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Summary 

The angular probability distribution generated by adding a set of 
randomly oriented vectors to a set of constant parallel vectors has been 
studied. If one random vector of constant length is added to each con- 
stant vector, the resultant angular probability distribution departs 
widely from the distribution used by Fisher as the basis for palaeo- 
magnetic analysis. However, if n random vectors of equal length are 
added to each constant vector and if n > 6, the resulting angular 
probability distribution is nearly identical to that proposed by Fisher 
over most of the range of angular dispersions encountered in palaeo- 
magnetic investigations. Equations are developed from which the 
mean intensity of random magnetization can be calculated, given the 
mean total intensity and the angular dispersion. These parameters, in 
turn, are related to the ratio of random to non-random magnetization 
for each ferromagnetic mineral grain in a rock specimen. 

I. Introduction 
Analysis of the natural remanent magnetization of a rock commonly reveals 

the presence of several components of magnetization, each due to a different 
magnetizing process occurring at a different time during the rock’s history. Even 
under ideal conditions two components are present, a stable magnetization con- 
stant in magnitude and direction from specimen to specimen, and a second 
component which varies randomly in direction. This second component may be 
introduced during the collection, the measurement, or the partial demagnetization 
of the specimen. It may also be present as a fundamental property of natural 
remanent magnetization, as most processes by which rocks become magnetized 
do not impart perfectly uniform magnetization to an entire rock formation. 
Whatever its origin, a randomly oriented component of magnetization is invariably 
present and produces an angular dispersion in measurements of the remanent 
magnetization of rocks. 
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346 Allan Cox 

The present investigation is a mathematical analysis of the angular dispersion 
generated by adding a randomly oriented set of vectors to a set of constant vectors. 
T h e  inverse problem is also considered: given the angular dispersion of a set of 
vectors generated in this way and their mean length, what can be said about the 
lengths of the randomly oriented set? The case is first developed for added 
vectors of constant length. I n  a second case, the added vectors are taken to be the 
resultant of n randomly oriented vectors of equal moment m. This may be taken 
as a simplified representation of the type of random magnetization suggested by 
Irving et  al. (1961), who noted that most processes which produce natural 
magnetization in rocks succeed in magnetizing only a small fraction of all the 
magnetic domains present ; the remainder are magnetized randomly, hence the 
vector sum of their individual moments is randomly oriented. The magnitude of 
this vector sum may assume any value between zero and the algebraic sum of the 
individual moments, but it has a statistically determined most probable value 
between these limits. 

Comparisons are also made between the angular probability densities generated 
in this way and the angular probability density proposed by Fisher (1953), which 
provides the basis for much of the statistical analysis used in palaeomagnetic 
research. Fisher made the assumption that the vectors of the population from 
which a sample is drawn are distributed with azimuthal symmetry about a mean 
polar axis, and further that the angular probability density is given by 

@(a) = (~/47r sinh K )  eKcosa (1) 
where (DF(a) dx is the proportion of vectors expected to lie within a small cone 
subtending a solid angle dx about a cone axis inclined an angle u from the polar 
axis. The constant K is an inverse measure of angular dispersion characteristic 
of a given population. Giving unit weight to each remanent magnetization vector, 
Fisher shows that on the basis of N vectors drawn from such a population, the 
best estimate of the mean is the direction of the vector sum; moreover the best 
estimate of K is given by K :  

K = ( N -  I ) / (N-r)  (2) 

where 

N 
r = 2 cosui 

i=l 
(3) 

ut being the angle between the ith vector and the mean direction. 
The mathematical basis for Fisher’s assumed probability distribution was 

thoroughly investigated by Roberts & Ursell (1960). A Brownian distribution, 
generated by a random walk consisting of many small steps of equal arc length 
along the surface of a sphere of unit radius, is regarded by Roberts & Ursell as 
the true analogue of a Gaussian distribution on a plane. Although the equations 
describing the Brownian and the Fisher distributions are different in form, detailed 
calculations show that numerical differences between them are small, and these 
authors conclude that results deduced on the assumption of Fisher’s distribution 
would be little affected by the modifications necessary to bring it to Brownian 
form. This is fortunate since, as pointed out by Roberts & Ursell, Fisher’s dis- 
tribution is ideally suited for statistical study ; other distributions may be theoret- 
ically preferable but are analytically cumbersome. 
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A physical basis for the distribution of Fisher was suggested by Watson & 

Irving (1957), who noted the formal similarity between equation (I) and the 
expression exp( - mH cosoc/kT) derived by Langevin for the proportion of dipoles 
of moment m which would be inclined at an angle M. to a weak magnetic field H 
when subjected to thermal agitation at temperature T. However the angular 
dispersion which might be produced in this way is much smaller than that com- 
monly observed in palaeomagnetic studies, and other physical processes are probably 
responsible for most of the angular dispersion measured in rock specimens 
(Doell & Cox 1963). 

