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Summary. The classic, multivariate technique of principal component analysis
can be used to find and estimate the directions of lines and planes of best
least-squares fit along the demagnetization path of a palaeomagnetic
specimen, thereby replacing vector subtraction, remagnetization circles and
difference vector paths with one procedure. Eigenvalues from the analysis
are the variance of the data along each principal axis, and provide a relative
measure of collinearity or coplanarity which may be used to define a general
palacomagnetic precision index. Demagnetization planes found with principal
component analysis may be used in place of difference vector paths for
locating Hoffman—Day directions, avoiding unnecessary vector subtraction
and intensity truncation steps. Two methods are discussed for jointly
estimating an average remanence direction from demagnetization lines and
planes.

1 Introduction

The Earth’s magnetic field continually changes in polarity, direction, and intensity when
viewed through geologic time. After its formation, a rock is exposed to a variety of changing
magnetic fields. If at certain times during this history, it is subjected to physical or chemical
conditions which alter its mineralogy or magnetic properties, it may completely or partially
gain a new magnetic remanence. Typically, this new remanence will form a discrete
component parallel to the local geomagnetic field direction and add vectorially to any of the
original remanence remaining in the rock. Although it is desirable in most palaeomagnetic
studies to find the direction of all these various components, techniques currently in use do
not exploit all of the available data (especially intensity). Ideally, analytical methods at both
the specimen and sample levels should be based on as much of the original magnetic
information as possible, with minimal assumptions. To accomplish this goal, it is necessary
to first apply the classic multivariate technique of principal component analysis to collinear
and coplanar points along a specimen’s demagnetization path. Principal component analysis
provides estimates of relative collinearity or coplanarity of the data, as well as directions of
best least-squares fit. Next, if groups of lines and planes of specimens from different samples



700 J. L. Kirschvink

respectively yield clusters (bipolar with mixed N and R data) and girdles of directions on a
stereonet which indicate a common magnetic component, all of the directions should be
combined into a joint estimate for the average remanence. Techniques for both of these are
discussed and developed in Sections 2 to 6, and applied to palaeomagnetic examples in
Section 7.

Although principal component analysis is based partly on least-squares minimization, it
should not be confused with the exponential least-squares modelling technique of Stupavsky
& Symons (1978). Their technique presumes a log-normal grain size-coercivity distribution
in space and requires systematic af demagnetization data; when applicable, their exponential
models may have greater ability to resolve superimposed components. Many sedimentary
rocks, however, do not respond well to af demagnetization, and the magnetic grain-size
distributions of freshwater and marine sediments may for example be disturbed by a
discrete, single domain spike of biogenic magnetite (Frankel, Blakemore & Wolfe 1979;
Kirschvink & Lowenstam 1979). Techniques discussed in this paper are generally applicable
to all remagnetization data regardless of demagnetization procedure, magnetic mineralogy,
type of remanence or grain-size distribution.

2 Separation of magnetic components

Directions of magnetic components within a rock may be separated by progressively
destroying in small increments the natural remanence through heating, af demagnetization,
chemical leaching or other demagnetizing procedures; these experiments attempt in part to
reverse in the laboratory the mechanisms by which the remanence was gained in nature.
The arientation and intensity of the magnetism measured after an incremental demagnetiza-
tion experiment constitutes a magnetic vector, the ‘tip’ of which forms a point in magnetic
three-space; the set of all such points produced during progressive demagnetization defines
the demagnetization path for the specimen. Conversely, a point in magnetic three-space
represents a vector pointing from the origin to it. Ordered points along these paths con-
ceptually fall into three geometric groups: lines, planes and three-dimensional curves. A
series of points which are collinear usually indicate the progressive removal of one magnetic
component; the direction of the line containing them is, of course, parallel to the discrete
magnetic vector that was removed. Coplanar points are likewise found when two discrete
magnetic components are simultaneously removed in differing ratios; this plane is best
described by its pole (perpendicular direction). It should be emphasized that the direction
found for a line on a demagnetization path is an estimate of where the remanence is, while a
pole to a demagnetization plane is an estimate of where the remanence is not. Both are of
use in palaeomagnetic studies as will be discussed in Sections 5 and 6. The third category, a
three-dimensional curve, is produced by the simultaneous, progressive removal of more than
two discrete magnetic components. These three geometrical groups may be encountered
individually, or together in any order along the demagnetization path of a palacomagnetic
specimen, and it is important in nearly all such studies to recognize the lines and planes
within the data and estimate their direction.

Many techniques have been proposed and are currently used in palacomagnetic studies to
locate and estimate the direction of collinear and coplanar points along a demagnetization
path. The most popular include the best demagnetization step, stable end point, orthogonal
projection, vector subtraction, remagnetization circles and difference vector paths (for
example Collinson, Creer & Runcorn 1967; Zijderveld 1967; Khramov 1958; Halls 1976,
1978; Hoffman & Day 1978). The success of these palacomagnetic techniques is generally
unguestioned; they often yield reasonably accurate estimates of the desired magnetic
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directions. However, all of these techniques either use only one or two of the data points
(such as vector subtraction) or exclude a major part such as the intensity (remagnetization
circles and difference vector paths). The classic multivariate technique of principal
component analysis (Pearson 1901; Hotelling 1933) was developed to handle this type of
data without such unnecessary exclusion, but it has not been used in progressive de-
magnetization studies. Because recent technological developments have substantially reduced
the effort required to progressively demagnetize and measure a rock specimen (Molyneux
1971; Goree & Fuller 1976), large amounts of data are rapidly becoming available. It
therefore seems timely to replace the graphical and vector-subtraction techniques currently
in use with the analytic rigor of principal component analysis. For lines and planes, this
method provides directions of best least-squares fit to the data as well as a measure of their
collinearity or coplanarity.

