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Summary. An acceptably accurate approximation for the sampling distribu- 
tion of the angle between two sample mean directions, conditional on the 
observed lengths of the vector resultants, is derived for samples drawn from 
Fisher populations sharing a common true mean direction. From this a test is 
given for the null hypothesis that two populations (with a common precision 
parameter) share a common true mean direction. This test is then compared 
with the unconditional test derived by Watson. 

The conditional test is then extended to an approximate test for the case 
where the two populations do not share a common precision parameter. 

The conditional test for populations with a common precision parameter is 
then extended to the case where it is desired to test simultaneously whether 
several samples could have been drawn from populations sharing a common 
true mean direction. 

The pooled, unbiased estimate for the inverse of the precision parameter is 
determined. From this a test for homogeneity of the precision parameter is 
derived for the case of several samples having unequal sample sizes. 

1 Introduction 

Fisher’s (1953) distribution of vectors on a unit sphere is given by 

Here K is the precision parameter, 8 the polar angle between the true mean direction and an 
observed direction and d A  is the element of area at (0,  4)’ where 4 is the uniformly distri- 
buted azimuthal angle. The marginal distribution of 0 is thus 
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Fisher (1953) has shown that the maximum likelihood estimate (from a random sample of 
N unit vectors) for the true mean direction is given by the direction of the vector resultant, 
length R,  of the individual unit vectors. Further, he has shown that if a is the angle between 
this sample mean direction and the true mean direction, then the distribution of a conditional 
on given R, P ( a  I R),  is 

P. L. McFadden and F. J. Lowes 

R K  

2 sinh (R K )  
P(a I R) d a  = exp(RK cos a)  sin ada. (3 1 

It is of great value, particularly in palaeomagnetic studies, to be able to test whether two 
such observed mean direction could have been obtained by random sampling from populations 
having the same mean directions. Several exact tests have been suggested, but it would be 
useful to have a simple test valid for reasonably large K . 

Such a test has been derived by Watson (1956) for the case where populations have the 
same precision parameter, but unfortunately his test does not lead to a test for populations 
which do not share a common precision parameter. It is the intention here to develop a con- 
ditional test in a manner in which it is applicable not only to populations sharing a common 
precision parameter but also (as an approximate test) to populations without a common pre- 
cision parameter. 

2 Sampling distribution of the angle between two mean directions 

In order to derive the required test it is first necessary to derive the sampling distribution of 
the angle between two mean directions, conditional on the observed lengths of the vector 
resultants of the two samples and conditional on the two populations sharing a common true 
mean direction. The strict derivation is complicated and difficult to perform. The following 
analysis is a simple method of elucidating an acceptably accurate approximation to the 
required distribution; it uses the standard result that, for large K ,  the Fisher distribution on 
the unit sphere is well approximated by a bivariate normal distribution on the tangent plane. 

The distribution of a given by Fisher (1953) is in fact the marginal distributional condi- 
tional on given R, i.e. independent of the azimuthal angle 4. The joint distribution, condi- 
tional on given R , is therefore 

R K  

4a Sinh(RK) 
P(a, q5 IR) d A  = exp(R K cos a) dA. (4) 

For cases of practical interest the term (R K )  is large enough that a is effectively restricted 
to small values and so 

cos (Y = 1 - Ma2 and 2 sinh (RK) = exp(R K ) .  (5) 

Hence the joint distribution is given, to a good approximation, by 

which is the bivariate normal distribution of two independent variables sharing a common 
variance ( ~ / R K ) .  This may be considered as a projection of the Fisher distribution on to a 
plane tangential to the unit sphere, the point of contact being the true mean direction. Over 
the region of interest the distance between two points on this plane is equal to the angle (in 
radians) subtended by these two points at the centre of the unit sphere. Defining two new 
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21 Discrimination of mean directions 
variables (x andy) in this plane by the relations 

a2 = x2 t y2 

and (7) 
@ = arctan (y /x )  

the variables x and y are orthogonal, independent and have marginal distributions which are 
normal, mean zero, variance ( ~ / R K ) ,  i.e. 