Angular dispersion due to random magnetization 

2. Theoretical model 
The present analysis employs vectors in three-dimensional space to generate 

angular dispersion, so that resultant vectors are not constrained to the surface of a 
unit sphere, as in the analysis of Roberts & Ursell(1960). This approach permits 
relationships to be established between angular dispersion and variations in vector 
length. We assume a population of parallel vectors M, of constant length Mo and 
a second population of randomly oriented vectors M of varying length M. The 
population of vectors J = M,+M generated by adding these two sets is dispersed 
with azimuthal symmetry about M,. We proceed to evaluate the probability 

FIG. 1.-Geometry of random vector M added to constant vector Mo. 

distributions for the vector lengths and the angular displacements of the J vectors. 
Let p ( M )  be the normalized probability distribution of M ,  assumed known, 

and let p ( x )  = M,p(M) be the distribution of x, where x = M/M,. Then 
p(x )  dx is the probability that M will lie in the interval M to (M+ dM)  and is also 
the probability that J will terminate within a thin spherical shell of radius M and 
thickness dM about the point 0 (Figure I). Taking spherical coordinates about 
0 with 0 as the polar angle and M, as the direction 6 = 0, the proportion of vectors 
corresponding to an increase d6 is seen to be &p(x) sin6 d6 dx and the corresponding 
change in J to be - M sin6 (Mo2 + 2M,M cos6 + M2)-& do. Writing z = JIM,, the 
probability distribution for z is: 

w(z)  dz = [ 1 z/zxp(x) dx] dz  (4) 

if 1 1  - X I  < z < I +x, and otherwise w(z )  = 0, where w(z)  dz is the probability 
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Allan Cox 348 
that J will lie in the interval J to ( J+d] )  or equivalently x in the interval x to 
(x + dz). 

The angular probability for the J vectors is found by noting that, as 0 changes 
by do, the J vectors occupy a solid angle (ZT sin a da). For sin CI < x < I there 
are two values of 6 for each value of a, for x 2 I there is only one, and for 
x < sin a there are none, resulting in the following angular probability distribution: 

sina 

+ [zcos 01 + (cos'h) (9- sinzcr)-l/2 + (9- sin2a)l/z] p ( x ) / 4 ~ x  dx ( 5 )  i 1 

where @ ( E )  dx is the probability that resultant vectors will lie within a small cone 
subtending a solid angle dx about a cone axis inclined an angle a from the direction 
of M,. 

To describe the angular dispersion of different theoretical probability dis- 
tributions, an expression is introduced analogous to the quantity 6 of Wilson (1959), 
which was originally defined for a set of N unit vectors as follows: 

N 
6 = cos-l(r/N) = cos-l(1/N 2 coscq) (6) 

i=1 

where ai is the direction between the ith unit vector and the mean. The  quantity 

N 
r = 2 cosai 

i=l 

is first generalized as R to make it applicable to a continuous distribution @(a): 

277 @(a) cos a sin a da. 
0 

The generalized form of 6 is then: 

A = COS-~R. 

(7) 

An alternative inverse measure of angular dispersion, k of equation (z) ,  has 
previously been defined for a group of unit vectors. The  following generalized 
form is introduced: 

K = I,/(I-I?). (9) 
Like Fz, K approaches the limit of I for a random population and co for a parallel 
population. This generalization of k is analytically convenient and, when applied 
to the distribution @ p  of Fisher, yields a value of K which differs from K by the 
quantity zK2/(e2K-zK-i), which is small for values of K > 3. For example, 
when K = 4, K differs from K by only 0.269 of one per cent, and the difference 
decreases rapidly for larger values. 