3 Principal component analysis

Principal component analysis is simply a linear transformation of the orthogonal coordinate
axes to a new orthogonal reference frame that corresponds to the geometry of the data set.
The origin in the new system corresponds to the ‘centre of mass’, while the new axes are
positioned by least-squares to best fit the data. Each axis in the new reference system has
associated with it a measure of the variance (0?) about the mean in that particular direction;
two of the axes are positioned to correspond to the maximum and minimum direction of
variance, while the other (in the three-dimensional case) is intermediate. Through the use of
Lagrange multipliers, it can be shown that the principal axes parallel the eigenvectors of the
matrix of sums of squares and products,

Zx; — X 20— %) (i —7) Z(x; —%)(z; - 2)
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where P; = [x;, ¥;, z;], i= 1, N are the N data points in the old coordinate system and U=
[%, 7, 2] is the position of the origin for the new system. Eigenvalues (Amaxs Aints Amin)
associated with each eigenvector are the variance of the data along the new axes. If the
points all lie precisely along a line, for example, all of the variance is parallel to it. One
principal component completely represents the data, and the dimensionality of the total
system may be reduced. In this case two eigenvalues will be zero while the third is large, one
eigenvector will parallel the line and the other two will be at arbitrary right angles to it.
Similarly, there is no variance perpendicular to a plane which contains all of the data; the
pole to this plane is the eigenvector associated with the zero variance.

This mathematical procedure is equivalent to finding the lines and planes of best least-
squares fit as derived by Schomaker et al (1958) and Blow (1960). If the data are treated
as point masses, the mathematics are equivalent to finding the principal axes of inertia about
the point U. Note that if U is taken as some point other than the centre of mass, the lines
and planes will still be constrained to pass through it while at the same time minimizing the
sum of squared deviations. Matrix H is also equivalent to Watson’s (1960) matrix of sums of
squares and products if each data point, P;, is truncated to unit distance from the origin
and the point U is taken as [0, 0, O]. In this form H serves as the basis for Dimroth—Watson
and Bingham spherical statistics (Watson 1960, 1965, 1966; Dimroth 1963; Bingham 1964,
1974). Most computing centres have standard software programs for computing eigenvectors
and eigenvalues from symmetric matrices, the IBM Scientific Subroutine Package (SSP)
routine EIGEN is one such program.
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4 Application to palaecomagnetics
4.1 LOCATION OF LINES AND PLANES

Groups of points which belong to lines and planes along a demagnetization path have been
recognized in most palaeomagnetic studies using graphical techniques. Lines are recognized
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Figure 1. A flow chart for locating collinear and coplanar pieces of the demagnetization path. The NV data
points are numbered sequentially starting with the NRM, and a search begins by setting the J index on
the origin (0, 0, 0) and the index J on the N-1th point. These three points in the first window between
I and J are checked for linearity. If they do not fall on a line, the window is moved further down the
demagnetization path and again tested. When three collinear points are found, neighbouring points are
added until the boundaries of the straight segment are located. The window is then repositioned and the
search process repeated until no further linearity remains. The ‘/, J linear?’ test is positive if the MAD
for the points 7 to J is less than a given value. Data points which lie on a plane may be found by starting
with a similar four-point search window.
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as straight segments after orthogonal projection (Zijderveld 1967) or as stable endpoint
clusters on a stereonet. Planes which pass through the origin can be found by great circle
arcs left on a stereonet (Creer 1957 ; Khramov 1958; Halls 1976, 1978), and planes which do
not include the origin have been recognized by great circle paths produced by successive
difference vectors (Hoffman & Day 1978). Although reasonably accurate, this eyeball
interpretation is not really necessary. Principal component analysis can be used to group a
set of points along a demagnetization path into the three categories discussed earlier on the
basis of their eigenvalues; Amax > Nint = Amin = 0 nnphes that the data are grouped on a line,
Amax 2 ANint > Amin ~ O implies a plane, and Apgax 2 Aint Z Amin > O suggests a three-
dimensional curve, A simple, easily-computerized procedure which can be used to locate
linear or planar groups of points along a demagnetization path is explained on the flow
diagram shown in Fig. 1. Once this, a similar algorithm, or an eyeball, has identified groups
of collinear or coplanar points, principal component analysis may be used to find the
direction of best fit to a line or the pole to a plane. Throughout the rest of this paper, these
collinear and coplanar groups of points will be referred to as demagnetization lines or
demagnetization planes, respectively.

