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SUMMARY 
Palaeomagnetic studies on bore core or on tectonically disturbed localities often lose 
declination information, but the inclination still offers important palaeogeographic 
information. While the arithmetic mean of inclinations, f, is a biased estimator, the 
bias is negligible with shallow data. Using co-inclination 6 = 90" - and precision 
K* = llvariance, we find that the arithmetic mean and associated 95 per cent confidence 
interval are acceptable estimates when 6 f i  > 400". When inclination is steep and /or 
precision low, numerical methods must be applied. We develop the likelihood function 
for f3 and K and offer an efficient method to find its maximum, (8, R),  and to calculate 
the confidence interval. When O& < 200°, the confidence interval is asymmetric about 
the mean. When sites are collected from several rigid blocks, the relative declinations 
within each block can be useful. Using 'block-rotation Fisher analysis', better inclination 
estimates with tighter confidence intervals can be made, even on very steep data. We 
describe how to apply these methods to an inclination-only fold test. The techniques 
are illustrated on real data and are tested extensively using numerical simulations. 
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INTRODUCTION 

The time-averaged geomagnetic field is well approximated by 
a geocentric axial dipole, so that the mean inclination ( I )  is a 
simple function of the latitude of the measuring site. The goal 
of many palaeomagnetic studies is to determine the palaeo- 
latitude (A) of a site at the time the studied rock sequence was 
magnetized. 

In the ideal case, there is sufficient geological information 
to restore samples to the orientations they had when they 
became magnetized. Sometimes these restorations cannot be 
made. Bore core, for example, is seldom azimuthally oriented, 
and, in orogenic belts, unknown vertical axis rotations can 
make it impossible to bring different sections into their original 
orientations. But so long as the attitude of the palaeohorizontal 
plane can be determined, rotation about the strike (i.e. simple 
horizontal-axis rotation) brings the inclination to its correct 
pre-tilt value, whatever the full structural correction might be; 
the measured palaeomagnetic declination may not be meaning- 
ful, but the inclination is well defined and may be used for 
tectonic reconstructions and other purposes. 

Because of secular variation of the geomagnetic field and 
measuring uncertainties, palaeomagnetic directions must be 
correctly averaged together to produce a geologically signifi- 
cant interpretation. When measurements of both inclination 
and declination are available ('full data'), one applies the 
techniques introduced by Fisher (1953). However, if only 

inclination is available ('inclination-only data') it is necessary 
to consider its statistical distribution so that estimates of the 
mean inclination and its confidence interval can be made. 

Since palaeomagnetic observations are distributed on a 
sphere, the arithmetic average of measured inclinations is 
biased towards shallow directions; that is, in any rotationally 
symmetrical distribution, there will be more inclinations 
shallower than the mean (nearer the equator) than steeper 
(nearer the pole) (Fig. la). The problem is aggravated when 
the mean is near vertical (high palaeolatitude) or when dis- 
persion is large, because some directions 'overshoot' the pole, 
biasing downwards the calculated average (Fig. lb). As pointed 
out by Briden & Ward (1966), if the true inclination is 90", all 
measured directions will have shallower inclinations and thus 
the arithmetic average will be less than 90". 

The averaging of inclination-only data has been dealt with 
before (Briden & Ward 1966 Kono 1980 McFadden & Reid 
1982; Clark & Morrison 1983; Clark 1983, 1988; Cox & 
Gordon 1984). These workers assume, as we do, that palaeo- 
magnetic directions are distributed according to the Fisher 
(1953) distribution. Explicit estimates of the mean are not 
possible, and these workers obtain estimates using various 
analytical approximations and numerical solutions. These pro- 
cedures differ considerably, but most yield similar estimates of 
mean inclination and its confidence interval. All authors agree 
that estimates are very good, except for near-vertical or highly 
dispersed data. 
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Figure 1. Stereographs of Fisher-distributed samples with N = 100 
and K = 20, where the mean inclination is 45" in (a) and 70" in (b) .  
Circles are drawn at constant inclination equal to the mean. Note that 
the majority of the sample lies on the shallow side of the circle, 
indicating that an arithmetic mean of the inclinations will be biased 
shallow. When the mean inclination is steep, as in (b), some directions 
in the sample overshoot the pole, rendering an even shallower 
arithmetic mean. 

The estimates we present in this paper differ in form from 
the others, but in most cases give similar results. We argue 
that this new formulation is conceptually simpler than previous 
ones and comparatively approximation-free. Our estimates are 
applicable to steep and highly dispersed data. Furthermore, 
we introduce a simple criterion to help the practitioner decide 
if the inclination is sufficiently shallow and tightly distributed 
to allow an accurate estimate using simply the arithmetic mean 
and standard error. 

We proceed to show that the inclination-only problem is a 
special case of a more general problem where groups of 
directions are determined from rigid blocks that have suffered 
differential vertical-axis rotations. The resulting method, 
block-rotation Fisher analysis, gives more robust results and 
tighter confidence limits than the inclination-only method, 
especially for studies involving steep inclinations (very high 
palaeolatitude). 

The fold test in palaeomagnetism is the most utilized field 
test to determine the stability of palaeomagnetic remanence. 
Even when sites have suffered relative vertical-axis rotations it 
is often still important to consider a fold test, so we introduce 

the use of the method in analysing data from tilted beds and 
set out procedures for carrying out an inclination-only fold test. 