R K  ”’ 
g(X) dx = (G) exp(- %RKx ’) d x  

and 

The true mean direction is now located at the point (0,O) in the plane, and the angle between 
two directions (al, G1) and (a2, &) is simply equal to the distance between the Cartesian 
coordinates (xl, y l )  and (x2,y2) .  

It is convenient at this stage to introduce a shorthand notation whereby equations (8) 
may be rewritten as 

x - N(0,  ~ / R K ) ;  y - N(0,  ~ / R K ) .  (9) 

Here the symbol ‘- ’ is to be read as ‘is distributed as’ and N(a, b )  indicates a normal distri- 
bution, mean a, variance b. 

Consider now two Fisher populations having the same true mean direction but different 
precision parameters, K and K z. A sample of size N1 drawn from the first population will 
give a mean direction (a,, or equivalently ( x l ,  y l )  and, conditional on the observed 
value R 1, 

x1 - W O ,  URlKlk Y1 - N O ,  1IRlKI). (10) 

Similarly, a sample of size N z  drawn from the second population will give a mean direction 
(az, G2) or equivalently (xz,yz)  and, conditional on the observed value R 2 ,  

x2 -“O, 1/R2Kz>; Yz - N O ,  1/RzKz>. ( 1  1) 

Hence, using the reproductive property of the normal distribution, conditional on the 
observed values R 1  and R 2 ,  

(x2-x,)-N(O,  u2); (Yz-Yd - - N O ,  0’) (12) 

where 

1 1 
t-. ( 1 3 )  = __ 

RlKl RZK2 

It follows immediately that 

(xz --x 1 IZ (Yz-Y 1)’ - x:; - x:. 
U2 U2 
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Further, since the variables (x2-kl) and ( y 2  -yl) are independent, 

P. L. McFadden and F. J. Lowes 

The angle, y, between the two mean directions is given by 

and so 

Equations (17) and (18) give the approximate distribution of y conditional on the observed 
values of R 1  and R 2 .  However, it is of more value to rewrite thn in terms of the distribution 
of R (the length of the vector resultant of the ( N ,  + N 2 )  individual unit vectors) conditional 
on the observed values of R , and Rz.  Using the approximation (cosy = 1 - M yz), the value 
of y2 is given by 

1 

y 2  =I ( ( R ,  +R2)’ -Rz) .  
RlR2 

Hence on substituting into (17) 

K 1 K 2  ((Rl + R d 2  - R Z )  

RlKl+RZK? 
- x:. 

3 Comparison of two mean directions 

Watson (1956) has shown that 

2K(Ni -Ri) - x : ( N ~ -  1) 

(see McFadden (1980) for a discussion of the range of validity of this approximation) and 
since the two samples at present under consideration are indepengent it follows that 

2KlW1 -R1) + 2Kz(Nz-R2) - X ; ( N - - 2 ) >  (22) 

where N = N l  + N z .  If the two true mean directions are the same it follows from (20) and 
(22) that 

where F [m, n] is the F distribution with m and n degrees of freedom respectively. This then 
is the general form of the test and if the observed value off exceeds the critical value of the 
F distribution at the required level of significance then the null hypothesis that the two true 
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Discrimination of mean directions 23 

mean direction are the same may be rejected. In general, however, the parameters K and K~ 

are unknown and so it is still necessary to eliminate these parameters from the test. 

3.1 C A S E  W H E N  K~ = K~ 

Initially it is necessary that there be some causal reason for expecting K~ = K ~ .  Given that 
such causal reason exists a statistical test of the null hypothesis that K = K~ should be per- 
formed. Defining the statistic ki as 

the statistic ( l l k i )  is then an unbiased estimator for ( 1 / ~ ~ )  (McFadden 1980) and the ratio 
(kl/kz) may be used to test for disparity between K and K~ using the statistic 

If the hypothesis that K = K~ cannot be rejected at the required level of significance then it 
may be accepted that K~ = K~ = K .  With this condition equation (23)  reduces to 

The statistic f is simply the ratio of yz (where 7 is the angle between the two mean directions) 
to the estimate of its expected mean square value (i.e. 2 / ~  ’), which is obtained using the 
unbiased, pooled, estimate for ( 1 / ~ )  of (64) in (18). 