The final step in this derivation will be to evaluate these quantities for two 
probability functions p(x) .  
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Angular dispersion due to random magnetization 3 49 

3. Random vectors of constant length 
We consider first the case of a randomly oriented vector M of constant length 

Mc.  Physically this model approximates the occurrence of a constant component 
of relatively unstable magnetization such as may exist when many ferromagnetic 
domains have low coercive forces concentrated within a narrow band, with the 
result that all of the unstable component is magnetized essentially by one event 
occurring either in nature or during experiments on the specimen. A situation of 

. this type has recently been recognized in a palaeomagnetic study of granites by 
Currie and others (1963). Introducing xc = Mc/Mo,  so that p(xc)dx = I, the 
equations of the previous section may be applied directly to give: 

@c = (I/z~xc)[(cos2a)(xc2- sinza)-1/2+ (xc2- sin2a)1/2], 
xc< I and s ina < xc (1oa) 

T o  compare this probability distribution with that of Fisher, the two are 
plotted in Figure 2 for a wide variety of angular dispersions. Dispersions were 
made the same in each plot by setting K = Kc.  The  two distributions are seen 
to differ markedly. 

Cumulative differences between these two probability functions were found 
from the cumulative distribution functions 

a0 

p(a0) = zn 1 @(a) sina da 

where P(ao) is the proportion of all vectors lying within a cone of radius a. about 
the mean axis. For the Fisher and constant-vector distribution the respective 
cumulative functions are 

0 

PF = [exp( K )  - exp( K cos a0)]/2 sinh K 

PC = I - cos a0(xc2 - sin2ao)1/2/xc 
(13) 

(14) 

, x c <  1 

xc> I. = Q[ I + (sin2ao)/xc - cos ao(xc2 - sin2aO)l/2/xc], 

The  two cumulative distributions are substantially different for all angular dis- 
persions. For K = K c  = 30, for example, a cone of radius a0 = 12-34' contains 
50.00 per cent of the vectors of a @F population but only 17.98 per cent of those 
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3 50 Allan Cox 

of a @ C  population; a cone of radius uo = 18-44' contains the entire @C population 
but  only 78.55 per cent of the @F population. Thus application of statistical 
methods based on the distribution @p to a set of samples drawn from a population 
with the distribution @c would result in erroneous confidence intervals. 

"!. . l- 

a U 

T 

a 

FIG. 2.-Angular probability distribution of Fisher ( QF), constant 
random vector ((Dc), and sum of equal random vectors ( ( D R )  types. 
For the (Dc and ( D R  distributions, x c  and X R  are given values such 

that K = K R  = Kc. 

TO solve the inverse problem of finding M c  and M ,  from the angular dis- 
persion of the resultant vector J and its average length, we first find the mean 
rn(w(z)} for the probability distribution w(z) ; 

m{w(x>} = 1 +xc2/3, 

m{w(z)} = XC+ 1/3xc, xc3 I .  (15) 

xc< I 

- 
I n  palaeomagnetic studies values of k or 6 and J ,  the mean value of the remanent 

magnetization vector, are generally available from routine calculations. Where 
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Angular dispersion due to random magnetization 35' 
the number of vectors used in these calculations is sufficiently large and where this 
model is physically applicable, K and 6 may be used as estimates of K c  and A c ,  
yielding the equations : 

Mo !z J K / ( K +  I) 

M c  z J3xc2/(3xc2+ I), k 6 3 (16) 

where x c  = 2k/3 ( K -  I) for k i 3. If K c  is substituted for K ,  these equations 
apply to the probability distribution and are exact. 

4. Sum of random equal vectors 
Random magnetization of the constant vector type is probably uncommon 

among rocks containing ferromagnetic grains with a broad spectrum of high 
coercive forces, for which the following model may be more appropriate. We 
assume that M is the vector sum of n units of magnetization, each with the same 
moment m but varying randomly in direction. For example, m may be the 
moment of each grain of magnetic mineral and n the number of grains in each 
specimen. Alternatively, n may be the number of steps in a demagnetization 
experiment and m the magnetization added randomly at each step. As before, 
the total random component M varies randomly in direction from specimen to 
specimen. Its intensity M also varies from specimen to specimen, and for n > 6 
the probability distribution PR(M) is given by the following asymptotic expression 
due to Rayleigh (1919) and Vincenz & Bruckshaw (1960): 

PR(M)  dM = [4rrM2/(2irnm2/3)3/2] exp(-3M2/2nm2) dM. (17) 
This distribution has a single maximum of PR(MR) = 4/& e MR when M = 
m(2n/3)* = MR. Writing X R  = MR/Mo and substituting, we obtain 

pR(x)dx = (4x2/7T1/2xR3) exp ( - x ~ / x R ~ )  dx (18) 
where PR(X) dx is the proportion of vectors M with magnitudes between M and 
IM+dM. The  mean of this distribution is 2XR/ir1". 