ESTIMATION OF THE INCLINATION 

The marginal likelihood function for the inclination-only 
problem, given a Fisher-distributed sample, may be found in 
all the papers dealing with this subject, starting with Briden 
& Ward (1966). Rather than declination (D) and inclination 
( I ) ,  we use polar angle or co-inclination (Q=90°- I )  and 
azimuth (4 = D )  to specify directions. If a set of directional 
data comes from a Fisher distribution with mean direction 
(Q,,, d,,) and concentration ti, then the marginal distribution of 
8 (that is, the probability density function of Q alone) is 

x exp(ti[cos Or cos Q + sin Or sin Q cos(d,, - 4)]) d 4 .  

(1) 

The curve of f ( 0 )  between 0 and 7c has a peak near Q = Q,,, but 
is not symmetrical. The goal of this paper is to determine an 
accurate and practical estimate of B e ,  the true co-inclination 
of the full Fisher-distributed data. The notation and solution 
of eq. ( 1) is simplified by using the modified Bessel function, 

I,(x) = 1' exp(x cos 4) 4, 

so ( 1) becomes 

ti sin Q 
2 sinh ti 

f ( Q )  = 7 exp(ti cos Or cos 8)I,(ti sin e,, sin e)  (3)  

Graphs and formulae for the modified Bessel functions can be 
found in Abramowitz & Stegun (1964). For our calculations 
we need the power series, 

x2 x4 

4 64 
I,(x)= 1 + - + - + .'.) (4) 

for small arguments, and the asymptotic expansion, 

(5)  

for large arguments. The function is fitted well by these three- 
term approximations when (4) switches over to (5) at x = 1.5. 
We also need 

Ib  Ib(x) x x3 x5 
-(x) I, Z,(x) 2 16 96 

~ = - - - + - + ... 

for x 5 1.5, and 

( 7 )  

for x > 1.5. 
It is instructive to consider the form of (3)  when the 

dispersion is small (ti large) and the mean inclination is not 
near the poles (0, far from 0" and 180"). Small sin Q will be 
rare, so the term I& sin Q,, sin Q) that appears in (3) is, to 
good approximation, given by the first term of ( 5 ) .  The 

0 1996 RAS, GJI  126,495-504 

 by guest on January 26, 2016
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


Analysis of palaeomagnetic data 491 

approximate form of the 0 density (3) then becomes 

K sin 0 exp(K cos(0, - 0)) 
2 sinh K J 2 m  sin 0, sin 0 ’ 

f (0) = ___ 

Further, when K is large, 0 is never far from O,, so we can 
approximate (8), using radians for angular measurements, by 

(9) 

a Gaussian distribution about 0, with variance l/K.  Thus, 
when K is large and 0, is away from 0” and 180”, if we were 
given a sample (O,, . . . , 0,) from the density function (3), we 
could use the arithmetic mean, 

as an estimator of O,, and 

K* E 11s; = (N - 1) (Oi - 6)’ I 
as an estimator of K, where s; is the variance of the 0s and 
angles are measured in radians. The 95 per cent confidence 
interval is given by 

6 k 4 5  = 6 k t o . , , 5 s , / f i ,  (12) 
where t0.975 is the 97.5 per cent of the Student distribution 
with N - 1 degrees of freedom. It would be more rational to 
write 6,, instead of ag5, since statisticians prefer to reserve tl 
for probabilities, but we adhere to the established notation 
here and below. We call 6, K* and tl& the ‘first-order estimators’. 
Clarke & Morrison (1983) discuss applications of this 
approximation. 

Like McFadden & Reid (1982) and Clark (1983), we 
examined the use of maximum likelihood to define the optimal 
estimators of the parameters in (3), but we use rather more 
direct methods of maximizing the likelihood of the inclination 
data, which in our notation is given by 

N 
L =  n f ( @ i )  

i = l  

= ( Ly fi sin Oi exp(K cos 0, cos O i ) Z o ( ~  sin 0, sin Oi) . 
2sinh K i = l  

We attempted no correction for bias as McFadden & Reid 
( 1982) did. Our simulations showed that their ‘unbiased’ 
estimate is usually within 0.1” of the arithmetic mean of the 
inclinations, and is thus as badly biased as 6. 

When performing statistical operations in Cartesian coordi- 
nates where parameters can take any value, no special factor 
must be included in the likelihood function to take into account 
the prior information available to parameter estimation. In 
our case, however, the parameters we wish to fit do not sit in 
a flat space. We must consider the distortion due to spherical 
geometry and the constraint that K > 0. One convenient way 
of doing this is by means of Bayes’ rule, in which our prior 
information about the unknown parameters is specified in 
terms of a density function. To avoid a subjective choice of 
the prior distribution, Jeffreys ( 1939) introduced a principle 
that is designed to find, in each problem, a prior distribution 
that corresponds to a totally ‘open mind’ about the values of 
the parameters. Such priors are often called ‘non-informative’. 