If the observed value off  exceeds the critical value of the F distribution at the required 
level of significance then the null hypothesis that the two true mean directions are the same 
may be rejected. 

In fact the density, F ( f i  2,  2 ( N - 2 ) ) ,  of the distribution F [ 2 ,  2 ( N - 2 ) ]  is particularly 
simple and is given by 

F(f; 2 , 2 ( N -  2)) = (I t 
j N - 2  

Hence the value, fp , which f will exceed with probability p is given by solving 

so that 

Thus, from (25) and (28), the null hypothesis that the two true mean directions are the same 
may be rejected at the level of significance p if 
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It should be noted that this test is independent of K (i.e. it takes into account all values of K )  

and is therefore directly analogous to the analysis of variance in normally distributed 
statistics. 

P. L. McFadden and F. J. Lowes 

3.1.1 Comparison with Watson ’s analysis for the case K = K 

Watson (1956, equation 2.31) noted that 

2 K  ( N - R )  = 2K (N1 -R1) t 2K (Nz - Rz)  + 2 K  ( R ,  +Rz - R )  (30) 

and using the distributions given by (21) and (22) showed that 

2 K  (R, + R ,  - R )  - x:. 
The expression given here is 

(l +=)K R ( R ,  + R d  - x:. 
The difference is that Watson’s analysis is for the unconditional distribution whereas the 
distribution given here is that conditional on R 1  and Rz.  This is easily seen since in Watson’s 
(1956) analysis R can attain the value N ,  whereas, given the observed values R 1  andRz, it is 
not possible for R to exceed ( R  + R z ) .  

Since R cannot exceed ( R ,  + R z ) ,  Watson’s statistic (his (2.32)) will be slightly larger 
than the statistic given here. However, in the region of interest the numerical difference is 
very small and it matters little which test is used. If the test given here is used it must be 
interpreted as being conditional upon the observed values of R and R z  and for that reason it 
is preferred by the present authors. In addition, the conditional test given here leads directly 
to an approximate test for the case where K~ # K ~ ,  as shown in the next section. 

3.2 CASE WHEN K ~ # K ~  

Occasionally it is necessary to test the hypothesis that the true mean directions of two popu- 
lations are not different even though their precision parameters are different. 

Given that 

KZ=rK1 (32) 

then, from (23) and (28), the null hypothesis of a common true mean direction may be 
rejected at the level of significance p if 

If causal reason exists for expecting a certain value of r then the hypothesis that K~ = r K ,  

may be tested using the statistic. 

rk 1 
- - F[2(Nz - l ) ,  2(N,  - l)] 
kz 

(34) 

(McFadden 1980, equation (28)). Evidently r = 1 is merely the case considered in Section 
3 .1 .  However, if there is no causal reason for expecting a certain value of r, or if the hypo- 
thesis of an expected value of r has been rejected statistically, then r constitutes an unknown 
nuisance parameter. 
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Discrimination of mean directions 25 

At the present time no exact test exists for this situation. However, an approximate test is 
readily available by using an estimate, re = k 2 / k l ,  for r in equation (33). This estimate is 
discussed in Appendix A. The usefulness of this approximate test arises from the fact that, as 
suggested by the example of Appendix B, the angle between the two observed mean direc- 
tions at which the null hypothesis of a common true mean direction would be rejected is 
relatively insensitive to the value of r .  However, since the test i s  approximate, a decision 
should be deferred in marginal cases. 

4 Extension to several mean directions 

The extension to several mean directions is made only for the case where the populations 
share a common precision parameter. If the precision parameters differ the test must be 
restricted to two mean direction. The test for homogeneity of precision is presented in 
Section 5. 