4.2 CRITERIA FOR DETERMINING LINEARITY OF PLANARITY

A numerical search of the type outlined on Fig. 1 needs a uniform criterion for deciding the
linearity or planarity of a group of points. Because the eigenvalues from a principal
component analysis are the variance in each principal direction, a simple approach is to ask
what the Maximum Angular Deviation (MAD) of the direction would be if the fit along each
axis was off by one (or an equal amount of) standard deviation (o). By analogy with a long
rectangulat box of dimensions o ay, Oint, Omin, this characteristic angle of equal deviation
for a line would be that between the central diagonal and a long edge, or

L WA %] 2
tan Oint + amin/omax)’

or
tan™" [v/(Nint + Amin)/Amax -

By considering a thin rectangular box with a diagonal plane, the maximum angle of deviation
for the pole to a demagnetization plane is similarly found to be

tan™! (\/)\minh\int + Amin/Amax)- 3)

Note that only the relative magnitudes of the three eigenvalues are important. Although
these angles are not strict confidence limits, small values respectively indicate collinearity
or coplanarity of the data and may be used in a numerical search (Fig. 1). The eigenvalues
thus provide a basis for accepting or rejecting data from a particular specimen. Lund &
Streletz (1979) have proposed a similar technique involving principal value perturbations.
Measurement error and the magnitude of superimposed magnetic components are the only
factors which will increase the variance and lead to larger MAD values. Groups of points
with values above a specified standard therefore may be omitted from further analysis,
leading to the possible exclusion of entire specimens which are found to possess neither
collinear nor coplanar points. In this sense, the maximum angle of deviation is a general
palaeomagnetic precision index and may serve in place of stability indices used by earlier
workers (Tarling & Symons 1967; Ade-Hall 1969; Briden 1972; Symons & Stupavsky
1974; see also the critique by Andel 1970). Unlike other indices, the MAD is purely
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geometric and bears little or no relationship to the demagnetization procedure used or to
the intensity of the demagnetizing process between measurements. MAD values change little
by the addition of new points beyond the stage at which the continuous shape of the de-
magnetization path is approximated by the data along it. The optimum number of
demagnetization steps for a given specimen depends upon its magnetic complexity; three
points (including the origin) are the minimum number necessary to check for collinearity,
while four are needed to check for coplanarity. For example, each component from a three-
component specimen conceivably could be specified by eight measurements plus the origin
(nine total points) if their coercivity or blocking temperature spectra did not overlap.

4.3 ANCHORING LINES AND PLANES TO THE ORIGIN

Within whichever error limits are used, if the origin happens to lie on a demagnetization line
or plane a slight analytical variation may be substituted for computing the principal
direction of best fit. Physically, inclusion of the origin for a line implies that only one
component remains in the rock; for a plane only two remain. All others, if there were any,
have been removed by demagnetization. The difference in technique arises because the origin
is an exact theoretical point on all demagnetization paths. (Completely demagnetized
specimens should have no remanence.) In this case, use of the origin instead of the centroid
as the point U in equation (1) mathematically forces the line or plane of best fit into agree-
ment with the physical interpretation. The centroid is used for the general case because
it is the best available estimate of a point which lies on the line or plane of best fit; in the
particular case at hand the origin is theoretically better. An anchored demagnetization line is
the least-squares generalization of a stable end-point direction while an anchored plane is
the similar generalization of a remagnetization circle.

5 Generalizations of analytical techniques involving demagnetization planes
5.1 COMPARISON OF PLANAR METHODS

Before techniques which have in the past been used for analysis of coplanar data are
compared, it seems worthwhile to illustrate interrelationships between the various methods.
The solid curve on the top half of Fig. 2 is a schematic drawing of a planar demagnetization
path. Arrows which connect the origin of the unit circle to the path are the remanence
vectors measured directly after each demagnetization step. A free demagnetization plane in
this case would pass through the centroid (U = @) and be fit to all known points (NRM, A,
B,..., F, Origin). The direction of the pole is found by principal component analysis on the
original data. An anchored demagnetization plane would use the origin instead of the
centroid as point U in equation (1), and be fit to points NRM through F along the
demagnetization path. For a remagnetization circle (Creer 1957, 1962; Khramov 1958;
Halls 1976, 1978), only the direction of each remanence vector is considered as would be
viewed on a stereonet. On Fig. 2, small open squares are drawn around points where the
remanence vectors intersect the unit sphere; a plane constrained to pass through the origin
is fit to these normalized directions. Finally, the last technique which has been proposed
for determining the orientation of these coplanar points is to consider the path of successive
difference vectors (Hoffman & Day 1978). On Fig. 2, these coplanar vectors are shown as
dashed arrows which sequentially connect adjacent points along the demagnetization path.
After regrouping so that they start at the origin as shown on the bottom circle, a new plane
passing through the origin can again be fit to the normalized directions shown as the circled
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Figure 2. Five methods for estimating the direction of a pole to a set of coplanar points, NRM to origin.
Upper diagram: free demagnetization planes pass through the centroid (e), while anchored planes are
fixed to the origin. Remagnetization circles are fit to unit directions on the sphere and again include the
origin. Lower diagram: difference vectors form another group of points to which a plane constrained
to include the origin may be fit. Finally, a plane may be fit to the difference vector paths.

points on the unit sphere. This new plane should parallel the old. Note that the normaliza-
tion step is not necessary; an anchored plane may be fit directly to the difference vectors.

The philosophy underlying the truncation of vectors to unit length is a further difference
which should be discussed in the comparison of these techniques. For vector data from a
single palacomagnetic specimen, this step at first seems to be unnecessary. Intensity is as
much a part of vectors as is their direction; its omission requires at least some justification.
One situation in which truncation might be advantageous is where a component of particular
interest is much smaller than the other. Remagnetization circles in this case may discriminate
against the strong component, and enhance the relative effect of the smaller one (example
7.1). On difference vector paths, however, vectors of small magnitude have far more scatter
in direction due to subtraction errors than do the larger vectors; in this case truncation to
unit length clearly worsens the fit. If run without the truncation, a fit of the vector
difference plane would weight the vectors according to their intensity and reduce this
scattering error. These two types are respectively referred to as ‘difference vectors’ and
‘difference-vector paths’, and will be examined further in the first example.