In our case, it leads to a prior distribution of the true mean 
direction that is uniform on the unit sphere. The non- 
informative joint density of (O,, 9,) is proportional to sin O r ,  
because the area element on the sphere is sin 0 d0 dQ. The sin 0 
factor forces the likelihood of a vertical inclination to be 
zero, which is geometrically required. The parameter 1 / ~  is 
analogous to a’ in the normal distribution. Box & Tiao (1973) 
demonstrate that log uz, and therefore log K ,  should be uni- 
formly distributed on (0, a), despite being an improper distri- 
bution (i.e. the prior density of K ,  1 / ~ ,  cannot be integrated 
from 0 to a). Clark (1983) considered maximum-likelihood 
estimators using (13) but realized that the conditions that 
sin 0, > 0 and K > 0 had to be imposed as constraints on the 
solution. Using the non-informative prior, sin O , / K ,  assures 
these conditions in a much more natural fashion, independent 
of the choice of coordinate system. 

The product of the likelihood (13) and the non-informative 
prior is proportional to the joint posterior density of 0, and 
K ,  which we call LBayes, 

sin 0, 

N n sin Oi exp(K cos 0, cos &)Io@ sin 0, sin H i ) .  (14) 

Instead of maximizing LBayesr it is numerically better to 
maximize its logarithm, 

i = l  

?=log(%) +Nlog(-) K 

2 sinh K 

N + C {log(sin e i )  + K cos 0, cos Oi 
i = l  

+ log[Io(K sin 0, sin O,)] } , 
or, eliminating constant terms, 

P = log (%) + N log (5) sinh K 

N 
+ 1 {K cos 0, cos Bi + log[Z,(ti sin 0, sin H i ) ] ) .  (16) 

Except for the Bayesian term, log(sin @,/ti), this is the log 
likelihood for inclination-only data. 

In order to understand the properties and complexities of the 
inclination-only problem it is highly instructive to consider the 
form of the likelihood function. In Fig. 2 we plot contours of 
the log-likelihood function (16), ! ( O r ,  K), for a case where 0, and 
K are large (Fig. 2a) and for a case where they are small (Fig. 2c). 
The form of the likelihood function does not follow a simple 
single-peaked symmetric form. There is a ‘ridge’ of likelihood for 
inclination towards the vertical (0 = 0). McFadden & Reid (1982) 
state that the co-inclination estimate, d, of the true co-inclination, 
O r ,  is correlated with the precision estimate (I?), but Fig. 2 shows 
that for steep inclinations I? is quite well resolved, independently 
of the value of 4. 

Estimates of 4 and 2 can be produced by locating the 
maximum of the Bayesian likelihood function. Note that we find 
standard optimization techniques, such as the conjugate gradient 
method, inefficient at locating this maximum, especially when 
there is a long ridge as in Fig.2(c). We propose an iterative 
algorithm that is robust and efficient and tailored to our specific 
problem. At maximum, M/tW,, = 0 and a / / i ? ~  = 0, so we can find 

i = l  
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Figure 2. Plots of the inclination-only likelihood function for Fisher-distributed samples with (a), (b) N = 100, co-inclination 0, = 30" and precision 
rc = 100 and (c), (d) N = 10, 8, = 10" and K = 30. (a) and (c) are contour plots of the log likelihood (16), while (b) and (d) are plots of the marginal 
likelihood of 0 (21). All plots are normalized such that the maximum likelihood is set to 1. Note that the contours are not elliptical but rather 
have a pronounced ridge developed towards the vertical. When the data are shallow or concentrated enough, as in (a) and (b), this tail has 
negligible likelihood, so the likelihood of 8 alone is well fitted by a Gaussian distribution (0 = 30.0" f 1.1"). For steep or dispersed data, as in (c) 
and (d), the maximum and its associated confidence interval must be located numerically (4 = 12.8" ?::$I). 

analytical equations for 8 and 2: 

cot 8 + 5 { -2  sin 4 cos oi+ 2 cos 8 sin oi - (2 sin 8 sin oil =o,  

(17) 

3 I b  
i = l  I0 

-' li- + N ( i  -coth 2 )  

cos8cosOi+sin8sinBi-(tsin8sinBi) I b  
i =  1 I0 

Hence 

To 
10 

li- = ( N  - 1 )/  (N - $l { cos 8 cos Oi + sin 8 sin Oi-(R sin 8 sin Oi) 

(20) 

where coth(2) is taken to be 1 (a very good approximation for 
the palaeomagnetically reasonable condition that K > 3). Note 
that the effect of the non-information term (sin O,/ic) becomes 

negligible when N becomes large. In (20) this term modifies N 
to N - 1 in the numerator. We have divided each term in (19) 
by N to show that tan8  is a quotient of sinOi and cosOi 
averages with an added non-information term that tends to 
zero as N gets large. When 2 sin 8 is sufficiently large, (19) and 
(20) reduce to the familiar equations tan 8 = Z sin Oi/Z cos Bi 
and 2 = ( N  - l) /(N - R ) ,  where R is the resultant length of all 
the sample unit vectors. 

We determine the maximizing estimates by starting with the 
first-order estimators and then iteratively applying ( 19) and 
(20) until they converge. We find that it is necessary to use the 
first three terms of series expansions ( 6 )  and (7). McFadden 
& Reid (1982) essentially use only the first term of (5) in their 
development, which is a poor approximation for x < 15 (Clark 
1983). In practice, three iterations usually resolve 8 to within 
0.1". When there is a pronounced ridge, however, the iteration 
approaches the maximum too slowly. Restarting the iteration 
at 812 and 1212 finds the maximum easily. Thus we routinely 
make two iterative attempts at finding the maximum and take 
the solution that corresponds to the higher likelihood. 