Given three observed mean directions, from equation (1 7) and (1 8) 

K 1 2 ( Y 1 2 ) 2  - x :  

and yij is the angle between the i th mean direction and theith mean direction. Any two of 
the chi-square distributed statistics in equation (35) are independent and so 

K 1 2 ( y 1 2 ) 2  tK13(713)2=A - x i  
K 1 2  (*112)2 K 2 3  (723)’ = B  - x i  (36) 

K 1 3 ( 7 1 3 ) 2  t K 2 3 ( ^ 1 2 3 ) 2 = C ” X i .  

Now A ,  B and C are equivalent statistics, given R 1 ,  R 2 ,  R 3  and their observed orientations, 
the only difference being the arbitrary choice of numbering the mean directions. Thus 

1 
3 
- ( A  t B t C )  - x i  

which, given that K R ~ ,  K R ~  and K R ~  are all large, reduces to 

(37) 

The statistic D is independent of the arbitrary numbering choice and its distribution gives 
the required distribution of R (the length of the overall vector resultant) conditional on R 1 ,  
Rz and R 3 .  Extension of this argument shows that form mean directions the required distri- 
bution is 

the summation running over i from 1 to m. 
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26 P. L. McFadden and F. J. Lowes 
Extending relation (22) it follows that 

2 K ( N - i z R i ) -  x $ ( N -  rn), 

where 

N =  I N i .  
i 

Hence from (39) and (40), under the null hypothesis that all the samples are drawn from 
populations having the same true mean direction (and, as before, subject to the hypothesis 
that the populations have a common precision parameter), the distribution independent of 
K is 

( N -  m )  iCRi  - R2/CiRi 
= g  - F[2(m-1), ~ ( N - M ) ] ;  

(m -1) 2(N- iCRi) 

this is the extension of (25) to the case of many samples. The statistic g is effectively the 
mean of the ratios of the individual 7; to the estimates of their expected mean square 
values. If the observed value of g exceeds the critical value of the F distribution at the 
required level of significance then the null hypothesis of a common true mean direction may 
be rejected. 

Watson (1956, equation 3.4) and Watson & Williams (1956, equation 22) extended 
Watson’s unconditional test to the multi-sample case. This is quoted by Stephens (1969, sec- 
tion 2.2 and, after noting that the exact distribution of the R conditional on given R leads 
to an intractable joint density function, in section 3.3) and by Mardia (1972, equation 9.5.3). 
As for the two sample case the present authors prefer the conditional test for the multi- 
sample case; Mardia also includes an (empirical) correction factor for small K ,  but this is to 
improve the approximation of our (21) and does not affect the conditionality. 

5 Testing for homogeneity of precision 
If the sample sizes are all the same the test is extremely simple. The largest observed value of 
(l/ki) (i.e. estimate of ( l / ~ ) ,  see equation 24) is tested against the smallest observed value of 
(l/ki) (see equation 24a). If these two values could have been obtained by random sampling 
from populations having a common precision then so could all the intermediate values of 
(l/ki). However, if the result is marginal, or if the sample sizes vary then each of the 
observed (l/ki) must be considered and the required test is derived below. 

5.1 G E N E R A L I Z E D  L I K E L I H O O D  R A T I O  

Suppose there are m samples (m > 2) and that for the ith sample, of size Ni, the observed 
directions have polar angles Oii ( i  = 1, . . . , m; j = 1, . . . , Ni) with respect to the true mean 
direction of that population, which has direction cosines ( p i ,  q i ,  ri). (The true mean direc- 
tions are unknown, but it turns out that only estimated values of the 8i i  are needed.) 
Further suppose that all the samples are independent and are drawn from Fisher distri- 
butions with precisions K ~ .  The null hypothesis Ho is given by 

Ho : K 1 = Kz = . . .= K ,  = K 

and the alternative hypothesis HI is that these precisions are not all equal. 
From (l), the likelihood function under Ho is 

exp (1 Z K  cos eii 1 KN 

( 4 ~ ) ~ ( s i n h ~ ) N  
Lo = 
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Discrimination of mean directions 

where 

N =  Ni. 

