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When demagnetizing rocks in palacomagnetism, an unterminated greet circle path is sometimes obtained instead of a
direct observation or endpoint determined from the linear segment near the origin of a Zijderveld plot. Such a situation
cannot successfully be analysed using packages such as LINEFIND or Linearity Spectrum Anaysis (LSA). It is
possble to make optimum use of the great circle information by specifying constraints in the form of an arc of the
great circle dong which the estimate of the actual direction must lie. This specification overcomes the bias problems
inherent in most analyses of converging great cirdes. Given M endpoints or direct observations and N great circles the
maximum likelihood analysis based on dl available information is easily performed. An iterative procedure is used to
determine the positions of N variable-direction unit vectors so that the length, R, of the vector resultant of dl
(M + N) unit vectors is a maximum. Standard Fisher statistics then apply, with a dight modification for the numbers
of degrees of freedom. If K is the precision parameter then an approximately unbiased estimate for (1/K) is given by

(VK) where:

2M+N-2

k= M+N=-R)

If a is the angle between the estimated direction and the true direction then a cone of confidence (1 — p) about the

mean direction has a semi-angle a, given by:

N =11 \/¥-D
cosap=1- P (;) =1

with N’ = M + N/2.

1. Introduction

It was recognised very early on in palaeomag-
netism that rocks could contain more than one
direction of magnetization and that during pjefer-
ential demagnetization of one component the re-
sultant direction of magnetization would move
aong a great circle [1,2]. In many instances indi-
vidual components can be identified as linear
structures in the demagnetization vector [3-5 and
typically a stable endpoint (represented by a linear
segment near the origin of a Zijderveld plot) is
obtained. However, in some cases either because
of overlap in the sability spectra of the two
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components and/or because the intensity de-
creases below the sensitivity of the measuring de-
vice, stable endpoints are not obtained and the
only available information regarding the fina (or
"hidden") component residesin the greet cirde. A
single great circle on its own provides insufficient
information to estimate the direction of the hid-
den component, but if more than one great circle
is avallable (say from different specimens) and
these great circles converge, then an estimate may
be obtained. Furthermore, if a direct estimate is
independently avail ablethrough astableendpoint
obtained from another specimen, then this may
aso be used to access the information available in



a great circle. In the generad case there would of
course be severd great cirdes and ‘(hopefully)
severd direct observations available.

Recognising the above, Jones et d. [6] used an
anaysis that combined the information from the
great drcles and any avallable direct observations,
thereby providing maximum access to the infor-
mation in the great cirdes Subsequently Hals [7]
suggested an andyss that used some of the infor-
mation from the great cirdes, but that did not
dlow for a combination of the greet circle infor-
mation with direct observations (see dso [8] and
[9]). Baley and Hals [10] then presented a sep-
arate analysis for combining great circles and di-
rect observations. In this they incorrectly sug-
gested that the earlier andlysis [6,8] was not based
on an underlying probability distribution.

Schmidt [11] presented an anadysis of problems
associged with bias in converging great circle
methods. This problem had, to a large extent,
been overcome in the early analysis [6,8] but can
be a troublesome problem in the Bailey and Halls
[10] andlyss, particularly when there are no direct
observations available. Although Schmidt noted
that this bias was related to the geometrica fact
that the intersections of two great circles must be
180° apart, he did not in fact identify the underly-
ing cause of this bias within the statistical analy-
gs It is shown here that the bias is caused by the
use of an incorrect probability distribution for the
great drdes’' and that we are not in a position to
be able to determine the correct distribution. The
approach used by Hals [7] and Bailey and Halls
[10] forces them to use this incorrect distribution
throughout, their analysis, causing problems with
bias and their error estimation. In contrast, the
ealier [68] andyss is flexible and dlows the
incluson of further information gained in the
determination of the great circle path. This in-
formation is used as a constraint that, in effect,
modifies the probability distribution for each indi-
vidual great circle to provide a better approxima
tion to the true distribution for that particular
greet circle.

The mathematical details of the earlier [6,8]
andyss were not published because it was not felt
to be necessary. However, its reliability is needed
in the companion paper [12] and this cdls for an
explanation as to why the Baley and Halls [10]
anaysisis not used. Furthermore, there are severd

interesting points in the analysis of great circles
that have not been properly discussed in the litera-
ture and presentation of the details of the earlier
analysis provides a useful forum for this. The
method is conceptually simple, more reliable than
that presented in [10], and very easy to apply.