Of these various techniques, only the free demagnetization plane and the vector
difference methods can determine the orientation of a plane which does not include the
origin; the vector subtraction process in this latter method, however, by itself will increase
the scatter in the data and thereby reduce the accuracy of fit. Poles to demagnetization
planes can be used in place of those from both remagnetization circles and vector difference
paths in the two techniques discussed next.

23
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5.2 SEPARATION OF MULTICOMPONENT NRM: HOFFMAN-DAY DIRECTIONS

Hoffman & Day (1978) recognized that it is sometimes possible to isolate uniquely the
direction of a magnetic component which contributes to a demagnetization path even
though it may never by itself form a straight line segment. Their original technique used two
difference-vector paths from a single specimen which converged (as viewed on a stereonet)
at a common direction. Fig. 3 shows how these Hoffman—Day directions may be found
using demagnetization planes. The overlap of three components A, B and C is least in row
(A), and greatest in row (D), as shown by the stability spectra in the first column of figures.
The second column shows the three-dimensional shape of the corresponding demagnetiza-
tion path in three-space, and the third plots the difference vector paths one would observe
on a stereonet (used by Hoffman & Day). Numerals along each diagram indicate the number
of different components simultaneously being removed at that point. Adjacent component
pairs which form planes [A, B] and [B, C] in rows (B) to (D) result in two great-circle
difference-vector paths which intersect at the direction of component B; thus the direction
of B may be found even when it is not uniquely exposed as in rows (C) and (D).

Neighbouring demagnetization planes can be used in place of the difference-vector paths,
however, because the intersection line of planes [A, B] and [B, C] on Fig. 3 is parallel to
component B. (Two planes intersect along a common line; the common line in this case is
B.) This is clear for Fig. 3 (A) where the planes [A, B] and [B, C] are defined by pairs of the
three straight line segments. Since corresponding planes in each column of Fig. 3 are parallel
(e.g. [A, B] from Fig. 3(A) is parallel to [A, B] from Fig. 3(B), etc.) the direction of B may
be recovered even for the example of Fig. 3(D) where there are no linear segments. If
Pia, B) and P, () are the respective poles to these demagnetization planes, the direction of
B is given by the vector cross product P4, ] X Pyg, c]. In general, if a single palaeomagnetic
specimen has K components which overlap as shown in Fig. 3, the direction of X-2 of them
may be found with this method. Note that use of demagnetization planes avoids the vector
subtraction and intensity truncation steps that increase noise on vector difference paths
(see example 7.1).

5.3 INTERSECTING DEMAGNETIZATION PLANES

Situations occasionally arise in palaeomagnetic studies where most specimens share a
common magnetic component, but have between them a number of variable, randomly
directed overprints. Progressive demagnetization of these specimens then may yield
remagnetization circles on a stereonet which tend to converge or diverge from the common
direction. Halls (1976, 1977, 1978, see also McFadden 1977) recently discussed least-squares
techniques for making estimates of this common direction. Halls first found poles to the
remagnetization circles as outlined above, and then repeated the procedure using the poles
from all of the specimens. The pole to the final plane was considered to be the best estimate
for the direction of the magnetic component common to all samples. Of course, both free
and anchored demagnetization planes may be used in place of the remagnetization circles
for this type of analysis, thereby increasing the amount of available data.

The final distribution of poles in Halls’ analysis cluster about a great circle on the unit
sphere. Individually, each pole indicates one direction where the remanence does not lie, but
taken as a group they reveal by elimination the common direction. Although not discussed
by Halls, these data constitute an equatorial or girdle distribution of the type studied and
applied to geological problems by Bingham (1964, 1974) and Watson (1960, 1965, 1966).
As noted by Onstott (1978; and in press), Bingham’s general distribution is applicable
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Figure 3. Hoffman—Day directions. In each figure, the letters A, B and C each refer to a separate magnetic
component. Small numerals give the number of different magnetic directions being removed simul-
taneously due to overlap of the coercivity or blocking temperature spectra. Two demagnetization planes
are shown in the central figure of each row; the [B, C] plane is enveloped with a dashed line, and dotted
line surrounds the points on the [A, B] plane. Dark lines in this figure show linear regions. The stereonet
shows the direction of vectors removed sequentially by demagnetization (the difference vector paths),
open symbols are on the upper hemisphere. (A) — No overlap in components, all lines and planes may be
found. (B) — Slight overlap between neighbours, lines and planes are still present. (C) -- Component B
completely overlaps A and C, with a slight A—C overlap. No linear part of B remains, but the direction
may be found as discussed in the text. (D) — B overlaps completely with A and C, no linear segments
remain but the B direction may still be recovered. Figure adapted from Hoffman & Day (1978).
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to both bimodal and girdle palaeomagnetic data and may be used to calculate directional
concentration parameters and 95 per cent confidence angles about each eigenvector,
including the remanence direction.

Although it is not the purpose of this paper to weigh the relative merits between Fisher’s
(1953) and Bingham’s (1964, 1974) distributions, Bingham statistics will be used here
primarily for three reasons: first, it is antipodally symmetric. If L is an observed unit
direction of a line or a pole to a plane, (—L) contributes identically to Bingham’s analysis.
This is necessary because the pole to a demagnetization plane could be chosen in either
direction. Secondly, Bingham’s distribution equally handles bimodal, girdle and asymmetric
girdle data, and is not constrained to circular symmetry. Finally, Bingham statistics are based
on a matrix similar to that used in principal component analysis (equation 1). Onstott
(1978, and in press) gives a definitive evaluation of this topic in relation to palacomagnetic
studies.