Under H1 the likelihood function is 

i 

27 

The likelihood ratio (i.e. the ratio L o / L 1  when the maximum likelihood estimators are used) 
is then 

where k is the maximum likelihood estimator (mle) for K under Ho,  the ioijaare the angles 
between the observations and the mle of the mean direction under H o ,  the ki are the mles 
for the K~ under the H1 and the I!?, ii are the angles between the observations and the mle of 
the mean direction under H1. 

5.1.1 Determining the mles under Ho 

The solution is well known, but for comparison with the next section it is repeated. The 
natural logarithm of the likelihood function, lo = ln(Lo), is 

Z0=Nln(K) - N l n ( s i n h ~ )  t K Z:(piRxi t 4 i R y i  t r j R Z i )  +constant (45) 

where R x i ,  R,, and Rzi are the components of R i .  From the partial differentials of lo ,  the 
joint mles of the p i ,  4 i ,  ri and K are determined by solving the (3m + 1) equations 

subject to the m constraints 

f i f + 4 f t i i ' =  1, 

where the hi are Lagrange undetermined multipliers. The mles then satisfy 

CiRi 
coth k - (l/i) = __ 

N 
(47) 

(48) 

and 

CcosCioi i=Ri.  
i 
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5.1.2 Determining the mles under H1 

Here the natural logarithm of the likelihood function is 

1, = xN,hl(Ki) - 

The joint mles are now determined by solving the 4m equations 

P. L. McFadden and F. J, Lowes 

Niln(sinh K i )  + ~ c i ( p i R ~ ~  +qiR,i + ri&) +constant. 
i i i 

k .R - X . - . = O  

k.R - h . ^ . = O  

k.R -A,;. = O  

I x i  IPI 

I y i  142 
( i = l ,  ..., m) 

I z i  1 1  

(Ni /k i )  - Ni coth ii + piRXi + &RYi + f iRzi  = 0 

subject to the m constraints 

&6f+( i f+f f t  1. 

Hence, under HI, the mles satisfy 

Ri 
coth ii - (l/ii) =- 

Ni 
and 

C cos 6 1  ij = R i. 
i 

It should be noted that (52) is identical to (48). 

(49) 

5.1.3 Approximation to L for large precisions 

The exponential term in the likelihood ratio (equation 44) is, from (52) and (48), given most 
simply by 

e x p ( ~ ~ ( i c o s i o i i  i j  (53) 

For t greater than 3 the approximations 

2 sinh t 2 exp(t) and coth t 2 1 (54) 
are acceptably accurate. Hence if all the Iti exceed 3, using (47) and (51) the likelihood ratio 
reduces to 

and 
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Discrimination of mean directions 29 

Wilks (1938) has shown that - 2 h L  is asymptotically chi-square distributed with degrees of 
freedom given by the number of parameters under H I  (i.e. 3m) less the number of para- 
meters under Ho (i.e. (2m + 1 ) ) .  Hence 

- 2 1nL - x t m  - I ) ,  (58) 

leading to the final equation 

Hence the null hypothesis Ho may be rejected at the required level of significance if the 
observed value of E exceeds the critical value of the chi-square distribution. 

5.2 B A R T L E T T ’ S  M E T H O D  

The test presented in Section 5.1 suffers from the problem that the derived statistic is only 
asymptotically chi-square distributed, thus requiring large samples for accurate application. 
Bartlett (1937) has presented a test which overcomes this problem for normally distributed 
variates. 

It was noted above that 
1 - Nj-Rj  - _ _ _ _  

ki Ni-1 

is an unbiased estimate of ( l /Ki) .  From (21) the distribution of ( I lk i )  is given by 

Thus the approximate distribution of (I lkj)  is the same as the distribution of an unbiased 
estimate for the variance of normally distributed variates, the variance being (1 /~ i )  with 
2 (ZVi-l) degrees of freedom. Hence the analysis of Bartlett (1937) may be followed exactly, 
simply substituting ( 1 / ~ ~ )  for the variance, (Ilki)  for the unbiased estimate of the variance 
and 2(Ni-1) for the degrees of freedom. This will now be done. 