2. The least-squares great circle

A great circle on the (unit) sphere is of course
just the intersection of the sphere with a plane
through the origin. If a set of observations lie
along a great circle then each of the observations
lies on a plane (referred to as the great circle plane
from now on)

px+q+rz=0 (1)

where, using a superscript T to denote the trans-
pose:

V=[p.q,r]" (2)
is a vector normal to this plane. ¥ is known as the
pole of the great circle and is usually specified as
being a unit normal so that we have the con-
straint:

C(p,q,r)=p*+q*+rt=1. (3)
Given the n vector observations:
lji=[xi’ Yi» zi]T (4)

that define the great circle, the natural scatter will
ensure that we have to determine the least-squares
estimate:

V=[5.4. 7" (5)
for V.
The perpendicular distance d; from the ob-

servation U, to the great circle plane is simply
given by:

d;=UT-V=px,+q+rz (6)
so that we wish to minimise the quantity:

n
D= Z diz' (7)

i=1
However, this minimisation must be subject to the
constraint that p>+ g2+ r2=1 (otherwise the
only solution would be the trivial solution p=g¢
= r=0). In other words we require the solution to
the set of equations:

dD-AdC=0 (8)



(C being the constraint of equation (3)). Defining
the matrix A as:

[ n ‘ n n
}: xi2 Z Xy Z X;Z;

i=1 i=1 =]
n n .n
A= E XY Z )’i2 Z JiZ; (9) .
i=1 j=m] i=]1
n n n
Z X;z; 2 JiZj Z zi2
| i=1 i=1 i=1

equation (8) gives us the eigenvalue problem:
(A-ADV=0 | (10)

where I is the (3 X 3) unit matrix. A has three
eigenvalues A; <A, < A;, which are the solutions
to the cubic equation:

det(A —AI) =0. (11)

The least-squares estimate V is the eigenvector
associated with the smallest eigenvalue, A,. This
eigenvalue is easily determined using a Newton-
Raphson iteration to solve (11).

2.1. Different least-squares fits and choice of
weighting

Kent et al. [4] have presented an analysis for
determining the linear and planar structure in
palaecomagnetic remanence data. Not surprisingly
their determination of any planar structure in-
volves the least-squares estimation of a. plane.
However, that must not be confused with the
least-squares estimation performed here. The dif-
ference is that they fit the general least-squares
plane:

px+gqy+rz=»h,

where b is the distance from the plane to the
origin, and so determine the least-squares estimate
for p, g, r, and b. In general this will Qe:terrnine
the least-squares small circle for the data, and this
can be substantially different from the least-
squares great circle. In the present application it is
vital that b is constrained to be equal to zero.
Given the n observations defining a particular
great circle it is natural to ask what weights should
- be applied to each observation in the least-squares
fit. Assuming that each of the observations is
-known as a declination (dec;) and inclination

(inc;), the x;, y; and z; of equations (9) are given
by:

x;=w, cos(inc;) cos(dec,)
y,=w, cos(inc,) sin(dec;)
z;=w, sin(inc;)

where w; is the weight for that particular observa-
tion. It is probably ‘quite tempting to set the w;,
equal to the moment of the individual observa-
tions. However, if the two components are M, and
M,, the remanence moves from the direction of
M, to that of M, as demagnetization proceeds,
and it is not possible to obtain an endpoint, then
typically |M; | > |M,|. If now the w, are set
equal to the observed moments, emphasis is placed
on M,. It must be remembered that the overall
object of the exercise is not, in fact, to obtain the
nicest great circle, but to obtain the best estimate
of the direction of M,. Consequently, if anything,
the w; should be chosen to emphasise M, and not
M,. Unfortunately the very fact that it has not
been possible to isolate an endpoint indicates that
the observational errors will tend to rise quite
sharply as the direction of M, is approached.
Overall, therefore, the most satisfactory strategy is
to set the w; equal to unity, and duplicate that
which is seen on a stereoplot.

3. The probability distributions

Consistent with most palaecomagnetic analyses
the Fisher distribution [13] is assumed for the
underlying probability distribution. Thus if 8 is
the angle between the true mean direction and a
random observation then:

F(8)dA = exp(k cos §) d4  (12)

K
4 sinh(k)
where F(8) is the probability density of 8, dA4 is
the differential area on the surface of the unit
sphere and « is the precision parameter.

