K = 15 gave an average estimated inclination of 75.9", which is 
quite heavily biased. The harmonic mean of the k values gave an estimate for K of 32.3, a 
bias of just over two in the ratio of estimated value to true value. The arithmetic average of 
the k values gave 78.4 so k is not an unbiased estimate for K either. At lower inclinations and 
higher precisions the bias in the inclination estimate becomes small and the bias in the 
estimate for ( 1 / ~ )  reduces. Again as an example, 200 random samples of size 5 from a Fisher 
population with true mean inclination of 60" and K =40 gave an average estimated 

 by guest on A
pril 25, 2016

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


310 
inclination of 59.7O. The harmonic mean for the k values gave an estimate for K of 53.3, a 
bias of 1.33 in the ratio of estimated value to true value. The arithmetic average of the k 
values gave 92.2. 

Since the estimates,given by Kono (1980) are biased (particularly that for K )  his error 
analysis is suspect. However, as will be shown in the Appendix, if the correct unbiased 
estimates can be obtained they are related in the manner he claimed. 

P. L. McFadden und A. B. Reid 

4 General equations for maximum likelihood estimates 

Given the density of equation (5) the likelihood function, H(@),  of an observed sample 
(el, e2,. . . ,ON)= 8is 

where C j  is the function G of equation (6) with sin8 replaced by sinef and the products 
run over i from 1 to N. The log likelihood function, h(8)  = In [H(8) ]  is then given by 

h(8)  = Nln(K) -Nln(sinhK) t K Z cos8, cosej t Z ln(Gj) t I: 1n(sinBj) - Nln(2) (7) 

where the summation signs run over i from 1 to N. Differentiating h(9)  partially with 
respect to /lo and then K ,  setting these partial differentials equal to zero and substituting 
f as the mle for K and 6, as the mle for do gives 

i sinBo I: cosef = cotBo I: (aj/gf) 

N coth(k^) - COS& Z cos8i -7 = 7 Z(aj/gj) 

@a) 

(8b) 
N 1  
k k  

(f sin B, sin 
gi = r;o 22'(r!)2 (8d) 

If f is large enough that coth(f) = 1, which will almost always be the case, then 8(a) and 
8(b) give 

and this may be substituted in (8a) to solve for 8, by an iterative method. From the form of 
equation (9) it might be hoped that if k is defined as 

N-1 
k =  

N-Z cosOj/cosi0 

then (l/k) would be an unbiased estimate for ( l / ~ ) .  Unfortunately this turns out not to be 
the case. For example, 200 random samples of size 5 drawn from a Fisher population with 
the mean inclination 85' and K = 15 (the same random samples were used here as were used 
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Znclination data 31 1 

for testing the estimates given by Kono 1980) gave an average estimated inclination of 
77.0". The harmonic mean of the k values gave an estimate for K of 22.9. Quite evidently the 
biases are less than for the estimates given by Kono (1980) but this is of little value since 
the biases are still quite substantial. In performing the Monte Carlo experiments 20 terms 
were used in the calculation of the functions ai and gf. 

It is perhaps disappointing that for steep inclinations and small values of K the mles are so 
biased but, as was noted in Section 1, this is only to be expected. Under these conditions the 
vertical effectively constitutes a break point at which a substantial portion of the distri- 
bution is aliased or 'folded back' upon itself and it is because of this that the resulting distri- 
bution is intractable. 

Examination of fig. 2 of Briden & Ward (1966) suggests that, for this region, the values 
of I. and K are not separable as distinct variables. This arises because the bias is dependent 
on both Zo and K so that that they are inextricably coupled. This view is supported by the 
fact that some perfectly legitimate samples plot in the 'illegal' area of their nomogram. It 
would, however, appear possible to obtain a useful estimate of Zo when K is assumed, or 
vice versa. 

Our own experiments with mles run into similar problems for the same reasons. Where a 
sample would plot in the 'illegal' region, we obtain an mle of 90" for I .  accompanied by a 
biased estimate of K. It is not surprising that these two independent approaches give similar 
results when it is remembered that half the data are effectively missing. 