5.2.1 Pooled, unbiased estimute for ( I / K )  

Before using the test given by Bartlett it is necessary to have an unbiased, pooled estimate 
for ( I / K ) ,  independent of the individual true mean directions. From (60) 

and therefore 

Hence, using E ( t )  to denote the expectation value of t ,  

C(Ni - l ) /k i  E ( U )  - 1  - -  ( (N-m)  ) = 2 K ( N - m )  K ’  
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Thus the statistic (1 /K), given by 
P. L. McFadden and F. J. Lowes 

1 Z(Ni- l ) /k i  - Z(Ni-Ri)  - - - -  
K ( N - m )  ( N - m )  ’ 

is the required pooled, unbiased estimate for (I /K).  It should be noted that this estimate is 
independent of a common true mean direction and dependent only on the hypothesis of a 
common precision. This estimate has been (implicitly) used in the tests (25) and (41). 

5.2.2 Use of Bartlett’s test 

Following Bartlett’s analysis 

2 

C 
- { X (Ni - 1) lnki - ( N -  m )  InK) = G - x&, - (65) 

where 

1 1 
- 

C = l +  
6 ( m - l )  Ni-1 N - m  

Hence the null hypothesis of a common precision parameter may be rejected at the required 
level of significance if the observed value of G exceeds the critical value of the chi-square 
distribution. 

The test statistics E proposed in (59) used maximum likelihood estimators together with 
numbers of observations; it is only asymptotically distributed as x2. The statistic G of (65) 
is based on Bartlett’s suggestion of using degrees of freedom rather than numbers of obser- 
vations and using unbiased estimators rather than maximum likelihood estimators; he also 
introduced the factor C to make the distribution more nearly x2. Monte Carlo experiments 
indicate that (65) is in fact applicable for values ofNi as small as 2 or 3.  It should be noted, 
however, that this test is sensitive to deviations from a Fisher distribution and consequently 
in marginal cases it is probably wise to invest the effort of testing the precision in pairs. 

Stephens (1969, section 5.3) and Mardia (1972, equation 9.5.1 1)) both apply Bartlett’s 
method to this situation, but unfortunately there are algebraic errors in their results. 

6 Conclusions 

The derivation of a conditional test for the discrimination of mean directions from Fisher 
distributions has been given. In the derivation there are several useful relations and, to aid 
the investigator who is interested merely in applying the test, these are repeated below. 

If two sample mean directions (vector resultants of lengths R 1  and R,) are drawn from 
populations sharing a common true mean direction then the approximate sampling distri- 
bution of the angle y between these two directions, conditional on the observed values ofRl  
and R2,  is 
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Discrimination of mean directions 31 
If K = K then this reduces to 

R Z  

R1 + R z  
t R 2  - ---I - x$ 

which effectively gives the distribution of R conditional on R 1  and R 2 .  Unfortunately K is 
rarely known and so the distribution of R conditional on R 1  and R 2 ,  but independent of K 

is required. This distribution has been derived for the general case (i.e. K~ not necessarily 
equal to K ~ )  and the following two tests result. 

For two populations having a common precision parameter the null hypothesis that these 
populations share a common true mean direction may be rejected at the level of significance 
p if 

(R i + Rz -R  ' /(R i + R 2)) 
1/(N - 2 )  

> (+) -1. 
2(N-  R1 -Rz)  

If the two populations do not have a common precision parameter the null hypothesis 
that these populations share a common true mean direction may be rejected at the level of 
significance p if 

r ( (R l  +Rz)* -RZ) 
2KNl -R1) + r(" -R2)) (R l  +r&) 

1/(N - 2 )  

> 16, -1, 

where r = K~ / K  1. If, as is usually the case, the ratio r is unknown, it may be estimated by the 
ratio kz / k l ,  with ki = (Ni - l ) / (N i  - RJ. However, it must be recognised that in such a situ- 
ation the test is only approximate and so a decision should be deferred if the significance of 
the test statistic is marginal. 