6 Estimation of remanence directions using both lines and planes

As noted earlier, a demagnetization line is an estimate of the direction of a discrete magnetic
component, while a pole to a demagnetization plane is an estimate of where the two
magnetic components defining it do not lie. Palaeomagnetic studies may identify some
specimens with discrete lines while others have secondary overprints and yield only planes.
For computing an average remanence direction, one first would like to use data from
specimens which had good demagnetization lines, and then further constrain the result by
including demagnetization planes from all samples which did not yield good lines. In this
manner the best data from each specimen would contribute to the average magnetic
direction reported. The proper technique should treat demagnetization lines and Hoffman—
Day directions equally and allow for the calculation of error parameters about the final
direction. Two methods of attacking this problem are outlined below, although both are as
yet incomplete.

6.1 METHOD 1

Viewed as points, data from demagnetization lines and Hoffman—Day directions relating to
a common component will group in one or two clusters (normal and reversed polarity) at
opposite ends of the unit sphere. On this same sphere, poles to demagnetization planes will
distribute themselves about an equator roughly 90° from these bipolar clusters. To find a
best estimate of the remanence direction, we want to pass a line through the centre of the
sphere so that it comes out at either end as close as possible to the bipolar clusters, while
being as distant as possible from the poles along the equator. In essence, poles to de-
magnetization planes are ‘repelling’ the line while the bipolar points ‘attract’ it. The
mathematical problem becomes that of jointly minimizing the sum of squared deviations
from the line to the bipolar data while maximizing the squared deviations from the
equatorial points. Maximizing the deviations for the poles, however, is equivalent to
minimizing their deviations from a plane which passes through the origin perpendicular to
the line (Schomaker et al. 1958). Therefore, let Dy, i =1, I be the distance from the ith
demagnetization line or Hoffman—Day direction on the unit sphere to the line through the
centre, and let Dy, j =1, J be the corresponding distance from one of the poles from de-
magnetization planes to the perpendicular plane. The best remanence direction is then that
which minimizes the sum:

§=ZXD} +ZD} “
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Using the method of Lagrange multipliers, one eventually finds the matrix relation:
(H — H— \)M =0 Q)

where H; and Hj are the respective matrices of the sums of squares and products for the
plane and line data (like equation (1) with U= [0, 0, 0]), M is a unit vector, and A is the
Lagrange multiplier. The minimum eigenvector from the combined matrix, H' =H; - H;,
is now the best least-squares estimate of the joint remanence direction. This procedure
may be equally used to find the best direction for a sample with many specimens or to
combine data from many samples.

Although this procedure will isolate the best remanence direction with both lines and
planes, the corresponding problem of calculating the directional (Bingham-type) concentra-
tion parameters and error-ovals has not yet fully been solved. The intermediate eigenvector
of H' will parallel the largest (least-precise) axis of the confidence oval, and it is known that
the eigenvalues of H' sum to J — I. Further work on this problem is continuing.

6.2 METHOD 2

If through some simple transformation the equatorial and bipolar groups of points on the
unit sphere could be mapped into a common spherical distribution, the data would be
homogeneous and manageable. Again, this transformation should treat demagnetization lines
and Hoffman—Day directions equally and allow for the calculation of error parameters. One
such transformation is to replace each direction in the bipolar cluster with two others which
are mutually orthogonal to it. These two new points then lie on the equatorial distribution
along with poles from the demagnetization planes, and the final distribution may be handled
like those-for the intersecting demagnetization planes discussed above. Fortunately, it has
been shown that amy two orthogonal directions considered as a pair in this manner
contribute equally to each term in the matrix of sums and squares and products (equation
(1) with U= [0, 0, 0]). Thus, an arbitrary pair of mutuaily orthogonal points perpendicular
to a line or Hoffman—Day direction may be used in the analysis without loss of generality,
and Bingham statistics may be calculated from the final matrix. An unresolved question,
however, is the manner in which the two new equatorial points should be weighted in the
analysis compared to poles from demagnetization planes. The one-specimen, one-point rule
commonly used in Fisherian statistics suggests that the two new directions each be given half
weight since they arise from only one specimen. Eigenvalues from the joint matrix will then
sum to the total number of samples, N. Therefore, in lieu of a more rigorous derivation, half
weights will be used in the following examples.

7 Examples

7.1 NON-INTERSECTING DEMAGNETIZATION PLANES: AN EXAMPLE FROM
SIBERIA

For this first example, 126 separately oriented samples were collected from a locality called
Zerinsky Mys south of Yakutsk on the Lena River in Siberia (USSR). Oriented cores 2.5 cm
in diameter were collected with a hand-held drill at regular intervals from 55 m of red to
grey, flatlying limestone. Strata were palaeontologically dated as lower Tommotian to
Atdabanian (both lower Cambrian). One specimen from each core was thermally de-
magnetized using standard techniques in nine steps up to 650°C (NRM, 150, 250, 350, 450,
500, 530, 560, 610, 650). Of the palegrey samples, 46 became unstable and gave
irreproducible results after treatment above 560°; for these, the unstable steps were omitted
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from the subsequent analysis as they clearly did not represent measurements of the natural
magnetism. Presumably, their remanence was carried by magnetite and/or titanomagnetite
with Curie temperatures near 580°C. The magnetization of these rocks will be described in
more detail elsewhere (Kirschvink & Rozanov, in preparation).