Examination of equation (10) makes it possible to predict what bias is likely to be 
encountered. Where an mle of 90" for I. is obtained it is likely to be an overestimate since 
90" is the upper limit. The equivalent value of 8, is then 0" and it is apparent that K will be 
underestimated. On the other hand, if some value less than 90" is obtained for io, it is clear 
from the previous discussion that it will be biased towards too low a value, so that from 
(10) K will be overestimated. This behaviour is illustrated in Table 1 which shows the results 
of some Monte Carlo experiments. Samples, all of size 50, were drawn randomly from a 
Fisher distribution with mean inclination I. and precision parameter K. I, was allowed to 
vary between 90" and 75" while K varied from 10 to 40 and the biases discussed are readily 
seen. We conclude that it is not possible to derive a satisfactory analysis for the case of steep 
inclinations with small values of K when the declination data are missing. However, if the 
portion of the distribution 'folded back' at the vertical is insubstantial then the distribution 
becomes tractable via approximation and 'educated' guesses. This analysis will be performed 
in the next section. 

Table 1. Results of Monte Carlo experiments on samples with steep 
inclinations and small values of K .  In all cases N = 50. 

True values 

I ,  K 

90 
85 
80 
75 
90 
85 
80 
75 
90 
85 
80 
75 

10 
10 
10 
10 
20 
20 
20 
20 
40 
40 
40 
40 

Maximum likelihood estimates 

I i 
73.2 
90 
90 
90 
90 
75.8 
90 
71.1 
83.0 
83.0 
78.2 
72.6 

16.2 
8.7 
6.9 
8.9 

14.9 
44.1 
15.5 
26.6 
62.1 
62.2 
58.8 
51.4 

 by guest on A
pril 25, 2016

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


312 

5 Approximate analysis for the case where the probability that 8 ' > Bo is small 

For this analysis it is simpler to rewrite the density of equation (4) as 

P(e ,$)  dB d4 = 7 exp [K cos(Oo-e)] exp [ -K sineo sine (1 - cos~) ]  sine ded4 (1 1) 

which gives a better indication of the distortion of the distribution with respect to the Fisher 
distribution centred about the true mean direction. If the probability that 0 ' exceeds O0 is 
small then only an insubstantial portion of the distribution is 'folded back' at the vertical 
and any folding which does occur may be ignored. This situation is very common and may 
be judged from the data themselves. For example, consider the inclinations 70.0,53.7,59.7, 
47.7, 78.1, 55.7, 55.5,  61.6, 54.5, and 45.3. The smallest value is 45.3' and the largest 
78.1', the range being 32.8' and a very rough estimate of the true mean inclination is about 
58". If the highest inclination, 78,1", had been obtained from a part of the distribution 
which was 'folded back' then it would be an observation approximately 44' from the mean 
inclination. Given the range of the rest of the observations such a deviation from the mean is 
extremely unlikely and it may safely be concluded that the portion of the distribution 
'folded back' is insubstantial. 

If K exceeds 5 (which is by far the most common situation) then the density of the distri- 
bution will be negligible for large values of 8 '  and if in addition that portion of the distri- 
bution folded back at the vertical is insubstantial then the density of equation (1 1) will be 
negligible for large values of 4 and so the approximation 

I? L. McFdden and A. B. Reid 

K 

4 n s i n h ~  

1 - cos4 = Y2 4 2  (12) 
will be acceptable. Consequently 

exp[-Ksind0sin8(l - cos$~)]d4 

exp [-%K@' sineo sine] d4 

= (2nK sineosine)-1/2 

giving the appropriate marginal distribution of 0 as 

which is a more tractable distribution. 
The likelihood function of this distribution may be written down immediately as 

giving the log likelihood function as 

h ( e )  = m i n ( K )  -Nln(sinhK) +K z cos(eo-ei) 

+ Z- - %Nln(sindo) - ~ l n ( 2 )  - % ~ l n ( 2 n ) .  

Differentiating h(8)  partially with respect to do, setting this differential equal to zero and 
substituting the mles i and 6, for K and do gives 

i z sin(ei -eo) = Y ~ N  cotio. (17) 
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is large Repeating the process but differentiating with respect to K and assuming that 
enough that c o t h i  = 1, gives 

N 

2 [N- 2 cos(e ,̂ -&)I 
i =  

Substitution of k from (18) into (17) gives 6, as a solution of 

N C ~ ,  + (sin2io- cos'i,) z case, - 2 sini, cos6, z sine, = 0, (19) 
which may easily be solved by iteration. The equation actually has three solutions but it is 
always immediately obvious which is the correct solution. Alternatively, using the second 
derivative of h(8)  with respect to do,  if U is defined as 

. z COS@, - e,) 
U = ?4N(cosec2Bo - 

N - z COS(~, - e,) 
then with the correct solution for io, U will be negative. With the two incorrect solutions for 
do, Uwill be positive. 

