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Any topological framework requires the development of a theory of errors of characteristic 
and appropriate mathematical form. The paper develops a form of theory which appears to 
be appropriate to measurements of position on a sphere. 

The primary problems of estimation as applied to the true direction, and the precision of 
observations, are discussed in the subcases which arise. The simultaneous distribution of the 
amplitude and direction of the vector sum of a number of random unit vectors of given 
precision, is demonstrated. From this is derived the test of significance appropriate to 
a worker whose knowledge of precision lies entirely in the internal evidence of the sample. 
This is the analogue of 'Student's' test in the Gaussian theory of errors. 

The general formulae obtained are illustrated using measurements of the direction of 
remanent magnetization in the directly and inversely magnetized lava flows obtained in 
Iceland by Mr J. Hospers. 

1. INTRODUCTION 

The theory of errors was developed by Gauss primarily in relation to the needs of 
astronomers and surveyors, making rather accurate angular measurements. Because 
of this accuracy it was appropriate to develop the theory in relation to an infinite 
linear continuum, or, as multivariate errors came into view, to a Euclidean space of 
the required dimensionality. The actual topological framework of such measure- 
ments, the surface of a sphere, is ignored in the theory as developed, with a certain 

gain in simplicity. 
It is, therefore, of some little mathematical interest to consider how the theory 

would have had to be developed if the observations under discussion had in fact 
involved errors so large that the actual topology had had to be taken into account. 
The question is not, however, entirely academic, for there are in nature vectors with 
such large natural dispersions. The remanent magnetism found in igneous and 

sedimentary rocks, for example, either by reason of heterogeneity of conditions, or 

composition, at the time of formation, or of changes induced in situ since that time, 
or of disturbances due to the treatment of the specimens, do show such considerable 

dispersion that an adequate theory for the combination of such observations is now 
needed. Finally, it is the opinion of the author that certain misapprehensions as to 
the nature of inductive inference have arisen in examples drawn from the theory 
of the normal distribution, by reason of the peculiar characteristics of that dis- 
tribution, and that the examination of these questions, in an analogous though 
analytically different situation, will exhibit them in a clearer light. 

1*1. The fundamental distribution 
We may take as our fundamental distribution of elementary errors over the 

surface of the unit sphere, which is the field of possible observations, that in which 
the frequency density is proportional to 

eK cos 0 

where 0 is the angular displacement from the true position, at which 0 = 0 and the 
density is a maximum, provided K is positive. K is evidently a measure of precision. 
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When K is large the distribution is effectively confined to a small portion of the 

sphere in the neighbourhood of the maximum, and the distribution tends to conform 
to a two-dimensional isotropic Gaussian distribution in which K is the invariance, 
or the reciprocal of the variance, in all directions. When K is zero, the distribution is 
uniform all over the spherical surface. More usually, however, there is a maximum 

density in the true direction, and a minimum in the opposite direction, in the 

neighbourhood of the antipole. 
Since the area within limits dO is proportional to sin 0dO or to - d (cos 0), and the 

integral d 1 
eiteg o d(cos 0) = -(e - e-), 

the absolute element of frequency is found to be 

df = 2 Kh eK cOS 0 sin 0 dO. 
2 sinh K 

Given a sample of points dispersed from a common centre, the estimate of the 

position of this centre having the greatest likelihood is found by making S(cos 0) 
a maximum, where S stands for summation over the sample. 

If A, ,I, v are the direction cosines, relative to any axes, of the estimated direction 
from the centre of the sphere, and 1, m, n those of any observed point, it is necessary 
to vary A, /t, v so as to maximize 

S(IA + myu + nv) = AS(l) +/,u(m) + vS(n), 
A v 

as is readily done by taking () (m) () 

This affords a unique solution provided S(1), S(m) and S(n) are not all zero. In any 
case the maximum, R, is given simply by 

R2 = S2(1) + S2(m) + S2(n). 
The estimated direction is thus that of the vector sum of unit vectors having the 
directions of the several observations, the vector sum having length R. 

2. DISTRIBUTIONS PROVIDING ESTIMATES OF PRECISION 

Before considering the estimates of precision in the more realistic case in which 
neither the pole nor the precision is known a priori, it will be useful to consider the 
more abstract cases in which (1) the pole, or (2) the axis of the pole is given. 

2 1. Known pole 

K 
If df =_ eK cos sin 0 dO, f 2 sinh K 

and if x is the sum of N independent values of cos 6 the distribution of x will be 

given by 

(2 ihK)N eKdx (N - x) -l N(N-2-x)N + 
2 ~si n+ ( ) (N-)- 12x))! 