The  angular probability distribution for this set of resultant vectors may be 
found by substituting this function in equation 5 and integrating over the indicated 
ranges of x with the following result: 

I cosb: +- - exp( - I /xR~).  
2T312 XR 

The  corresponding value of RR evaluated from equation 7 is 

R E  = (I - 4 ~ ~ 2 )  erf - +- exp( - I/xR~). 
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Allan Cox 3 52 

For  XR < I the following approximations are useful 

KR 2/xR2 
AR COS-~( I - $3~2). 

T h e  error in using these approximations is less than one per cent for X R I $ ,  

corresponding to KR 2 8 and AR I 29". Exact values of KR and AR may be 
found by substituting RR values in equations 8 and 9. Conversely, if KR of AR is 
known, the exact value of X R  may be found from equation 20, noting that 

The angular dispersion and probability distributions for this model are seen 
to depend only on the quantity X R  = m(2n/3)/1/2M0. To interpret this result in 
terms of specimens containing multidomain ferromagnetic grains, let nv be the 
number of grains per unit volume and V be the specimen volume. Assume that 
the  random component of each grain is the same, as is mo = Mo/nvV, the con- 
tribution of each grain to the primary component of magnetization M, of the 
specimen. Then XR = (m/mo)  ( 2 / 3 n ~ V ) ~ / ~  and KR = 3nV(mo/m)Z provided KR 9 I. 
Thus  where dispersion is entirely due to random magnetization of this type the 
precision parameter KR is proportional to specimen volume, and the ratio of the 
primary to the random component in eachgrain is equal to the quantity ( K ~ / 3 n v q l / ~ .  

Curves of this angular probability distribution are shown in Figure 2 for a wide 
variety of angular dispersions. For comparison, curves of the Fisher distribution 
are shown in each case, and as with the constant-vector distribution the angular 
dispersions were made equal by selecting X R  to give KR = K .  T o  examine the 
cumulative effect of small differences between the two curves, the cumulative 
probability distribution function was found in the same manner as that used in 
the  derivation of equation (13), with the following result: 

R = (K-I)/K = COSA. 

The PF and PR cumulative distribution functions, although different in 
analytical expression, yield remarkably close numerical values. For values of 
K = KB = 30, for example, if uo = 25.882" then PF = 0.9500 and PR = 0.9477- 
if uo = 32.167' then PF = 0.9900 and PR = 0.9879. For higher values of K ,  t h t  
agreement is closer. Since this degree of fit is about the same as that found by 
Roberts & Ursell(1960) between the Fisher and Brownian distributions, it appears 
reasonable to apply their argument that small departures from the assumed 
distribution will have little effect on statistical deductions based on Fisher's 
distribution. 

The probability distribution WR(Z) is found from equation (4) setting 
$(x) = PR(x)  with the result: 

WR(Z)  = (z/&%w){exp[ - ( I  - Z)2/XR2] - exp[ - (I + z)~/xR~]}. (24) 
The mean of this distribution is given by 

rn{wR(x)} = (I + & x R ~ )  erf(r/xR) + (x&)1/2 exp( - I /XR~)  

= I - ( I / K R ) + x R ~ ~ ~ ~ ( I / ~ R ) .  (25) 

A convenient approximation valid for small values of X R  is the following: 

~{wR(z)} z I + I/KR. 
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Angular dispersion due to random magnetization 3 53 
Because, as Fisher (1953) has shown, k is the best estimate of K for a population 
of the @p type and because the @ R  and @p distributions are so nearly equal if 
K R  = K ,  k as evaluated experimentally is also a good estimate of KR provided 
this model for angular dispersion is physically applicable. Again using the mean 
intensity of magnetization 7 of all specimens to estimate the mean for the popula- 
tion, the following equations are valid for k 9 I :  

where is the mean intensity of the random vectors, corresponding to 2M0x~/.rr*. 
For small values of k ,  X R  may be found from equation (20) and substituted in the 
more exact equations. 