The natural remanent magnetization (NRM) for most of the Siberian rocks was directed
northerly with steep downward inclination, suggesting that most of it was recently acquired
in the present magnetic field. Upon progressive demagnetization, 96 samples produced
visually acceptable arcs on a stereonet and indicated the presence of a two-polarity
component of smaller magnitude and higher thermal stability, Only three specimens reached
stable endpoints. The two-component system present in 96 specimens therefore offers a
good test for comparing various techniques which have been proposed for estimating the
orientation of coplanar points along a demagnetization path.,

As noted earlier, either of two antiparalle! directions may be used to specify the direction
for a pole to a demagnetization plane without affecting Bingham statistics. The direction in
which the remanence moves upon demagnetization may have significance for polarity
interpretation, however, so it seems advantageous to consistently select one of the direc-
tions. In the example at hand, most arcs begin at steep, northerly directions and move
upon demagnetization towards shallow NE or SW declinations, depending upon the polarity
of the primary (more stable) component. For this and in the following examples, a right-
handed convention has been used for selecting the pole direction (e.g. the pole most paralle]
to the vector cross-product, (low demag) x (high demag), represents the plane). Thus poles
with SE declinations indicate arcs moving towards the NE, and NW declinations indicate
arcs moving toward the SW.

In the present example, tectonic or other geologic processes have not acted to scatter
one magnetic component relative to the other. This case is therefore distinctly different
from those described by Halls (1976, 1978) where both discrete directions could be found
-by using converging circular paths. These are sub-parallel, non-converging remagnetization
paths. In the converging case, the scatter of one component relative to the other will cause
poles to demagnetization planes to distribute themselves about an equator on the unit
sphere. Poles will still lie on an equator if neither component is scattered, however, but they
will tend to fall in two clusters at opposite ends of the unit sphere. This is a girdle
distribution with high circular asymmetry (Bingham 1974), and as such resembles the
bipolar cluster of line data. These clusters are perpendicular to both magnetic components;
the principal eigenvector from the spherical least-squares calculation gives the best estimate
of where neither magnetic component lies. Although this information would not tell the
direction of the primary component, it locates a plane in which it must lie. The orientation
of this plane may then be used to constrain the palacogeographic position of the continent
involved.

Each of the five different methods discussed earlier were used to estimate the directions
of poles to the 96 Siberian demagnetization planes. Stereographic equal-area projections on
Fig. 4 give these directions in order of increasing complexity, going from free demagnetiza-
tion planes (Fig. 4A), anchored demagnetization planes (Fig. 4B), remagnetization circles
(Fig. 4C, Halls 1976), difference vectors (Fig. 4D), and to difference-vector paths (Fig. 4E,
Hoffman & Day 1978). Table 1 lists the principal eigenvector for each set of data, along with
the two Bingham concentration parameters and 95 per cent angles of confidence about it.
Visual inspection of Fig. 4(A—E) reveals that in each case the poles are distributed along a
great circle which dips to the SE, with two somewhat dense clusters in the NW and SE.
Values for K2 in Table 1 would be near 0 if the data were circularly distributed about the
equator, thus the observed K2 values indicate a moderate tendency for circular asymmetry.



711

Palaeomagnetic data analysis

“YInos I0 YHIou (€ MO[aq Suorn
-eurpouroaefed 0} Spuodsailod APIS aul Jo uorpiod paprys ay) 1] SUOIIONP dHAUIRUI AIBPUOISS pue Areurizd 913 Y10q yoIym Ul uounquisip a[pmS e 3nofe sarIEpuNnoq
10 Iad Gg 9yl SIAIS OS[E ({)) "9OUIPIFUOD U 18d ¢g JO S[eAO IIOYY yim Suofe ( ST > AVIA) 198 BIEP PaloLusSal Syl woly s10199A1a318 Tedpurid ayl [0 UONIAMP
oy} moys sarenbs uad(Q “(uonieuUrOUT SAnESaU) AroydsTISY 1oddn oY1 UO SUOTIOSIIP 2JEIIPUT S[OqUiAs Uad(Q "SAW ASULIdZ 1B PaloqIed sordiues UBLIOQIS 96 WOLL 10D

e1ep onondew EUSEQ g SI.f U0 POUIINO SPOYISW SALf AU} JO YOBO M pourelqo Bep uonezneugewsp Ieurdod 10y suonoanp sjod jo uosuedwo) v Sy

syleg 10)39A 90U I $10190A @oumiepid "Q

sejouny uvonezneubrwey D seurld 9014 W

oAl



712 J. L. Kirschvink

Table 1. Comparison of planar techniques for non-intersecting Siberian demagnetization planes.

ul ul

All planes: N Dec Inc K1 K2 OV.aZ.  Qysmin %osmax
Free planes 96 330.9 -163 -9.3 -2.4 103.8 4.1 9.7
Anchored planes 96 335.1 -169 -8.6 -2.7 103.4 43 8.7
Remagnetization circles 96 338.2 -17.7 -8.2 -3.6 103.5 4.2 7.0
Difference vectors 96 329.8 -152 -103 -1.8 101.9 4.0 12.6
Difference vector paths 96 336.1 -16.6 —-10.1 =21 99.7 4.0 10.6
Planes with MAD < 15°:

Free planes 37 328.8 -169 -8.7 -3.6 95.1 6.6 11.1
Anchored planes 37 329.6 -173 -8.6 -3.6 944 6.6 11.0
Remagnetization circles 37 329.6 -16.8 -8.2 -4.1 924 6.7 10.1
Difference vectors 37 327.5 -16.6 -8.8 -3.8 96.1 6.5 10.8
Difference vector paths 37 327.3 -143 -99 -3.1 98.3 6.1 12.6

N — Number of specimens contributing demagnetization planes to the analysis.

u, — (Dec, Inc) Direction of the principal eigenvector. For this analysis, u, estimates the direction in
which neither magnetic component lies.

ov. az. — The spherical angle measured at u, beétween vertical and u,. Directions for the two eigenvectors
unspecified in this table («, and #,) may be found using the direction of u, and the ov. az.