+ i (N- 2r-x)N-1 
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where r is the largest integer less than (N - x). The derivation of the factor inde- 

pendent of K is discussed in ? 2-31. 
A sufficient estimate of K is given by 

1I x 
cothk-- = the equation of maximum likelihood. 

The logarithmic likelihood of K is expressible as 

L = N{ln K-ln sinhK+K(cothk--)} 

which involves K and k only, so demonstrating sufficiency, and is maximal when 
K = k; the amount of information is 

IK = N( -cosech2K), 

having a maximum of iN when K = 0. 

2*2. Known axis 

For a given pole, x (and k) may be either positive or negative, but negative values 

may be interpreted as positive values referred to the antipole. If, therefore, not the 

pole but only the axis is given, x may be taken to be always positive. 
The distribution of x will then be 

(N 1) 
N 

cosh 
l 

)N N(N2 

+(-)r_N! - (N- 2r - x) 1 
+(-)(N-r)! r! 

The logarithmic likelihood of K is now 

L = - N (n sinh K- In K) + In cosh KX, 

the score, which equated to zero gives the equation of estimation, is 

aL/aK = - N (coth K - /K) + x tanh KX, 

and the amount of information is 

- 2L/aK2 = N( /K2 - cosech2 K) - x2 sech2 KX, 

which does, indeed, depend only on K and k, but cannot be so expressed explicitly. 

2*31. The topological factor 

The general distribution of R derived from a sample of N observations, and the 
simultaneous distribution of R and c, where c is the cosine of the angle of error, 
contain a function of R depending on the number of observations, which is of purely 
topological origin, and being somewhat complicated, may be elucidated by a 

preliminary enquiry. 
The distribution of the sum of N deviates each distributed from - 1 to + 1 in the 

'rectangular' distribution df =- dx (- 1 < x < 1), 
was early discussed by Irwin (1927) and by Hall (I927). Its nature may be simply 
apprehended by the method developed by Fisher (1929) using the circumstance 

20-2 
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that sections of a hypercube of side 2, and in N dimensions, if taken normally to 
a diagonal, will have 'areas' proportional to the elementary frequencies of this 
distribution. Evidently, discontinuities occur at N + 1 points, at intervals of two 
units each from -N to +N. Between the discontinuities the distribution is of 
the form f(x) dx, 

where f is a polynomial of degree (N-1). At the discontinuities all differential 
coefficients down to the (N-2) th are continuous, so that the total frequency less 
than x is a polynomial of degree N with a discontinuity of the form 

oc(x- ki)N 

as the ith point of discontinuity is past. 
We may now impose the conditions that the total frequency less than x is constant 

and equal to unity when x>N, while it is zero when x< -N; the coefficients 

necessary to satisfy these conditions are readily shown to be proportional to those 
of the expansion of ( 1-)N, 

1 (--)/N! so that i 
- 

2N (N-)! ( = 0, 1 ... N) 

since, as the N + 1 values ki differ by equal steps of 2, we may use the fact that 

5A(x- k,)N = 2NN 
for all values of xo 

The probability that the sum of the N components is less than x is therefore 

NN {(x+N)N-N(x+N-2)N+ ...+(-)N +N-! (x+N-2s) }, 2NNiV s! (N -s)! 

where s is the largest integer in (x + N). Similarly, the proportion greater than x is 

2N Nt((N-X)N-N(N-z-2)N +...* + (-) s! (N- --s) --2 , 

where s is the largest integer in i(N - x). 
These expressions are everywhere differentiable with respect to x, and the 

frequency element is therefore 

F(x}) -dx _ dx { (N - 
x)-1 - N(N - x- 2)N-1 + 2F(x)dx= N(N 1 11 N ) 

+ ! (N-)! (N-x- 2s)-N- . 

This may be recognized as the distribution of the projection on any arbitrarily 
chosen direction of the sum of N random unit vectors. 

The distribution of the length R of the resultant of N random unit vectors is, 
rather curiously, easily derivable from that of its projection; for if we write the 
distribution of R from 0 to N in the form 

f(R) dR, 
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a randomly chosen direction will make with the vector sum an angle, of which the 
cosine has the distribution I dc between the limits 1 and- 1. In the expression 

f(R) dR dc, we may substitute dc = dx, 

and integrate with respect to R, if x is positive, from x to N. Hence 

!'N dR f(R) d 
f (R) 

- 
=F(X), d F(R), 

Jx 2 (x), 2R dR 

whence 2R1dR __ whence f(R) dR - 2 2)! (N R)-2 - ( -R - 2)-1 + 

+ ! ( N- R- 2s)N-2 
s!(N - s)! 

where s is the greatest integer in -(N - R). 
If we write this expression as 

1^{B)2BdB, 2 qN(R) 2RdR, 

it follows that the simultaneous distribution of R and c, where c is the cosine of the 

angle between the resultant and an arbitrary direction is 

2N 0N(R) RdRdc. 