From the form of equation (18) and from the fact that the 'folding back' of the distri- 
bution is negligible it is reasonab!e to hope that if k is defined as 

N-1 
k =  

~ [ N - z  COS(~,-~,)] 

then ( l / k )  will be an unbiased estimate for ( l / ~ ) .  Monte Carlo experiments confirm that this 
is in fact the case. For example, 200 random samples of size 5 drawn from a Fisher popu- 
lation with true mean inclination 60" and K = 40 (the same random samples were used here 
as were used for testing the estimates given by Kono 1980) gave an average estimated 
inclination of 59.7" and the harmonic mean of the k values from equation (20) gave an 
estimate for K of 40.5. 

Further, since (Ilk) does turn out to be an unbiased estimate for ( 1 / ~ ) ,  it might also be 
hoped that 

and again Monte Carlo experiments confirm that, to a very good approximation, this is SO. 

Substituting fork from equation (20) gives 

Returning to the marginal distribution of equation (14) it may be noted that if the 
density is negligible for large 0 ' then it is also negligible for large (6,- 0) and on substituting 

z = (0,-e) ,/K (23) 

cos(eo -e) = 1 - %(e, -q2 (24) 

with the approximation that 

the density reduces to 

sin 0 

fi sin 8, 
dz. 

1 
P(z) dz = - exp(-%z2) 
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Thus except for the modifying term (sinO/sinOo)1’2 the variate z is normally distributed, 
mean zero and variance one, i.e. z - n ( 0 ,  1 ) .  Assuming for the time being that in fact 
z - n(0, 1 )  this would imply that 

P. L. McFdden and A. B. Reid 

= K (e, -e,)2 - x:. 
and on using the approximation of (24) again, that 

2K [ 1 - COS(~, -e,)] - x:. 

2~ [N-x COS(~,-~,)] - xi. 

(27) 

Summing over the N independent observations then gives 

(28) 

Unless 0, is small (which is not the case here) the modifying term (sind/sinOo)1’2 does not 
deviate much from unity except where the density is negligible. However, the approximation 
to normality (and therefore to a chi-square distribution) is not particularly good, but, on 
adding the distribution for several independent observations the modifying terms tend to 
cancel making the final chi-square distribution a much better approximation than any of the 
individual approximations. Again, Monte Carlo experiments confirm that for N greater than 
3 the approximation of equation (28) is acceptable. From equations (22) and (28) 

2~ [N- e COS(~, -e,)] = 2 K  [N- e COS(~,  -e,)] +g 

x i  - X & L q  + x: 

g = 2~ [ c cos(6, -el) - ;r: COS(~,-~,)]  - x:. 

(29) 

and 

giving 

(30) 

If we define a1 by the equation 

eo = eo - al 

then al is the angular error in the mle 6,  on the high inclination side of do. Substituting for 
Bo from (3 la) into (30) and using the approximations that 

(31) 

c o s q  = 1 - %a:; 

equation (30) reduces to 

s i n q  = q, 

K (a! c- 2cUl s) - X: 

c = c cos (i0 -e,); 

(33) 

where 

s = c sin@, -e,). (34) 

Combining equations (33) and (22) gives the distribution independent of K but conditional 
on observed C as 

(N - 1 )  (a: c - 2ar S )  
- F [ l , W - l ) l  2 ( N -  C )  (35) 

where F [a, b] is the F distribution with a and b degrees of freedom. 
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Inclination data 315 
If f be the relevant critical value of F [ 1, (N- l)] , then the critical value of al is given 

from 

(N-l)(a:C-2alS) 
= f  2(N- C) 

as 

2 S t 4 4 S 2  t 8fC(N-C)/(N-l) 
2 c  

a1 = (374 

If we further define a2 by the equation 

e 0 = i 0 t ~ 2  (31b) 

then a2 is the angular error in the mle 6, on the low inclination side of 6,. Following the 
same analysis gives the critical value of a2 as 

-2S+44S2  +8fC(N-C)/(N-1) 
2 c  

a2 = 

For one-tailed testing at the level of significance p ,  f must be the value of F [ 1 ,  (N- l)] 
which will be exceeded with probability p, giving the value of a1 or a2 which will be 
exceeded with probability p. For two-tailed testing (by far the more common case) at the 
level of significance p ,  f must be the value of F [ 1 ,  (N- l)] which will be exceeded with 
probability ?4p. This is explained further in the Appendix where a numerical example is 
worked. 