As important as the point estimate of 8 is its associated 
confidence interval. With the Bayesian approach, the posterior 
density of O,, is found by integrating out K in (14), as shown 
in Figs 2( b) and (d). Taking Lz(O, K )  = LBaycs (14) we get the 
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marginal posterior density of 8,: 

L,(e) = L2(e, K )  a x .  

In practice, for each we numerically integrate (14) over K = 1 
to loo0 with K steps spaced exponentially. The two-parameter 
maximum likelihood estimate for co-inclination, 8, (i.e. 0 from 
eq. 16), is steeper than the single-parameter likelihood estimate 
8, determined by maximizing L,(O). This maximum must be 
located numerically. 

When inclinations are shallow enough or precisions high 
enough, L,  can be approximated well by a normal distribution 
with mean 8, and variance 1/NR (e.g. Fig. 2b). Thus the 95 per 
cent confidence limits are approximately two standard errors 
about the mean [+( 1.960/,/%i)l8O0/71]. Note that our normal 
approximation is more accurate than that proposed by Clark 
& Morrison (1983), who use the first-order estimates (10) and 
(11) of 0 and K rather than their maximum likelihood estimates. 

However, our normal approximation fails when some of the 
directions in the sample are close to vertical. In such cases 
(e.g. Fig.2d) we must take an interval that contains 95 per 
cent of the posterior probability (L,) and includes only values 
more likely than any outside it. Demarest (1983) considered 
the equivalent problem for the case when full data (inclination 
and declination) are available. To find the upper and lower 95 
per cent confidence limits, he integrated the two tails of the 
marginal likelihood function to limits such that each contained 
2.5 per cent of the total area. As we are integrating the marginal 
likelihood of 8, we need a range of integration that collects 95 
per cent of the probability and includes only points where 
L,(@ is higher than any points outside the range, for we are 
trying to find a range for which 0 is most likely. Because L,(e) 
has a single peak, the range is an interval (O,, Ou), with L ,  
taking equal values at each end. Thus we have the equations 

where 0, and Ou are, repectively, the lower and upper limits. 
Defined as such, the confidence interval width is minimized, 
which is important in the case of skewed distributions, such 
as seen in Fig. 2(d). Note that the confidence limits are 
asymmetric about the maximum-likelihood" estimate. For 
6 < go", we define a& = 0 - 0, and a& E Ou - 0. When 6 > go", 
the definitions of aJ5 and a, are reversed. The signs of 
these definitions are chosen to be compatible with inclination 

Numerical determination of 0, and Bu is time-consuming, 
so we use a further approximation. As computers become 
faster such an approximation will not be necessary, so we will 
only sketch the method here. Assuming 0" < O1 < go", the upper 
tail of L1 is approximately Gaussian (as illustrated in Fig. 2d). 
The lower tail can be approximated as the sum of a straight 
line going through zero and a Gaussian. The slope of the 
straight line comes from the value of L1 at lo, the means of 
the Gaussians are set to the mode of Id1, and their standard 
deviations are calculated from the values of L1 at 8, k a&,. 
Once the parameters of the approximation are determined, Bu 
and then the left-hand side of eq. (23) are easily evaluated 
functions of B,, which is varied until the confidence proportion 

I = 900 - e. 

[right-hand side of eq. (23)] is located. The only time-consuming 
step is locating dl ,  the position of the maximum of L1. 

As a worked example, consider the data chosen to produce 
Fig. 2(b): 76.7", 75.6", 74.9", 86.7", 68.2", 71.7", 69.5", 80.5", 76.1" 
and 81.0". The mean inclination is 76.1" and the first-order 
estimator for K = l/variance = 104.5. The maximum likelihood 
estimates after five iterations of (19) and (20) are 8, = 12.6" 
(I = 77.4") and r2 = 82.5. A second iteration starting at 0 = 6.3" 
and K = 41.2 gives 8, = 12.4" and R = 76.7 and a slightly higher 
likelihood, after 10 steps. The Gaussian estimate of inclination 
is thus 77.6" If: 4.1". Using the marginal likelihood function, 
the estimate becomes 77.2'::;. 

PRACTICAL CONSIDERATIONS 

We have three methods of estimating the mean inclination and 
its associated 95 per cent confidence interval. The first-order 
estimate [eqs (lo)-( 12)] is merely the arithmetic mean plus or 
minus roughly twice the standard error. A more accurate 
method is to locate the maximum of the log-likelihood function 
( (8 ,C)  (16) by iteratively cycling between (19) and (20). The 
likelihood function of 0 (21) is usually fitted well by a normal 
curve with mean 8, and variance 1/NR, so the 95 per cent 
confidence interval is 6, If: [( 1 .96O/~)18O0/n ] .  Finally, when 
the inclination is too steep or the precision too poor for the 
normal curve approximation, the maximum likelihood incli- 
nation and confidence interval can be numerically determined 
from (21), (22) and (23). 