Moreover, if a set of N1 unit vectors give R1 and cl with this frequency distribution, 
and N2 other unit vectors give R2, c2 with a similar distribution, then the simultaneous 
distribution of R, c corresponding with the resultant must be 

2NiN2 )N1+N2(R) RdRdc. 

2*32. The distribution of the sum of two observational unit vectors 

The general case of N observations requires somewhat heavy analysis, and the 

general procedure may be illustrated more clearly with the case of two observations. 
In accordance with the form adopted in the introductory section, the simultaneous 
distribution of two observations may be specified by the simultaneous distribution 
of the cosines of their angular errors 

(2 sinh ) eKl++C2 dcdca, 

together with the angle /r between the planes containing the angles of error, inde- 

pendently distributed so that 1 
df= 2-d3. 

If R is the amplitude of the vector sum and c the cosine of its angular error, we 
have to determine the simultaneous distribution of R and c, by means of the 
relations 

Rc = c- + C, 

?R2 = 1 + C S12 cos r, 

1 1- - 1= +C|. 
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If the two angles are held constant, the variations of i and R are connected by 
the equation dl = RdR//{(l -c2) (1-c)-(1R2- -c c)}, 

the quadratic in cl, c2 under the radical may now be rewritten as 

R2(1 1- R2) - 1R2( 1- )2 - ( - R2) (c .+ c)2, 

being of the form A - 1R2(cl - c2)2. 

Moreover, the element dc1dc2 may be rewritten 

dce dc2 = ld(c + c2) d(c-c), 

and the integral of ld(c - c2)/I{A- {R2(C - C2)2} 

between the limits at which the quadratic vanishes, is simply Ir/ irrespective of the 
value of A. This integral is to be taken twice, and divided by 27r to reduce dfr to 
a frequency element. 

A single operation of integration has thus expressed the frequency element in the 
form form (2 Kh \)2 d(cl+ C2) 

I(- VeK(C+BdBR dR 
2 sinhKc 

2 
R 

in which, substituting Rc for cl + c2, 

and Rdc for d(c1+ c2), 

we find the simultaneous distribution of R and c, 

df = 
2 sinh 

eKR RdRdc. 
2sinh ) 

2 

2*33. Mathematical induction of the general distribution 

As a third step we shall show that if the pairs of variables R,B cl and R2, c9 are 
distributed as 

(2 sinh K) eKR N(Rl) R1 dBR dc 2 sinh 

and (2 sih K eKR2c2 ON2(R2) R2 dR2 dc 

in planes making a random angle, ifr, then the resultant pair R, c will be distributed 
in a similar distribution, where 

N(R) = (N-2)! (N- R)N-2-N(N- R-2)N-2 +. 

+(_) N-! (N-R-28s v-2} + ()8! (N-s)! 
(N-B- 

and s is the largest integer less than (N-R). The analysis may follow closely the 

path of ? 2-32. The new variables are defined by 

Rc = R1c1+R2c2, 

R2 - R2 R2 = 2R1R2(clc -ss2 cos r); 1 2 2 (Cl C2 
- 
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the random element dfr is expressed as 

dfr - R dR/V{1R2R2(1 -c2) (- c2 2)- (2R21- 2- 
2R1R2c1c2)2}, 

in which the quadratic in cl, c2 may be rewritten as 

1-(R1 - R2)2 2( i+ ) P4 
_4t(R2 _ Rs)2 + R2(R2 + R2)2 

- 
2{21 R2( + R2) - - (2 - R2)2} (11C1 + R2C2)2 

1R {((2 + 1 R- R) Rc - (R2 - Ri + R2) R2 C}2. 

Correspondingly, the element dcddc2 is equivalent to 

dcde 21 1 d{(R2 + R i- R?2) Rlcl- (R2 R2 +) RC2}) d(Rc1 + R2c2). 

Hence, on integration over the admissible range, we find 

esinhK 2R R R2 _Svl(R) R, dR, vN2(R2) 1R2dR2R dcdR, (2 Kinh +e 

~ 

z 2RjR2R2 

where we have now included contributions from all values of cl, C2 and fr compatible 
with R?, R2 and with the desired variates R and c. 