An extension of the analysis shows that for m populations sharing a common true mean 
direction and a common precision parameter, the distribution of R ,  conditional on R 1 ,  
R 2 ,  . . . , R , ,  but independent of K ,  is 

( N - m )  ZRi-R21ZRi 
( m - 1 )  2 ( N - Z R i )  
~. =g- F [ 2 ( m  -l), 2 ( N - m ) ] .  

Thus the null hypothesis of a common true mean direction may be rejected if the observed 
value of g exceeds the critical value of the F distribution at the required level of significance. 

The tests presented here are conditional upon the observed values of the Ri and must be 
interpreted as such. 

If the m populations share a common precision parameter then 

1 - Z(Ni-Ri) -- 
K (N-m)  

is the pooled, unbiased estimate for ( l / ~ ) .  Further, 

2 
- { C (Ni - 1) In ( ki) - ( N -  m) In ( K )  = G - x(z, - 1) C 

where 

1 
- 

Z-  1 -1 C = l t -  
Ni-1 N - m j  
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The null hypothesis of a common precision parameter may then be rejected if the observed 
value of G exceeds the critical value of the chi-square distribution at the required level of 
significance. Monte Carlo experiments indicate that this test is applicable for values of Ni as 
small as 2 or 3 .  

P. L. McFadden and F. J. Lowes 
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Appendix A: estimation of r = K / K  

All that is necessary in the estimation of r is that the distribution of the estimate be known. 
Given that this distribution is known, confidence limits may be placed on the actual value of 
the test statistic (i.e. the left side of equation 33). Naturally it is philosophically appealing 
(but unnecessary) to have an estimate for r which gives an unbiased estimate for the test 
statistic. Unfortunately this leads to a complicated expression and so it is preferable to use a 
simpler estimate. 

The next most appealing estimate is an unbiased estimate of r itself. Defining Ki as 

it follows from equation (21) that 

2Ki(Ni-2) - X Z ( N i -  1 )  
Ki 

and Ki is an unbiased estimated of K~ (Mardia 1972; McFadden 1980). Defining r' as 

I Kz 
K1 

r =- 

it follows that 

and so r' is an unbiased estimate of I(= K ~ / K ~ ) .  The distribution of r' is simple and so r f  is 
an acceptable estimator for r.  However, the values of kl  and kz will probably have been 
calculated already for other purposes and the distribution of r e ( = k z / k l )  is even simpler 
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than that for r ' ;  from (34) this distribution is 

re 
- - F[2(N1 -l) ,  2(Nz -1)J. 
r 

Although re  is a biased estimate of r it is the estimator with the simplest possible distri- 
bution and so it is suggested that re ,  rather than r ' ,  be used as an estimator for r.  

Appendix B: confidence limits for the test (33) when K ]  # K~ 

Consider for example two mean directions obtained from two samples having the following 
observed statistics: 

N1= 26, R1= 23.5, k l =  10.0; 

Nz=30, Rz=28.4, k z =  18.125. 

The estimated value of r, re ,  is then 1.8125 and from the distribution (AS) r lies between 
1.061 and 3.129 with 95 per cent confidence. Using the given values, from (33) the null 
hypothesis of a common true mean direction may be rejected at the 95 per cent of confi- 
dence if 

r(2693.61- R2) 

2(2.5 -I 1.6r) (23.5 + 28.4r) 
> 0.0507. 

Using the 95 per cent confidence limits for r ,  the value of R at which the null hypothesis 
should be rejected lies between 51.64 and 51.69 with 95 per cent confidence. Alternatively 
this may be stated by saying that the angle between the two observed mean directions at 
which the null hypothesis should be rejected lies between 10.3" and 11.6". Using the esti- 
mate re of r this angle is 10.6'. Hence the uncertainty in the value of r leads to a maximum 
error of only 1" in th is  instance. The angle was in fact 13", and the null hypothesis is to be 
rejected, even though there is some overlap of the 95 per cent confidence circles. 
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