K1, K2 - Bingham’s concentration parameters (from density d~'[K1, K2]exp [K1 (ug-L)*+
K2 (u,-L)*], where L is the random population variable, and d ! is a normalizing constant).

@55 min> %ss max — Bingham’s (1974) approximate angles of 95 per cent confidence. The direction of
@ys max always parallels the intermediate eigenvector (u,).

Similarly, directions for the principal eigenvector («,) found with each of the five methods
do not vary significantly.

Closer examination, however, reveals that the direction of a pole to coplanar data from a
single specimen may vary greatly depending upon which technique is used. For example, the
bipolar cluster for the remagnetization circles on Fig. 4(C) is more distinct than those on
any of the other diagrams; apparently removing the intensity data in this case slightly
improves resolution of the primary component. A more direct test is to compare the angular
difference between estimates of the poles for each specimen with the general coplanarity
of the data. The histogram on Fig. 5(A) shows the distribution of specimens versus their
coplanarity measured by the maximum angle of deviation (MAD, equation 3 above). The
Siberian samples clearly have a wide spectrum of coplanarity; 37 specimens have deviation
angles of less than 15°, while 21 have angles greater than 25°. Intuitively, one expects highly
coplanar data to yield essentially the same pole direction regardless of the technique used,
while marginally coplanar data would yield wildly different directions. Scatter diagrams
(Fig. SB—E) test this prediction by comparing the maximum angle of deviation (MAD)
against the angular distance between poles. Each point on these diagrams represent one
specimen; points to the left represent highly coplanar data while points to the right do not.
If every technique gave identical results, all points on these scatter diagrams would lie close
to the horizontal axis. Fig. 5(B and D) show that there is good directional agreement
between free planes, anchored planes, and difference vectors for MAD values below 15°.
Above this, however, angular differences of nearly 90° are found. The comparison between
free planes, remagnetization circles, and difference-vector paths (Fig. 5C and E) is far worse
— angular differences of 45° or more occur from specimens with small MAD values. Below
values of 15°, remagnetization circles fare slightly better than difference-vector paths; eight
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of 37 circles change their direction by more than 10° whereas 14 of 37 difference-vector
paths change. Truncation of the intensity is probably responsible for these differences when
compared to free demagnetization planes. A similar comparison between remagnetization
circles and difference-vector paths (Fig. 5F) shows poor directional agreement.

In summary, difference vectors, free and anchored demagnetization planes yield similar
poles to coplanar demagnetization data for MAD values below 15°; remagnetization circles
enhance the effect of weak components while difference-vector paths increase the degree of
scatter. Because pole directions were not highly reproducible for the 59 samples with MAD
values larger than 15°, they were removed and the calculations for Table 1 repeated as

up

o SVT-8
‘_4 SVT-2 up
NRM &— o°
300 o T 300
-+ 5
- tes 4.
" -+.3
NAM
575/ 1 2
“"\" .
10 2.0 11 10 8 L] 7 [ 3 5 4 3 2 1
270° + + 80° 270" +——+—+—4——+—++——p°¢ 90°
75 *\‘15
675 + 2
4
300 4«
B
»
104
7
-+ .8
(L1 40
180° 40
down NRM 4 D
41
300 NRm S ¢ 42
180°
down
SVT-19 v
. up
nam «° > SVT-20 , o
o NRM .*.
4 150 _.——% 34
550
-+ & 24
-+ 4
270 I i : } : 'l : 4

80°

4

180°
down

Figure 6. Vector demagnetization diagrams. Numbers along the axes refer to the magnetic intensity in
units of 10" *emu g™ (or A m?kg™!). Paths labelled D (declination) show the horizontal projection into
the bedding plane of the demagnetization path, and those labelled I (inclination) plot the vertical
component against the horizontal. Although it is not strictly an orthogonal projection, an inclination
curve plotted in this fashion directly shows the inclination and intensity of the remanence vector at each
demagnetization point. Occasionally, a line will plot on this curve as part of a hyperbola. The sampling
locality, Tiout, is at 30.35° N, 8.67° W.
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shown. In each case the value of K2 became more negative indicating a greater tendency
for bipolar clustering. Again, the direction for u, is not sensitive to the particular technique
used. For the remaining 37 samples, Bingham’s (1974) asymptotic ovals of 95 per cent
confidence around the principal eigenvector are shown on each diagram on Fig. 4. With 95
per cent confidence, the primary remanence direction should lie somewhere within the
equatorial bands drawn on Fig. 4(C). Given the additional geologic information that there
are diverse Archeocyathid bioherms with abundant carbonate sediments, a low-latitude
of deposition (< 30°) may be inferred. The shaded area on Fig. 4(C) therefore gives the most
probable locus of the palaeomagnetic axial dipole direction for Lower Cambrian time on
the Siberian platform. This is as far as the analysis of the primary magnetic component may
go without invoking additional assumptions concerning the nature of the blocking tempera-
ture distribution for each component.