Removing the factors which cancel out, the distribution found is 

2 si)N eKeRdcdR fJN(Rl) N2(R2) dRdR2, 

the integral being taken over all values of RI from 0 to N1 and of R2 from 0 to N. 
compatible with their having a resultant of length R. This integral is independent 
of K, and in the case K 0, it has already been shown that the corresponding 
distribution is (? )N?i v+N (R) RdRd. 

(|)Ni^rW -+V2jv,,2(R) RdRdc. 

HIence, in general, the simultaneous distribution of R and c from N observations is 
found to be 

(2 sinh Ke b(R)RdRdc, 

where OAN(R) stands for 

(1 - (N-R)N-N(N-R_2)N-2+.+ s ( ( - s NR-2} 

using as many terms as are required. 

3. THE TEST OF SIGNIFICANCE BASED ON A HOMOGENEOUS SAMPLE 

It has been shown in ? 2*33 that the simultaneous distribution of the length R and 
the error angle cos-1 c, of the resultant of N observational unit vectors is given by 

K N 

(2 sinh 
ee (R) RdRdc, 

where ON(R) is a function of R and N only. 
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It follows that the unconditional (or marginal) distribution of R, irrespective of 
the error angle, is ( 2 2 sinh (KR) N(R) d, 

\2sinhK KdR, 

by integrating with respect to c between the limits + 1; while that of c, conditional 
on given R is, by division, KB eKRc dc 

2 sinh (KR)' 

Since this distribution still involves the parameter K, of which the exact value is 

unknown, and since R, c is an exhaustive set of statistics, we may, on the supposition 
that the only available information as to the value ofK is that provided by the sample, 
proceed to eliminate the unknown parameter from the test of significance, by the 
method first introduced by 'Student' ( 908). The interest of doing so is not only to 

provide a test of significance of immediate utility, but to exhibit a form of argument 
which seems to have been a good deal misunderstood by later writers. 

In the general treatment when K is not so large that e-2K can be ignored, the 

analysis would be intricate. In the practical applications we have immediately in 
view, the values of K of interest are amply large enough for the use of the limiting 
form. In many cases also, the value of R observed is such that N - R does not exceed 

2, so that only the first term appears in the factor AN(R). In such cases the uncon- 
ditional distribution of R becomes 

df = (N- )N- KN-1 e-K(N-R) dR, 
(N - 2)! 

and the conditional distribution of c is 

df - KR e-K(-c) dc. 

The first step in eliminating K is to find the probability, given K, that the variate 
shall exceed any given value R, namely, 

P(R, K) = 1 - e-K(-R)(1 + K(N - R) +... + (N- 2)! KN-2( -)N-2. 

This value tends to unity as K->oo, and in the limiting form here used is zero 

when K is zero. In general, it has a finite value at this limit, and fiducially K has this 
finite probability of being actually zero. The fiducial distribution of K above this 
value is given by 

a 1e 
_ P(R, K) dK = 1N KN2(N - R)N- eK(NR) dK. aK Z(N - -2)! 

We multiply this frequency element by the probability, given K, that c falls in 
the range dc, obtaining 

R dc(N - R)-1 KN-1 e-K(N-Rc) dK, (N-2)! 
of which the integral over all possible values of K from 0 to oo is 

(N-i ) (N- RB)N-I ( N- 1) - Rdc, 

being the probability distribution of the cosine of the angular error, when the 
unknown precision K has been eliminated. 
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The probability of a cosine less than c is now seen to be simply 

p N-R)N- 
P - R=' 

or, expressing c in terms of the probability, 

1-c N--R () -1/( 1)- 

There is here no limitation on the size of N, which may be so small as 2, in the case 
of greatest uncertainty as to the precision. When, however, N is large we may 
compare the value (N N1 (1)-(N- 

AN-Rc V N-RJ 

with the conditional probability e-"R(1-), 

and note the equivalence of the former to that of accepting the estimate 

N-1 N - I 
N-R' 

the most likely value of K given R. The small-sample solution, however, is not 

equivalent to the adoption of any estimate for K, but takes account of the likelihood 
of all possible values. 

These operations are heavier when R comes to be less than N -2, and further 
terms have to be taken in. The expression for the probability, calculated fiducially, 
that the angular error exceeds that of which the cosine is c, may however, be 
reduced to 

P ____1 VN Tp\N-1 NT *vR(1-c) (N-l 
P = 

(N - ReC)N1 (N - 
- 

2 (N -N R - 2)N-1 + 

N(N-1) R(1-c) (N_R_ 4)N--+ - + (N2 R-Rc+4 

in which a new term is taken in as each discontinuity 

R = N-2,N-4,N-6,... 
is passed. 