It is assumed that the direct observations are
distributed according to (12). Furthermore it is
consistent to assume that in each instance where
we have a great circle path but no endpoint, the
endpoints would also have been distributed
according to (12) had it been possible to obtain
them.
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‘Let the true mean direction be represented by
the unit vector T and let ¢ be the angle between T
and the pole ¥ to a particular great circle, i.e.:
cosp=VT-T. (13)

If B is the angle between the great circle and T,
then B=90° —¢ (see Fig. 1) and we wish to

determine the probability density of B. Consider |

now the distribution of (12), but with x suffi-
ciently large that we may make the approxima-
tions:

2 sinh(x) = e*;
giving:
F(8) dAzi exp[ —x(1 —cos 8)] d4 (14)

cos §=1-(6%/2)

from the first approximation, and together with
the second:

F(8)dd = -2"; exp(—x8%/2) dA. (15)

As already noted, B is measured in the plane
containing ¥, T and the origin. If « is measured
along an axis perpendicular to 8 then, because the
angles are small:

6% =a’+ B2
Substituting this into (15) gives:
F(a, B) da dB

= ?K;exp[—-x(az +82)/2] da dB

(a)

and integrating out a to get f(f8), the probability
density of g:

f(B)dB= /5= exp(-xg/2)dap.  (16)

Using the approximation cos 8 =1 — (8%/2) gives
f(B) in the more useful form:

7(B) 48 =/ 3 expl—x(1 - cos B)] dB. (17

It is easily seen that this distribution is equivalent
to that used by Bailey and Halls [10]. Taking
equation (16), substituting cos’p = sin’8 = B2
(since B is small) and multiplying by
exp(x)/2 sinh(x) = 1 gives:

exp(x)x'/? exp[ — ( cos’p) /2]
2-(27)"? sinh(k)

P(¢) do = de.

which is their equation (2).

4. Maximum likelihood solution

Assuming that we have M direct observations
and N great circles, and assuming that each of
these is independent, the likelihood, lik, is given
by:

1ik=F(01)F(02)--- F(oM)f(Bl)f(:BZ)f(.BN)

{b) Y,

Fig. 1. Definition of angles 8 and ¢. (a) Stereographic projection showing the true mean direction T and the demagnetization circle
(dashed) with its pole V. The great circle joining T and V is shown solid. (b) Stereographic projection with the great circle through T
“and ¥ as the primitive. The demagnetization circle (dashed) is now the equator, and the angles 8 and ¢ are indicated.



Using equations (14) and (17) for these distribu-
tions gives:

M

lik = (2';)1” exp[—x f‘, (1 —cos 0,.)}

i=1

7z N
X W exp[-—x Y (1-cos ,Bj)}

Jj=1

Letting L = In(/ik) so that L is the log-likeli-
hood, we have:

N M
L=(M+7)ln k—(M+N)x+x) cos,

N -~
+x ), cos B, — const. (18)

i=1

Jj=1

Clearly the term ¥ cos 8, = R is the sum of the
projections of the unit vectors from the direct
observations onto the mean direction. Similarly,
L cos B;=R_ is the sum of the projections of a
unit vector from each great circle onto the mean
direction: from the definition of the B, it is clear
that in each case the unit vector being projected is
that vector on the great circle which is closest to
the mean direction. With-this understanding (18)
takes the form:

L=(M+%)ln k—(M+N)«

+(Ry+ R.)x — const

=(M+%7-)ln x— (M + N)« + Rk — const
(19)

with R=(R;+ R_). Apart from the very good
approximation that exp(x)/2 sinh(x) =1, equa-
tion (19) expresses exactly the same information
as equation (7) of Bailey and Halls [10]. However,
the presentation here is far more easily understood
in physical terms, permits a more satisfactory
solution and, as will be shown in section 5, allows
an extension that overcomes several problems.

4.1. Estimating the remanence direction

Our aim is to determine the maximum likeli-
hood estimate p for the true mean direction T.
‘Naturally this is achieved by choosing as p that
direction which maximises L, the log-likelihood.
Although with the formulation used T does not

appear explicitly in equation (19), for a given set
of observations R is a function of T, while none
of M, N or « is a function of T. Consequently p is
simply that direction which maximises R. If there
were no great circles we would have N=0, R=R,
and (19) would reduce to the well-known log-like-
lihood equation for standard- Fisher statistics. R
would then be maximised by choosing the direc-
tion of the vector mean of the M observed unit
vectors. When there are great circles involved this
direction is very easily determined by a simple
iterative procedure.