Quite obviously a more compact notation is achieved by retaining only al and allowing 
it to be both positive and negative giving 

2S f 4 4 s '  t 8 fC(N- C)/(N - 1) 
2 c  a1 = (37c) 

The asymmetry in the error angle is an indication of the bias in lo, conditional on the 
observed value of C. Consequently Bo is given by 

where 

4 4 s '  + 8 f C(N - C)/(N - 1) 
e n  

a =  (39) 
L L  

Working in degrees rather than radians, the inclination of the true mean direction, Io, is then 
given by 

Usually it will be more convenient to use the approximation 

cosa = 1 - Ma2 

giving 

f (N-C) cos a = 1 - ?4 (;) - C ( N -  l ) .  
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6 Very shallow inclinations 

If the true inclination is very shallow it becomes difficult to distinguish normal from reverse 
polarity. Consequently it may be a simple matter to make the mistake of analysing a 
mixture of normal and reverse polarity data as if they were all observations from a single 
polarity population. The result of such an error would be one inferred inclination (instead of 
two) which would be biased towards zero, a precision estimate heavily biased towards too 
small a value and an apparent ‘loss’ of a reversal. 

To avoid such an error care must be taken with shallow inclination data, particularly if 
the data are reasonably symmetrical about zero. A histogram of the inclinations should be 
drawn up to see if the distribution is bimodal and has a minimum at zero, since this would 
imply a mixing of reverse and normal polarity data. Additionally, if the sign of an observed 
inclination is correlated with the specimen position along the core then this is also evidence 
for the presence of mixed polarity data. If it becomes apparent that a mixed polarity sample 
is being analysed then the data should be separated according to the position of the 
specimen along the core. If the inclination data are plotted against specimen position along 
the core it should be possible to pick a point or region where the transition occurred and the 
data may be classified as normal or reverse depending on whether the specimen was above or 
below this point. If such a point or region cannot be located it is an indication that the true 
mean inclinations are too shallow for normal and reverse polarity to be distinguished with 
the available data. 

P. L. McFdden and A. B. Reid 

7 Conclusions 

It has been shown that the estimates given by Kono (1980) for the inclination of the true 
mean direction and for the precision are biased, in many instances quite seriously so. As 
a consequence of this bias in his estimates (particularly in the estimate for K) his error 
analysis is suspect. 

An examination of the case of steep inclinations and low values of K gives good reason to 
believe that this situation is fundamentally intractable if declination data are not available. 
The problem arises because the indeterminacy of declination makes it impossible to distin- 
guish observations on the near side of the vertical from those on the far side, leading to a 
‘folding back’ or aliasing of the observed inclinations. 

Given that the amount of ‘folding back’ of the distribution at the vertical is negligible a 
set of observed inclinations, Z , ,  Z,, . . . , IN, may be analysed in the following manner to 
obtain unbiased estimates for the inclination, lo, of the true mean direction and the precision 
parameter of the distribution from which the inclinations were obtained, together with error 
estimates on each. 

Define 6, as the complement of lo (i.e. 0, = 90” - lo), Oi as the complement of h , i ,  as the 
maximum likelihood estimate for 8,, C as 

c = z cos(io -ei) = cosi, L: cosei t sini, z sinei 

and S as 

s = x sin(8, - e,) = sinio z cosei - cosi, z sinei 

where the summations run over i from 1 to N. The value of 6, is then a solution of 

(34) 

N cosi, t (sin2io - cos2io) z cosei - 2 sinij, cosi, z sine, = o 
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which may be obtained by an iterative method. It is always obvious which solution is the 
correct one. However, if 

- “) 
N - C  

then U is negative with the correct solution for I ,  and positive for the two incorrect 
solutions. The maximum likelihood estimate for K is then given by 