7.2 JOINT LINE AND PLANE ANALYSIS: THE SERIE LIE DE VIN, MOROCCO

In the previous example, remagnetization parallel to the present local magnetic field
obscured the primary magnetic component of most specimens. A better example to illustrate
the joint analysis of demagnetization lines and planes comes from the basal units of the Late
Precambrian Série lie de Vin, exposed near the village of Tiout in the Anti—Atlas mountains,
Morocco. A total of 28, 2.5 cm diameter oriented core samples were collected at regular
intervals through 70 m of strata. One specimen from each core was subsequently thermally
demagnetized in a manner similar to that described for the Siberian samples above. Typical
demagnetization paths are shown on the vector diagrams in Fig. 6. Above 300—350°C,
most specimens decay linearly towards the origin and indicate the presence of a single
characteristic magnetic component. A principal component search of the data set along the
lines of Fig. 1 located 21 specimens, each of which had four or more collinear points and
MAD values of less than 10°. Of these, 19 included the origin. Although the remaining
seven specimens did not have demagnetization lines, all had demagnetization planes with five
or more points and MAD values below 10°. Corresponding directions for lines and planes of
best least-squares fit, anchored to the origin where appropriate, are shown in Fig. 7(A).

90

Method 2 Method 1

e

90

Transformed
Lines . 5%,

180 180

Figure 7. Results from the Série lie de Vin, Morocco. (A) — Circles are the directions for 21 demagnetiza-
tion lines with MAD values below 10°. Squares show similar directions to the poles for the remaining
seven demagnetization planes. Ovals plotted on A, B and C are the average directions and Bingham 95 per
cent confidence ovals as listed on Table 2.
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Table 2. Combined line and plane directions for the Série lie de Vin, Anti—Atlas Mountains, Morocco.
Results enclosed with parentheses have not been corrected for local tilt of the strata.

N Dec Inc K1 K2 OV.3Z.  Qgemin %esmax
Lines 1 168.1 -38.7 -26.25 -10.03 1183 4.4 7.3)

21 161.8 -20.2 -17.36 -—-1444 1054 54 6.0
Lines, transformed 21 175.9 -394 -11.10 -041 1277 9.4 10.7)

21 169.4 -21.2 —-8.82 -0.32 113.7 109 12.1
Planes “ 175.8 -36.1 -7041 -0.82 4238 5.8 1.2)

7 167.6 —145 2846 094 352 9.2 11.9

Method 1 combined 28 169.5 -38.2 48.8

28 162.9 -19.3 47.3
Method 2 combined 28 176.1 -385 -13.16 -0.05 116.1 7.6 1.9)

28 169.3 -19.7 -10.05 -0.10 70.0 8.6 9.2

N — Number of lines or planes in each analysis.

Dec, Inc — Direction of average remanence.

K1, K2 — Bingham concentration parameters (see Table 1).

ov. az. — The spherical angle measured at the remanence direction between vertical and the direction of

%95 max-
Qs mins ®esmax — Bingham’s (1974) approximate angles of 95 per cent confidence. The direction of

@y max 2lways parallels the intermediate eigenvector.

As expected, poles to the seven demagnetization planes lie on a great circle roughly 90°
from the antipodal cluster of linear directions.

Table 1 and Fig. 7 separately list and plot the remanence directions and associated
Bingttam statistics for the collinear and coplanar data, as well as for the equatorially trans-
formed lines (Section 6.2 above) and joint estimates (methods 1 and 2, Sections 6.1 and
6.2 above). After tilt correction, the remanence direction as estimated separately from lines
and planes differs by 8°, it is therefore worthwhile to test the hypothesis that the directions
are not statistically different before the data are used in a joint calculation. At the present
time, the best available method for doing this is to transform the antipodal line directions
into a girdle distribution according to Section 6.2 above, and then use Watson’s (1965)
directional test. Written in terms of the eigenvalues, large vatues of the Fratio statistic,

L+P—-4 7\min, combined — )\min, planes — >\min, T. lines

2

©®

Fo,L+P_4)=
)‘min, planes + )‘min, T. lines

indicate that the directions are distinct. For this example with 21 lines and seven planes,
F, 24=0.278, implying that the directions cannot be distinguished at the 99 per cent
confidence level and they may be combined. Note, however, that the equatorial transforma-
tion of the linear data alone produced a 7° shift in remanence direction which may have
contributed to the apparent significance of this test. The combined remanence direction
found with method 2 also reflects this bias and is closer to the transformed line directions
than the original. Method 1 yields the preferred remanence direction which lies between that
computed for isolated lines and planes, but error parameters cannot, as yet, be calculated
for it.

Conclusions

1. Principal component analysis may be used to find and estimate the directions of lines and
planes of best least-squares fit along a demagnetization path of a palaeomagnetic specimen.
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These lines and planes are based on all of the available data, not just on the two end points
of a line segment (like vector subtraction) or on directions devoid of intensity (like re-
magnetization circles and difference vector paths).

2. Because eigenvalues from the principal component analysis are the variance (0%)
around the mean along each principal axis, they may be used to indicate the relative
collinearity or coplanarity of a set of points. The Maximum Angular Deviation (MAD)
calculated from the variance provides a palacomagnetic precision index based only on the
geometry of the data set.

3. Demagnetization planes may be used in place of difference-vector paths for locating
Hoffman—Day directions, thereby increasing the accuracy by avoiding the vector subtraction
and intensity truncation steps.

4. Demagnetization planes are useful in palacomagnetic studies because their poles give
an estimate of a direction in which two magnetic components do not lie. This additional
information may be used along with directions from demagnetization lines to estimate an
average direction for a component of magnetic remanence.
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