In order to have an efficient iterative procedure
one must be able to calculate directly that point
G=[x,, Y, zg]'r on a great circle with pole ¥ =
[, g, r]T which is closest to an hypothesised p =
[u, v, w]™. Letting p = cos 8 we have:

p=pT-G=uxg+uyg+wzg.
Letting 7 = cos ¢ we have:
r=p"-V=up+uvqg+wr

so that 7 is known immediately. Since sin 8=
cos ¢ we also know p immediately from:

p=+V1-12%,

Since each of u, ¥V and G is a unit vector, this
gives

x,=(u—1p)/p
yg=(v=14)/p (20)
z,=(w—rr)/p.

First loop of the iteration. If there are any direct
observations then the resultant, X, of these M
unit vectors is determined and the unit vector ji in
the direction of this resultant vector is used as a
guess for p. If there are no direct observations
available then a unit vector (as declination and
inclination) is simply entered for fi. A poor guess
for i does not affect the result (although an
extremely poor guess might produce an answer
180° out, but this is obvious), it merely requires a
few mor¢ iterations than for a good guess. Taking
the first great circle and using equation (20), the
unit vector G, on this great circle closest to fi is
determined. G, is then added to X to give a new
X from which a new it is determined. This is then
repeated for each of the great circles until X



(b)

Fig. 2. Example of iteration with two set points (D, and D,) and two great circles. (a) Initial loop: X, is the resultant of D, and D,,
and G, is the vector, on the first great circle, that is closest to X;. X, is then the resultant of D,, D, and G,. G, is then the vector on
the second great circle that is closest to X,, leading to X; as the resultant of D,, D,, G, and G,. (b) Subsequent loop: G, is
subtracted from X; to give X, (i.e. X, is the resultant of D, D, and G,). G, is then the vector on the first great circle that is closest
to X,, and leads to X, as the resultant of D;, D, and G|. G; is then the vector on the second great circle that is closest to X,
leading to X as the resultant of D;, D,, G| and G;. G| and G, then replace G, and G, and the iteration is continued until stable

positions are found for G, and G,.

contains G,, G,,..., Gy (see Fig. 2a for a sche-
matic of this process). If there were no direct
observations, X will at this stage contain the unit
vector entered as the original guess, and so this
vector must now be subtracted from X.

Subsequent loops of the iteration. Each loop of the
iteration is then as follows. G, is subtracted from
X, a new fi is determined from this new X, using
equation (20) a new G, is determined (i.e. the new
G, is the unit vector on the first great circle that is
closest to the latest i) and this is added back onto
X. This prpcéss is repeated with each of the great
circles so that at the end of the loop there is a new
set of Gy, G,,..., Gy (see Fig. 2b).

The new set of G; values at the end of each
iteration is compared with the set of G; values at
the end of the previous iteration to determine how
much rotation along each great circle has oc-
curred. Iteration continues until each of the G;
unit vectors becomes stable.

The maximum likelihood direction p. Clearly R of
equation (19) is given by:
R=|X|=XT-X

.and the iteration has maximised R. Therefore pu,

the maximum likelihood estimate for the mean
direction is given by:
#=X/R.

It is important to understand that the final G,
values (i.e. those that maximised R) are the maxi-
mum likelihood estimates (on the basis of the
probability distributions used) for the endpoints
within the great circles (i.e. those endpoints that
were not obtained during demagnetization). As
shown in section 3 the probability distributions
used by Bailey and Halls [10] are the same as
those used here, and so these maximum likelihood
estimates for the endpoints are implicit in their
analysis, even though they have not derived or
used them explicitly.

Naturally this gives the same estimate u for T
as the analysis of Bailey and Halls [10] but, be-
cause of the explicit use of the maximum likeli-
hood estimates for the endpoints, is much simpler
and much more easily understood.

4.2. Estimating the precision

To determine the maximum likelihood estimate
k for x, we simply differentiate L (equation (19))
with respect to «:
oL NY 1

» (M+3‘)'-E—(M+N)+R,



and choose as k that value of x which solves
(0L/0k) =0, i.e.:

2M+ N
2AM+N-F)' (21)
However, what is generally required is an unbi-
ased estimate for k™!, and this is easily achieved

k=

by modifying equation (21). Each direct observa-

tion provides 2 degrees of freedom and each great
circle provides one degree of freedom, giving a
total of (2M + N), the top line of equation (21).
In order to estimate « it has been necessary to
obtain p (this is needed to calculate R), thereby
reducing the number of degrees of freedom by 2
to (2M + N —2). Thus if we define k by:
2M+N-2

k=3 M+N=R) (22)
then k™! will be an unbiased estimate for x~!.
This equation is effectively the same as equation
(29) of Bailey and Halls [10] but it is easier to
calculate each of the parameters here.