N 
2 ( N -  C )  

i =  

and if k is defmed as 

N -  1 
2 ( N -  C )  

k =  

then (Ilk) is an unbiased estimated for ( l / ~ ) .  Furthermore 

(N-1)K 2 
“X(N-1) 

and so confidence limits for K may be obtained by the method of Cox (1969, 1977); the 
observed value of k may be compared with the observed value from another study, either 
of inclinations only or the more normal palaeomagnetic study with declination data as well 
(see McFadden 1980a) by using the F distribution; and the observed value may be compared 
with a well-defined value for K either by direct use of the chi-square distribution or via the 
F distribution (see McFadden 1980b). However, in each case it must be remembered that the 
number of degrees of freedom is half that for an observed k derived from a study with both 
declination and inclination data. 

Finally, an unbiased estimate, I, for I,, conditional on the observed value of C, is given by 

I =  90°-e0+- ( 180S) nC * 

The angle of confidence, a, in this estimate is given by 

where f is the critical value of the F distribution with 1 and ( N  - 1) degrees of freedom. This 
error angle is conditional on the observed value of C and independent of the precision para- 
meter K .  

In all instances of application it must be remembered that some of the distributions used 
to derive the above analysis were ‘guessed at’ and confirmed by Monte Carlo experiments, 
not theoretically derived. Consequently care should be exercised in cases of marginal signifi- 
cance. 
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Appendix: numerical example 

The inclination values 62.4, 61.6, 50.2, 65.2, 53.2, 61.4, 74.0, 60.0, 52.6 and 71.8 were 
obtained as a random sample from a Fisher population with a precision parameter of 40 and 
inclination of the true mean direction equal to 60'. These then give values of ei as 27.6, 
28.4, 39.8, 24.8, 36.8, 28.6, 16.0, 29.4, 36.4 and 18.2 respectively. The analysis of these 
data is as follows. 

and so from equation (1 9) 6, is a solution of 

lOcosi, t 8.708(~in~6~ - cos2io) - 9.496 sine, cosio= 0. 

This gives three solutions of 10.5', 27.7' and 129.4'. Quite evidently the second solution is 
the correct one and therefore 

6, = 27.7' 

Substituting the above values into equation (34) gives 

C=9.917 and S=-0.1560 

and therefore 

-- - - 0.90" 180s 
7tC 

giving the estimate Z for Zo as 

I =  (90' - io - 0.90) = 61.4' 

from equation (40). 
From equation (20) k is given as 

9 
2( 10 - 9.9 17) 

k =  = 54.2. 
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Using the distribution of equation (21) 

9K 
- > 19.0 
k 

with probability 0.025 

and 

9K 
- < 2.70 
k 

with probability 0.025. 

Consequently K lies between 16.3 and 114.4 with 95 per cent confidence, compared with 
the known value (in this instance) of 40. Had this estimate for K been obtained from a study 
with both declinations and inclinations then the 95 per cent confidence limits for K would 
have been 24.8 and 94.9, indicating the loss of information in having only the inclinations. 

To determine 95 per cent confidence limits for I a two-tailed test must be used. The F 
distribution with 1 and 9 degrees of freedom will exceed 7.21 with a probability of 0.025 
giving a from equation (42) as 6.7'. Consequently the inclination of the true mean direction 
lies between 54.7" and 68.1' with 95 per cent confidence, compared with the known value 
(in this instance) of 60.0'. 

If the estimate k = 54.2 had been obtained from an analysis of both declinations and 
inclinations this would imply a value of R = 9.83 giving the semi-angle of the cone of 95 per 
cent confidence about the estimated mean direction as 6.6", almost exactly the same as the 
symmetrical 95 per cent confidence limit obtained for the estimate I. This is to be expected 
since an error value in the inclination gives half the information given by a cone of confi- 
dence about an estimated direction. 

Given that one wishes to test, on the basis of the observed data, whether the inclination 
of the true mean direction is less than (for example) 65' a one-tailed test must be performed 
(a fairly rare situation). The F distribution with 1 and 9 degrees of freedom will exceed 5.12 
with a probability of 0.05 giving a from equation (42) as 5.7'. The estimated inclination of 
61.4" is only 3.6" less than the hypothesized 65" and so given the alternative hypothesis 
that the true mean inclination is less than 65" there is no statistical reason for rejecting (at 
the 95 per cent level of confidence) the null hypothesis that the inclination of the true mean 
direction is 65". 
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