It is certainly preferable to use a mean and standard error 
when possible, so one needs a simple criterion to decide which 
method to use. Problems arise with the simple estimates when 
some of the data are close to the vertical. Distortions due to 
spherical geometry only become important near the vertical, 
and there is the possiblility that some directions overshoot 
the vertical. 

The dispersion of a Fisher-distributed sample is proportional 
to l/& (for K > 3). For example, 50 per cent of measurements 
should be more than 67.5"/$ from the mean, but only 5 per 
cent should be more than 140"/& from the mean (Watson & 
Irving 1957). If the co-inclination is much greater than the 
dispersion then the probability of some of the measurements 
being close to vertical will be very small. A useful measure of 
this effect is 8$, which is sjmilar to a mean over a standard 
deviation. When e@ or 0,. is high enough, there is no 
need to integrate the likelihood function numerically. Of course, 
when 6, > 90" the value to be considered is (180" - 4,) f i .  
Intuitively, we expect the normal approximation to be accurate 
when the mean inclination is greater than about two to three 
standard deviations from the vertical. 

As we are not privy to the true 6' and K we must make do 
with their estimates. Rather than attempt a theoretical estimate 
of the critical value of ~9& above which a given estimation 
method is valid, we performed numerical simulations of 
Fisher-distributed samples with various 8,,K and N to get 
empirical estimates and simultaneously to verify our methods. 
The declinations of the directions were ignored for the 
inclination-only estimates. 

In Fig. 3 we show a suite of graphs summarizing the results 
from 1000 trials with N = 10 and N = 100. 8, was chosen 
between 0" and 90" and K between 3 and 300. For each of the 
three methods, we plot, as a function of d f i ,  the deviation of 
the estimate from the true inclination normalized by ag5, 
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(8 - Op)/cIg5. One expects this value to be symmetrically distri- 
buted about 0 and within kl ,  95 per cent of the time. If the 
normalized deviations tend to be positive, then the inclination 
estimate is biased towards shallow directions. If too many lie 
outside 

The top graphs (Figs 3a and b) are for the first-order 
estimates, those in the middle (Figs 3c and d) are for estimates 
using a Gaussian fit of the inclination likelihood function, and 
those at the bottom (Figs 3e and f )  show results for numerical 
analysis of the likelihood function. Note that for the last 
method, the confidence interval is not symmetric about the 
mean, so the appropriate value of ag5, depending on the sign 
of the deviation, had to be used. When 8-O,>0, we plot 
(8 - Op)/&, or otherwise, (8 - @,)/a,. 

The most important conclusion to be drawn from the 
numerical simulations is that the numerical analysis of the 
likelihood function (Figs 3e and f )  gives good results regardless 
of OF,  K and N .  The normalized deviation is within 1,94 per 
cent of the time. The method can be recommended for all 
inclination-only situations. For large 8$, fitting the likelihood 
function with a Gaussian curve gives indistinguishable results. 
Empirically we find that the Gaussian estimates are acceptable 
when 6$ > 200" for N < 30, and 8$ > 150" for larger N. 
The normalized deviations for the arithmetic mean are mostly 
affected by the bias problem, but for 8$ > 400", this simple 
estimate is adequate. 

To summarize, the first-order estimate of the inclination 
and confidence interval comes from the arithmetic mean 
and standard deviation of the data, (10) and (12). Using 
these estimates, if 8$>400" then there is no advantage in 
using more complicated procedures. More accurate estimates 
come from maximizing the log-likelihood function ( 16). The 
marginal likelihood function in 0 alone (21) is approximately 
Gaussian in shape, leading to a simple expression for ag5. 
When the value of 8$ is under 200" (or under 150" for 
N 2 30), it is preferable to estimate the inclination and asym- 
metric confidence interval using numerical integration of the 
single-parameter likelihood function (21). 

1 then the confidence interval is underestimated. 

BLOCK-ROTATION FISHER ANALYSIS 

Sometimes a sample collection consists of several groups, each 
from a separate rigid block. The blocks may have suffered an 
unknown vertical-axis rotation. Within each block the relative 
declination information is usable and should not be discarded. 
A block could be an unbroken segment of a core with several 
subsamples, or it could be an unfaulted locality with several 
sampling sites. Consider, for example, the study of the mid- 
Cretaceous Sverdrup Basin volcanics from Axel Heiberg Island 
in the Canadian Arctic (Wynne, Irving & Osadetz 1988). 
Accurate determination of the palaeomagnetic inclination is 
necessary to discriminate between two opposing models of the 
separation of Greenland from North America. The inclination 
is near vertical and the inclination-only method cannot resolve 

the best inclination well. Sampling localities showed no evi- 
dence of internal deformation and can be considered rigid 
blocks. The declination scatter between blocks is far greater 
that within blocks (Wynne et al. 1988, Fig. 17). 

Wynne et al. (1988) used a method first introduced by 
Monger & Irving (1980), which they called 'Modified Fisher' 
analysis; however, we prefer the more descriptive title 'block- 
rotation Fisher' (BRF) analysis. Fisher averages are determined 
for each block, and then each block is rotated about the 
vertical such that the mean declinations of the blocks are 
coincident. A global average of these rotated site means is 
then made. 