S. Problems with bias in estimating the mean di-
rection

Schmidt [11] has raised the problem of bias in
converging great circle methods, but the underly-
ing cause of this bias has not been discussed. The
derivation of equation (17) (section 3 and in par-
ticular see Fig. 1) shows quite clearly that there is
an implicit assumption that S8 (or ¢) is measured
perpendicular to the great circle. Thus use of (17)
for the probability density of S in determining the
maximum likelihood estimate p carries the im-
plicit assumption that the endpoint (had it been
obtainable) would have been at that point on the
great circle closest to the true mean direction.
Obviously in most instances the line joining the
endpoint to the true mean direction is not per-
pendicular to the great circle and so this assump-
tion is invalid. It is this error that leads to sys-
tematic errors in estimation (thereby causing the
bias), particularly when there are no direct ob-
servations available. As has been shown, the anal-

" ysis of Bailey and Halls [10] is equivalent to the
analysis presented above, and their derivation
confirms the presence of the invalid implicit as-
sumption that ¢ is measured perpendicular to the
great circle.

As is clear from Schmidt’s [11] analysis, one
needs to know the scatter about M,, the scatter
about M, (unknown) and the angle between M,
and M, (unknown) before it is possible to de-
termine a realistic distribution for 8 or ¢ (usually
not measured perpendicular to the great circle).
Thus it is not possible to determine the correct
distribution. The Bailey and Halls [10] analysis is
based only on the poles to the great circles and so
cannot distinguish different points along a great
circle. Thus they are unable to moderate the sys-
tematic error. In effect this means that their statis-
tics will relate to the population of great circles,
and not necessarily to the actual direction of
remanence. ’

Because the present method makes explicit use
of the maximum likelihood estimates of the unob-
tainable endpoints it is extremely simple to mod-
ify it to overcome most of this problem. In effect
each great circle is considered simply as a con-
straining path for a variable unit vector during the
iterative process. Thus it is a simple matter to
constrain the path of the variable unit vector to a
given arc of the great circle (see Fig. 3). Choice of
this particular arc is subjective and is made when
the least-squares fit to the great circle is per-
formed. Given that during demagnetization the

Fig. 3. Effect of sector constraints. For both great circles the
motion of the resultant vector was clockwise. Without any
sector constraints the solution chosen would be the intersection
of the two great circles, as shown by the little circle. This result
would be more than 180° along each of the great circles from
their starting points. Both from this point of view and from the
behaviour of the resultant vectors this result is clearly unrealis-
tic. By-defining acceptable arcs of the great circles (shown with
asterisks) the result indicated by the solid square is obtained.



resultant vector moves forwards along the great
circle from M, to M,, it is reasonable to assume
that M, does not lie backwards along the great
circle from the last resultant vector observed. Thus,
allowing for the usual scatter in observation, it is
reasonable to back-up a few degrees along the
great circle to a point a; and insist that M, is

further forward: along the great circle than this

point. This point is then considered as the start of
the acceptable arc for that great circle. During
demagnetization it may be apparent that M, has
almost been reached. Alternatively, comparison
with other demagnetizations that resulted in end-
points often allows a rough estimate to be made of
how much further along the great circle the re-
sultant vector would have drifted before stabiliz-
ing. Thus it is often possible to specify some point
a, further forward along the great circle and be
reasonable in insisting that M, lies between a,
and a,. From an operational point of view, one
need not enter these points precisely. One need
only enter a reasonably close guess and then using
equation (20) the point on the great circle closest
to this guess is used as the end of the arc. Natu-
rally the method allows a choice to be made for
each great circle as to whether an acceptable arc
will be specified.

As before, the iteration is performed to maxi-
mise R, but with the additional restriction of the
acceptable arcs. In practice this is achieved as
follows. For the jth great circle in any iteration
loop, G; is determined exactly as outlined in sec-
tion 4. If an acceptable arc has been specified it is
tested whether G; lies on the arc between a,; and
a,;. If not, G; is replaced by the closest of
(ay;, a,;), and the iteration then continues as
before. This then provides the maximum likeli-
hood estimate consistent with the additional infor-
mation. In effect what this does is to impose on 8
from each great circle its own peculiar probability
distribution, which is far more realistic than the
distribution of equation (17). -

Initially it may be felt that there is too much
subjectivity in this process and that a simple limit-
ing to a specified arc provides too harsh a cut-off
for the distribution. However, as is shown later in
an example, the overall result is quite insensitive
to these problems. The important aspect is that it
does in fact provide a more realistic distribution
for B (peculiar to each great circle) and so it does

to a large extent overcome the problems of sub-
stantial bias with the use of great circles.