4. NUMERICAL EXAMPLES 

The test of significance developed in ? 3 is, in its application, of extreme simplicity. 
My examples are drawn from the very fine body of data on the remanent magnetism 
of Icelandic lava flows, historic and prehistoric, put at my disposal by Mr J. Hospers 
of Pembroke College, Cambridge, and not yet published. 

(a) From the recent lava flow of 1947-48, nine specimens gave the values for 
declination (measured from N. at 0? through E. at 90?), and inclination or dip, shown 
in table 1, in which are also shown the three direction cosines of each specimen, 
which form the basis of further calculations. 
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TABLE 1. NINE SPECIMENS FROM A RECENT LAVA FLOW 

direction cosines 
specimen 
number decl. incl. down N. E. 

631 343-2 66-1 0-9143 0-3878 -0-1171 
632 62-0 68-7 0-9317 0-1705 0-3207 
633 36-9 70-1 0-9403 0-2722 0-2044 
634 27-0 82-1 0-9905 0-1225 0-0624 
635 359-0 79-5 0-9833 0-1822 - 00032 
636 5-7 73-0 0-9563 0-2909 0-0290 
642A 50-4 69-3 0-9354 0-2253 0-2724 
643A 357-6 58-8 0-8554 0-5176 - 0-0217 
644 44-0 51-4 0-7815 0-4488 0-4334 

totals 8-2887 2-6178 1-1803 

The sums of the direction cosines of each kind are squared and added, to give the 

square of the resultant vector, of which the length, R, is found to be 8*77203. The 
direction cosines of the resultant are then 

0'9449 0'2984 0'1346 

To find the radius of confidence around this point, at the 5 % level, we have 

R = 8-77203, N = 9, N-R = 0-22797. 

Then 1/P = 20, 
20- = 1-45422, 

(N-R) (0-45422) -R = 0-011804, 
c = 0-98820, 
0 = 8-8?. 

So that possible directions more than 8-8? away from that indicated are excluded 
at the 5 % level of significance. 

Estimation of the precision K is not required for the test; we may, however, note 
that K = (N- 1)/(N-R) 

is, in this case, 35-09, so that the neglect of terms in e-2K is entirely appropriate. 
(b) As a second example one is needed in which N-R exceeds 2, as will readily 

occur if the homogeneity is lower, or the items more numerous. At levels ascribed 
to the early Quaternary, Hospers has found a considerable series of flows with 
reversed polarization. For forty-five specimens from these the sums of the direction 
cosines are found to be: 

-37-2193, - 116127, +0-6710. 

The length of the resultant vector is 38-9946; its direction cosines are: 
down N. E. 

- 0.9545 - 0'2978 + 0-0172 

almost diametrically opposite to the simple dipole field appropriate to the latitude 
which has components: 

down N. E. 

0*9724 0.2334 0 
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The cosine of the angle between these directions is therefore - 0-99766, making the 

angle with the antipodal direction only 3.9?. 
Although N-R is much greater than 2, the simple formula may be relied on to 

give a good first approximation to the radius of confidence: 

20-44 = 1-070456, 

I-c= 0-01085, 

0 = 8-45?. 

If this is a sufficiently good approximation, the mean of these somewhat variable 

directions, although fairly accurately determined, is not significantly different from 
the reversed dipole field. The case, however, is evidently one in which the contri- 
bution of terms beyond the first must be examined. With N = 45, R = 38-9946, 
and the trial value 0 = 8-45?, c = 0-9891445, we have table 2. 

TABLE 2. FORM OF COMPUTATION WHEN ANY TERM BEYOND 

THE FIRST IS TO BE CONSIDERED 

number common log 
N -Rc 6-4287 0-8081232 
N-R 6.0054 0.7785419 

ratio 0.0295813 
(ratio)-44 0.04983 98-69788 first term 

N-R-2 4.0054 0.6026459 

ratio 0.2054773 
(ratio)-44 90-95900 
N 45 1-65321 
R-Rc 0.42331 99-62666 
R-Rc +2 2.42331 - 038441 

- 0-087 91-85446 second term 

Even in this case, therefore, the second term is only about one seven-millionth of 
the first, and is of no practical consequence. The existence of four terms is thus no 
sufficient reason for thinking the first to be inadequate as an approximation. The 

computation of such terms as set out above is not, however, particularly difficult. 
Secular variation will introduce discrepancies among flows of different ages, 

nevertheless the increase of number of specimens from 9 to 45 has been sufficient to 

give the latter estimates somewhat the higher precision. 
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