While the block-rotation method was introduced on intuitive 
grounds, we will now show that it is essentially identical to 
the maximum likelihood approach. Earlier we sought only 
estimates of 0, and K, but now we must also seek estimates of 
the m block azimuths, bj ,  j = 1, . .. , m. Similarly to in eq. (14), 
the Bayesian likelihood function is given by 

x exp(rc[cosO,~osO~~+sinO,sinO~~cos(#~-#~~)]), 

(24) 
where N = Cjm=, n j .  

The maximum likelihood solution for each d j  is particularly 
simple because they are not dependent on each other, nor on 
Op and K. Differentiating the logarithm of the likelihood 
function with respect to # j  and setting it equal to zero, we get 

(25) 
" 7  

tan q5j = - , 
X j 

with X j  = Czl sin Oji  cos #ji and E;. = Zzl sin Oji sin Qji. This 
result is the Fisher estimate of the declination of each block. 
One could attempt the same procedure for estimating 0, 
and K, but the results would be biased. The are nuisance 
parameters in this situation, since their values are irrelevant 
when one is interested in estimating the mean inclination of 
the sample. More intuitively, if one rotates all the blocks such 
that their mean declinations are aligned, those blocks that give 
poor estimates of the declination will pull the mean inclination 
shallow. It is necessary to integrate out the bjs (i.e. JF dOj) to 
produce the two-parameter likelihood function 

(26) 
where Z j  = Cf', cos Oj i ,  H,? = X ;  + Y,?, and constant factors 
have been taken out. When there is only one observation 
per block, the block-rotation Fisher analysis reduces to the 
inclination-only analysis outlined above. 

The determination of 8 and its corresponding confidence 
interval is carried out the same way for the inclination-only 

Figure 3. Plots of normalized deviations [(d - 6,)/cc,,] as a function of the distance from the vertical, parametrized as d?, K for 1000 numerical 
trials with 6, chosen between 0" and 90" and K chosen between 3 and 300, for N = 10 or 100. One expects normalized deviations to be symmetrically 
distributed about 0 and within &- 1 95 per cent of the time. (a), (b) Note that the first-order estimate (the arithmetic mean) gives adequate results 
when &,,h > 4PO". Below that value, the estimate is unacceptably biased shallow. (c), (d) The Gaussian fit of the likelihood function allows adequate 
estimates for 6,,h down to 200" (150" for N 2 30), but below that the asymmetric shape of the likelihood function must be taken into account. 
(e), ( f )  Numerical estimation of the mean inclination and its confidence interval is suitable regardless of how steep or dispersed the data are. 
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problem. We iteratively solve 

and 

i?.=.(N - 1) / ( N  - 
I 

(28) 

When IC sin 0 is large, these equations become 
tan 4 = Cy==, Hj/Zy= l Z j  and i? = (N - l)/(N - R), where 
R2 = Cy=l(Hf + Zf). These simplified equations are what one 
would find by rotating each block to a common mean 
declination and then determining 4 and i? by standard Fisher 
analysis. The i? estimate assumes a value >3. The bias in I? 
can be corrected by taking the number of degrees of freedom 
into account. There are 2N observations (declination and 
inclination of each site) while we are estimating 2m+ 2 
parameters. Watson ( 1956) demonstrated that the numerator 
of the R equation should be half the degrees of freedom, 
N - (m + 1)/2. Our simulations show that this modified 
equation is useful, regardless of N,  m, or IC sin 0. On the other 
hand, iterative solution is not time consuming, and also corrects 
the inclination bias. 

100 

m 
a a 

2 

0 5 10 15 20 25 

Theta 

"I' " ' i d  " ' I  " " ' .  " " " " @) L ' 

When block-rotation Fisher analysis can be applied (i.e. 
where sites are distributed among rigid blocks), the two- 
parameter likelihood function has a simpler form than that for 
the same data set using inclination-only analysis. Fig.4 was 
produced using the Sverdrup Basin data (Table 1). Fig. 4(a) 
shows contours of log likelihood when each site is allowed to 
rotate freely about a vertical axis (inclination-only analysis) 
and Fig.4(c) shows the contours for the same data, except 
that groups of sites are constrained on geological grounds to 
rotate together. Note that these contours have a more elliptical 
shape, indicating that the Gaussian approximation fits the 
function quite well. The marginal likelihood function using 
block-rotation Fisher analysis (Fig. 4d) is tighter and more 
symmetrical than that using inclination-only analysis (Fig. 4b). 
Our simulations indicate that it is rarely necessary to perform a 
numerical integration of the BRF likelihood function to obtain 
a reasonable confidence interval. The marginal likelihood of 19 
alone is approximately Gaussian with variance 1/NI?, so the 
95 per cent confidence interval is d+[( 1.960/&%)180"/~]. 