5.1. Consistency of great circle and direct data

Bailey and Halls [10] derived tests in an at-
tempt to determine whether the great circles were
consistent with the direct observations. To do this
they obtain estimates using just the great circles
and a separate set of estimates using just the direct
observations. The two sets of estimates are then
compared for consistency.

As shown above, when just the great circles are
used with the Bailey and Halls approach, a large
bias can be imposed by the analysis itself. Thus
inconsistency in the estimates using their analysis
does not (contrary to their claim) necessarily im-
ply that the great circle information is inconsistent
with the direct observations. As such, their con-
sistency tests are invalid. Again this comes about
because their statistics relate solely to the popula-
tion of great circles, and not necessarily to the
information contained therein on the remanence
direction (see also [8)).

6. Confidence limits

6.1. Confidence limits for x

Since it is not feasible to determine the real
distribution for B it is similarly difficult to de-
termine the real distribution for k. However, an
approximate distribution may be determined as
follows.

It is well-known that for the direct observations
(e.g. see [14]):

2x(1 —cos 8) - dist - x3

where “-dist - is to be read as “is approximately
distributed as”. Similarly, from equation (16) or
(17), it follows for the great circles that:

2x(1 — cos B) - dist - 3.

Given M direct observations, N great circles, and
two degrees of freedom lost for estimating the
remanence direction, this suggests that:

2c(M+N = R) -dist - X204 n-2- (23)
Consequently if k is defined by equation (22) then
K .



which was the basis for suggesting that k~! is an
unbiased estimate for x~1, Naturally equation (23)
can:be used to determine approximate confidence
limits for x.

It must be recognised that, because the proper
distributions for the 8 are not known, the process

will tend to obtain a value for R that is actually

too large. This will tend to introduce bias into &
so that on average it is too large. This is unfor-
tunate but there seems little more that one can do
to remedy the situation.

6.2. Confidence limits for the remanence direction

The Bailey and Halls [10] analysis produces an
ellipse of confidence for the direction. Unfor-
tunately their statistics again relate to the great
circles themselves, and not to the remanence di-
rection. A simple example shows why this is so,
why they arrive at an ellipse, and why this ellipse
is unreliable. Consider the example where M, is
perpendicular to M, and where there is very little
scatter in M. Consider now a sample with several
great circles and a single direct observation, which
happens to be close to M,. In this situation all the
poles to the great circles and the direct observa-
tion will lie very close to a single plane. Fig. 4
depicts the idealised situation where they are actu-
ally all on a single plane. Although their analysis
does not explicitly use the maximum likelihood
estimates for the endpoints within the great circles,
these endpoints are implicit and would be where

Fig. 4. If the poles (solid squares) to all the great circles and a
single direct observation (solid circle) lie on a single plane, the
error ellipse must collapse to a single line along the dashed line
indicated.

the dotted line in Fig. 4 intersects each great
circle. Thus these -estimated endpoints and the
direct observation would be forced by the analysis
to lie very close to the single plane indicated by
the dotted line. If now one considers only the
scatter of the points, one obtains a very long thin
ellipse (in the idealised situation of Fig. 4 this
ellipse collapses to a single line along the dotted
line) transverse to the great circles. This is the
error ellipse determined by Bailey and Halls [10].
The important point to note is that this ascribes
virtually no error along the trend of the great
circles, a direction in which constraint is provided
only by a single observation. A different direct
observation (i.e. a different random observation
from the population describing M,) would shift
all of the estimated great circle endpoints and
produce an error ellipse inconsistent with the first,
even though the information used to determine
the two error ellipses was entirely consistent.