Unlike the inclination-only situation, it is impossible to offer 
a simple O& rule that is applicable to all BRF situations. 
Through our simulations we find that the 4 and clgs determined 
through the Gaussian fit is usually almost identical to that 
determined by numerical integration. When agS % 4, the maxi- 
mum of the two-parameter likelihood function (26)  still gives 
practically the same 8 as with numerical fitting of the marginal 
likelihood function, but the Gaussian fit of clgs is slightly 

1000 ' ' ' ' ' I . . . . , . , . . , ,  . . ,  

(c> E 

m 
p. 
a 

2 

0 5 10 15 20 25 

Theta 

0 5 10 15 20 25 

Theta 
0 5 10 15 20 25 

Theta 

Figure 4. Plots of the likelihood function for the Sverdrup Basin data set (Table 1; Wynne et al. 1988) using (a), (b) inclination-only analysis and 
(c), (d) block-rotation Fisher analysis. Note that the contours on (c) are far more elliptical in shape than in (a), and thus the Gaussian fit is more 
appropriate for the marginal likelihood function (d). The 95 per cent confidence interval is reduced from 15.7" using inclination-only analysis to 
5.8" using block-rotation Fisher analysis. 
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Table 1. Site-mean directions (after horizontal-axis tectonic correc- 
tion) of Sverdrup Basin volcanics (summarizing Wynne et al. 1988, 
Tables 1, 2 and 3). This data set is composed of all sites with extrusive 
lithologes, k > 10 and ctg5 < 20". Sites are given as normal-polarity 
directions. Each rigid block is denoted by a distinct letter label. 

Site 
RUE41 
RUE44 
RUE45 

AXWO4 
AXWO8-09 

AXW12 
AXW13-14 

AXW18 
AXB46 
AXB50 
AXB49 
AXB32 

AXB31-33 
AXB43 
AXB42 
AXB41 
AXB4O 
AXB38 
AXB37 
AXB35 
AXBOl 
AXB02 
AXVlO 
AXVOl 
AXVO2 
AXVO3 
AXVO4 
AXV05 
AXSOS 

Dec. 
305 
20 1 
046 
315 
235 
202 
311 
206 
300 
257 
202 
254 
259 
213 
145 
160 
300 
115 
154 
185 
178 
150 
245 
155 
148 
289 
165 
208 
236 

Inc. 
59 
87 
75 
75 
52 
59 
72 
81 
75 
82 
75 
79 
66 
85 
88 
78 
77 
81 
75 
70 
64 
79 
68 
69 
75 
71 
58 
66 
67 

Block Site 
A AXV3O 
B AXV3l 
B AXV32 
C AXV34 
C AXV35 
C AXV36 
C AXV37 
D AXAO5 
E AXAO6 
F AXAOl 
G AXA02 
G AXAO3 
G AXAO4 
H AXS04 
A AXSO2 
H AXSO7 
H AXSOS 
H AXS15 
H AXS14 
A AXSl3 
I AXS12 
I AXSlO-11 
J AXS25 
J AXS24 
J AXS22 
J AXS21 
J 
J 
J 

Dec. 
327 
322 
231 
218 
239 
228 
246 
036 
002 
344 
206 
024 
097 
214 
211 
203 
264 
316 
321 
349 
328 
340 
228 
248 
231 
246 

Inc. 
64  

74 
63 
68 
68 
55 
58 
74 
80 
84 
88 
81 
79 
77 
66 
76 
62 
55 
64 
62 
62 
67 
78 
51 
58 
57 

Block 
K 
K 
K 
K 
K 
K 
K 
L 
L 
L 
M 
M 
M 
N 
N 
N 
N 
0 
0 
0 
0 
0 
P 
P 
P 
P 

overestimated. We suggest that when d - czg5 < 2", numerical 
integration should be used. This situation will rarely occur in 
palaeomagnetic studies. 

inclination-only analysis of the Sverdrup Basin sites of Wynne 
et al. (1988) gives i = 74.9?:tj0, Iz = 21.5, but d$ = 69", which 
is quite low and definitely in the range of high spherical 
distortion. Applying the block-rotation Fisher method, we get 
f = 74.7" f 2.9", R = 26.6. The 95 per cent confidence range 
dropped from 15.7" using inclination-only analysis to 5.8" with 
BRF analysis, a very substantial improvement in accuracy. 

INCLINATION-ONLY FOLD TEST 

Even when declination information is unavailable, it is 
often desirable to determine the relative timing of magnetic 
remanence and tectonic deformation using some formulation 
of the palaeomagnetic fold test. Most fold-test formulations 
are based on the conjecture that the remanence directions 
should be tightly clustered when the correct tectonic rotations 
have been applied and that any other rotations will produce 
more dispersed distributions. Unfortunately, in situations 
where declination information is lost, complete undoing of 
tectonic rotations is impossible. 

Fold-test formulations have traditionally been posed in 
terms of hypothesis tests. In our recent paper on the fold test 
(Watson & Enkin 1993) we proposed that it is better to restate 
the problem as one of parameter estimation. i n  particular, 

we argued that finding the degree of untilting that gives 
minimum dispersion is the best way to determine whether the 
magnetization is pre-tilting, post-tilting or in some intermediate 
case (due to any of a numer of causes). The common plot of 
Fisher's precision parameter as a function of the degree of 
untilting will usually have a single maximum, and if that 
maximum is close to 100 per cent untilting then one can say 
that the remanence was acquired before the beds were tilted. 