As with «, it is not feasible to determine a
rigorous confidence limit for T, the true mean
direction. However, a reasonable confidence limit
can be obtained by recognising that had one been
able to obtain all of the endpoints by direct ob-
servation, they would have been Fisher distributed
about T, and the maximum likelihood estimate of
the mean direction would have been Fisher dis-
tributed about T with precision (kR). Clearly a
similar situation would have obtained with the
maximum likelihood estimates for these great circle
endpoints had we been able to use precisely cor-
rect distributions for the 8. Consequently a realis-
tic (albeit slightly inaccurate) estimate can be ob-
tained by assuming that our maximum likelthood
estimate p is still Fisher distributed about T with
a precision of (kR). With this assumption, if a is
the angle between p and T (i.e. cos a=p"- T):

2kR(1 - cos a) - dist - x3.

Using this distribution and the distribution- of
equation (23), following the analysis in [14], if «,
is the angle a will exceed with probability p, then:

S N —1f/1 =D } ,
cosa,=1- — -1 25
. kR [(p) 25)

with N'=M+ N/2.
Asan aid to fully understanding the problem of
confidence limits for the mean direction consider
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agan the example in Fg. 4 of sx padld great
cirdes and a single direct observation. In the
direction transverse to the great circles there are
seven "observations' that provide information
about the location of the mean direction. Hence
aong this direction our estimate of the mean will
be distributed about the true mean with a preci-
son on the order of (7k). Without any constraints
on acceptable arcs in the great circles there is only
one piece of information (the direct observation)
about the location of the mean in a direction
pardlel to the great circles Hence aong this di-
rection our estimate of the mean will be dis
tributed about the true mean with a precison only
of about K. Therefore a natural confidence region
for the mean would be an dlipsoid with its long
axis pardld to the great crdes and its short axis
transverse to the circles (note the stark contrast
with the Balley and Hadls dlipsoid). By having
congtraints on acceptable arcs in the greet drdes
eech great circle dso provides information about
the location of the mean in the direction parale
to the cirdes, thereby reducing the long axis of the
natural confidence region and making it more
circular. As the angle of intersection of the great
circles increases, the natural confidence region will
of course become more circular. Overal though,
provided the estimated endpoints are redigtic, the
circular confidence region determined above is not
unredligtic.

Because of the problems aready mentioned
with regard to overestimating K, there is a tend-
ency for a, caculated from equation (25) to un-
derestimate the actual value. Thus it should be
recognised that the actual probability of the true
mean lying within the calculated confidence re-
gion will be a bit less than (1 -p) (i.e typicdly a
bit less than 95%). Unfortunately there appearsto
be little that one can do to improve upon this.

7. Example of analysis

The example has been chosen from the com-
panion paper [12], and has been chosen quite
specifically because it clearly illustrates theeffect
of including sector condraints on the great cdrdes
and the effect of including direct observations.
Other examples are available in the companion
paper. From the point of view of the iteration,
these direct observations are nothing more than

st points rather than variable points, and so they
are referred to as "set points' in the example,

The example is taken from layer KB31 with 6
great circles, the results of different andyses are
presented in Table 1 and illustrated in Fig. 5. In
each case the motion of the resultant vector along
its great circle was clockwise when viewing the
figure. The result denoted A is from an analysis of
the great circles without any sector constraints
and without any set points included,

The result denoted B is from an andysis using
sector constraints on the individual great circles,
but not including any set points. A point of par-
ticular importance here is that the bounds of the
sector constraints have only been run into on two
of the great circles (those for KB31A4 and
K.B31B1). Thisis quite typica and is the bass for
the earlier remark that the smple limitation to a
specific arc is not too harsh a cut-off for the
distribution. Clearly any bounds that do appear in
the solution have merely acted, in effect, as sat
points for the rest of the great circles,

The result denoted C is from an anaysis not
using sector constraints for the great circles but
including two set points. Quite clearly the results
A and C are substantialy different from each
other: an analysis using great circles on their own
without sector constraints leads to an incorrect
solution. However, the results B and C are not

substantially different, and the inclusion of sector

constraints in the B analysis has substantially
reduced the problems with bias,

The result denoted D is from an analysis using
the sector constraints on each of the great circles
and aso using the two set points. It is interesting
to note that one of the sector constraints has come
into play here (on KB31D1). However, it is the
constraint at the start of the acceptable sector,
whereas previoudy it was the constraints at the
end of the acceptable sector. In this particular
instance the set points have tried to pull the
variable point too far back aong the great circle
—rprecisely the opposte of what was happening
without the set points. In this particular example
the resuit D is so close to the result C that they
are not visually distinguishable,

It is worth noting at this stage that a linear
decay to the origin of a Zijderveld diagram is not
aways a good indication of a true direction. As
seen in the above example, with several subparal-



TABLE 1
Effect of sector constraints and direct observations

Great circle analysis for KB 31

Set point data Gereat circle information

(number of set points = 2) (number of great circles = 6)

Specimen D (°) I1(°) Specimen Eigenvectors Constraints

p q r D/I D/I

KB31A3 146.6 —-52.6 KB31A1 0.263 0.664 -0.700 180.0/ —20.6 260.0/ -45.0

KB31B3 195.5 -57.9 KB31A4 0.794 0.335 -0.507 141.0/-38.7 200.0/—-59.5
KB31B1 0.692 0.358 -0.627 134.7/-20.3 196.6/ —50.7
KB31C2 0.593 0.663 -0.457 148.0/-18.4 210.0/ -61.6
KB31D1 0.637 0.476 -0.606 190.0/—49.5 270.0/ - 38.1
KB31D2 0.628 0.524 -0.576 157.0/—-329 2150/ —54.7

Great circle results ' Overal results Great circle results Overal results

Specimen D (°) I(°) ’ Specimen D (°) I(°)

Analysis A: no sector constraints, no set points Analysis C: set points, no sector constraints

KB31A1 246.8 —45.6 D =2468°, I =—-50.5° KB31A1l 200.6 -344 D =183.1°, I = ~51.2°

KB31A4 246.9 ~50.7 Nga =6 KB31A4 179.7 -573 Niga =8

KB31B1 242.7 —-454 R=59735 KB31B1 184.3 —48.8 R =17.8336

KB31C2 2529 -60.5 k =75.592 KB31C2 180.8 -52.8 k =24.032

KB31D1 245.8 —48.9 ags =10.1° KB31D1 185.3 ~48.2 ags =12.5°

KB31D2 247.5 -~51.5 KB31D2 184.7 —-49.3

Analysis B: sector constraints, no set points Analysis D: set points and sector constraints

KB31A1 2124 -39.5 D =2023°, ] =~525° KB31Al1 201.9 ~-35.1 D =184.8°, I =-51.7°

KB31A4 200.0 —-59.5* Niga =6 KB31A4 181.6 ~57.7 Niow =8

KB31B1 196.6 -50.7 * R =5,9491 KB31B1 186.0 —49.2 R =17.8325

KB31C2 196.8 -59.0 k =39.307 KB31C2 1823 -53.6 k=23874

KB31D1 202.5 -51.8 ags =14.0° KB31D1 190.0 —-495 * ags =12.5°

KB31D2 201.9 -53.5 KB31D2 186.3 —-498

* Denotes the end of an acceptable sector.

Fig. 5. Analyses of 6 great circles from layer KB31. A: No
sector constraints used and no set points included. B: Sector
constraints used but no set points included. C: No sector
-constraints used but set points included. D: Sector constraints
used and set points included. Solid circles are the two set
points and the open circles represent the circles of 95% confi-
dence for the results 4, B, C and D.

lel great circles the estimate for the mean direction
is strongly dependent on the position of the direct
observation(s), and this places a heavy responsibil-
ity upon the reliability of the direct observation(s).
In all instances, a direction estimated from great
circles intersecting each other at large angles must
be considered as inherently more reliable than a
direction estimated from sub-parallel great circles.

8. Conclusions

A method for the combined analysis of remag-
netization circles and-direct observations has been
formulated that overcomes some fundamental
problems present in the technique proposed by
Bailey and Halls [10]. The statistical formulation
of the problem as posed by Bailey and Halls {10]
relates specifically to the population of great circles



and not to the remanence directions themselves.
Thus it is very difficult to have any intuitive
feeling for what is taking place during the ana-
lytical process. Their technique derives an dlipse
of confidence that is based on an anaysis of the
poles of the great circles this is shown to be
unrealistic as it ignores available information.

The method proposed here is a physicaly intui-
tive one in which the process can easlly be fol-
lowed during iteration. The analysis provides max-
imum likelihood estimates based on all of the
available information: the addition of realistic sec-
tor constraints to the great circles (based on the
observed remanence directions) effectively over-
comes the bias caused in the Baley and Halls
method [1011]. The statistical analysis is very
smple as it is based on the commonly used and
well-known Fisher [13] distribution. Thus the final
estimate of the mean direction has a circle of
confidence associated with it. The only modifica-
tion to standard Fisher statistics is in the number
of degrees of freedom: this is because knowledge
of the great circle provides less information (in
fact, only one degree of freedom) than the infor-
mation available (two degrees of freedom) with a
direct observation.
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