To find a 95 per cent confidence interval for the optimal 
degree of untilting we recommended using parametric resampling 
at the site level. This method can be adapted to the inclination- 
only problem. The II, K and mean direction before tectonic 
correction of each site are used to choose a new Fisher- 
distributed data set [using, for example, the algorithm of 
Fisher, Lewis & Embleton (1987) section 3.6.2). These simu- 
lated data are then used to define new site means. Using these 
simulated site means, inclination-only analysis is applied and 
C is determined as a function of degree of untilting using the 
measured bedding orientations. The percentage of untilting, 
ym, that produces the maximum precision is stored in a list. 
This procedure is repeated many times and then the list of yms 
is sorted. The best estimate of optimum untilting is the median 
(50 percentile), while the lower and upper 95 per cent con- 
fidence limits are the 2.5 and 97.5 percentile values. If the 
optimum untilting interval includes 100 per cent untilting and 
excludes 0 per cent untilting, the fold test is considered positive. 

As an example, consider the study of the lower Jurassic 
Morrison Formation by Van Fossen & Kent (1992). The 
distribution of site-mean directions is streaked for any degree 
of untilting, and the region was sufficiently disturbed to suggest 
that vertical-axis rotations may have occurred. They attempted 
to perform the fold test by using McFadden & Reid's (1982) 
inclination-only estimate of K for pre- and post-tilting geo- 
metries, and then applying McElhinny's ( 1964) k-ratio fold- 
test formulation. However, the k-ratio formulation does not 
actually test what is purports to test (McFadden & Jones 
1981), and its use should be abandoned. 

Fig. 5 shows results using our method. Progressive untilting 
curves of the Fisher precision parameter vary in magnitude 
much more than is typical of full-data simulations, but the 
maxima are all well defined and in a restricted range (20 curves 
are shown in the figure). After 1000 resampling trials, we find 
that the optimum degree of untilting is 79.6 per cent with 
lower and upper confidence limits of 53.0 per cent and 107.9 
per cent. As this range includes full untilting (100 per cent) 
but not the in situ (0 per cent) case, the fold test is positive, as 
claimed by Van Fossen & Kent. 

CONCLUSION 

Correctly determining the mean inclination of a palaeo- 
magnetic data set is important to many studies. in this paper 
we have presented statistical tools for estimating the inclination 
and its confidence interval that are applicable to most palaeo- 
magnetic situations, including steep or highly dispersed data. 
Furthermore, we give a simple criterion to help the practitioner 
decide which method is preferable. Our methods have been 
tested using real data and by extensive numerical simulation. 

To estimate the mean inclination of a data set, the first step 
is to calculate the arithmetic mean, and variance (the standard 
deviation squared). The reciprocal of the variance is an estimate 
of Fisher's precision parameter, K*. The first-order estimate of 
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Figure 5.  Application of the fold-test formulation of Watson & Enkin 
(1993) to inclination-only data, using Morrison Formation data from 
Van Fossen & Kent (1992). The continuous curves show 20 examples 
of parametric resamplings of the original data, showing precision as a 
function of the degree of untilting. The histogram shows the distri- 
bution of the maxima from lo00 such curves. Since the central 95 per 
cent range of this distrubution includes full untilting (100 per cent) 
but not the in situ case (0  per cent) the fold test is positive. 

the 95 per cent confidence interval is rk approximately twice 
the standard error (eq. 12). 

To determine whether these first-order estimates are valid, 
calculate 6@,  where 6 = 90" - 111 is the co-inclination. @,,& 
is similar to a mean over its standard deviation, so a high 
O f i  means the dispersion of the data is much smaller than 
the distance from the vertical, and the probability of some 
members of the distribution being close to the vertical is small. 
Through numerical simulations, we have determined that there 
is no advantage to performing more complicated estimates of 
the inclination when 8@>400". For example, if the mean 
inclination is 30°, this simple estimate is acceptable as long as 
K* is greater than 44. But if r=60" then the result will be 
biased shallow unless K* > 178, which is seldom the case in 
palaeomagnetic studies. 

If t?@ < 400", spherical distortion will bias the arithmetic 
mean of the inclinations towards shallow values. In this case, 
it is better to determine the inclination (or co-inclination, 8,) 
and precision (k) that maximize the Bayesian likelihood 
(14) by iteratively cycling between eqs (19) and (20). If f&4 > 200" (> 150" if N > 30), the correct estimate is given 
by I = 90" - 6, k [( 1 . 9 6 0 / ~ ) 1 8 0 " / ~ ] .  If the data are so 
steep or dispersed that &$ < 200" (or < 150" for large N ) ,  
then the mean and asymmetric confidence interval must be 
determined numerically using (21), (22) and (23). 

In situations where the data come from sites that belong to 
rigid blocks that have suffered relative vertical-axis rotations, 
the declination information within each block can be used to 
provide better inclination estimates using a method we call 
block-rotation Fisher analysis. The co-inclination and pre- 
cision are determined by cycling iteratively between eqs (27) 
and (28). The confidence intervals are determined in the same 
way as for the inclination-only problem, but will be smaller 
because the declination information has been utilized. 

To perform a fold test using inclination data, we demonstrate 
the use of our parameter-estimation formulation (Watson & 
Enkin 1993). If the degree of untilting that produces the highest 
precision is around 100 per cent, but significantly different 
from 0 per cent, then the fold test can be considered positive. 

It is our hope that these statistical tools will find application 
in many palaeomagnetic studies. All the methods described in 
this paper are included in the package of palaeomagnetism 
analysis programs available from the first author. 
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