5. Experimental test of M calculations 
The present method for calculating M from experimentally determined values 

of k and Jassumes a probability distributionp(M) for the added vectors. However 
the random magnetization of interest in palaeomagnetic studies may be generated 
in many ways, and since angular distributions were found to be sensitive to 
variations in p ( x ) ,  the question arises of whether the @ calculations also are. T o  
test this, an analysis was made of some experimental data collected originally to 
evaluate demagnetization apparatus. A rock specimen was placed in simultaneous 
rotation about three axes within an alternating magnetic field which was smoothly 
decreased from a peak value to zero, after which the intensity Ji and the direction 
cosines he, pi, vi of the remanent magnetization vector were determined. The  
experiment was repeated twelve times for a single peak value of the alternating 
field, the sample being given a different orientation in the apparatus for each 
experiment. Angular dispersion was developed as a component Mi was added in 
each experiment to a component M ,  which, for physical reasons, is thought to be 
constant or nearly so for all twelve experiments. Under this assumption and the 
additional assumption that the added vectors Mi sum to zero, the mean of the 
added vectors was found from the relation: 

where 

etc. In  addition the average intensity J of the twelve remanent magnetization 
vectors was calculated, as well as k as defined by equation (2). 

Sets of twelve experiments were made on two magnetically different rock 
specimens under varying experimental conditions in peak fields ranging from 
200 to 800 oersteds. T h e  angular dispersion increased at higher fields as M ,  
decreased and Mi increased, so that k ranged from 9.51 to 21,100; almost all data 
of interest in palaeomagnetic studies fall within this range. Three conclusions 
drawn from a detailed analysis of these data are relevant to the present discussion. 
(I) The  added vectors were not of constant length. (2) For some of the experi- 
ments, but not for all of them, the direction in which the Mi vectors were added 
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3 54 Allan Cox 

was not entirely random. (3) The added components appear from physical 
considerations not to have been generated by an ideal three-dimensional random 
walk of equal steps. Thus neither of the theoretical models exactly describes the 
way in which this angular dispersion was produced. 

To compare these data with theory, values of i@/I evaluated directly 
(equation 27) are plotted as abscissas in Figure 3, values of ( S / d ) *  K/(k+ I )  as 

FIG. 3.-Experimental test of method for calculating &?/j from precision 
parameter k. The solid line corresponds to a @ R  population, the dashed 

line to a @ C  population. 

ordinates. If the experimental data consisted of a large sample drawn from a 
population having the (DR and p~ probability distributions, these two quantities 
would be equal and the data points would lie along the solid line. 

The dashed line shows where data drawn from a population of the (Dc type 
would lie on this graph. For the @ c  population i@/J= (3)*k*/(k+1) 
= 1*732K*/(K+ I) whereas for the (DR population i@/j = (8/.lr)*kt/(K+ I) 
= 1*596K*/(K+ I). The effect of a p ( x )  distribution with a smaller first moment 
may be seen from the following calculation for a uniform distribution of p(x) over 
a band of width 2Ax with centre at XB. It can be shown that K = ~ / ( x B ~ +  h 2 / 3 )  
and, as for the other cases, J = Mo(k + I) /K.  If the band extends from 0 to 2xg, 

then it? = x B M 0  and i@/j = (3/2)K*/(K+ I). Thus the effect of concentrating 
the x distribution in a line spectrum leads to an increase of it?/Tof only 8.6 per cent 
over that for the @R distribution, whereas concentration of x in a uniform band 
at x = 0 decreases i@/J by only 6 per cent. 
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Angular dispersion due to random magnetization 355 
In  view of the fact that each datum point (Figure 3) is based on only twelve 

experiments, most points lie remarkably close to the line for the @R distribution, 
although many of them would be equally consistent with the @C or the band 
distribution. These results suggest that calculations of the mean length of random 
vectors are not very sensitive to moderate departures from the theoretical models. 

6. Discussion 
The angular probability distribution generated by adding randomly oriented 

vectors to constant vectors was shown to depend on the probability distribution 
of the lengths of the added vectors. If these are generated by a three-dimensional 
random walk of a large number of small steps, a one-parameter length distribution 
results. This in turn produces a one-parameter angular probability distribution 
characterized by the mode XR of the length distribution, and this angular dis- 
tribution is remarkably similar to the one-parameter distribution of Fisher. The 
two distributions have nearly equal numerical values over almost the entire range 
of angular dispersions encountered in palaeomagnetic research. 

The  significance of the parameter K of the Fisher distribution is that the 
quantity ( 2 / ~ )  is the population variance, (2/k)* being an estimate of the sample 
angular standard deviation (Fisher 1953, Roberts & Ursell 1960, Creer et al. 
1959). In  the present model, (2/k)* has the additional significance of being an 
estimate of XR, the mode of the distribution of the lengths of the added vectors. 
Where angular dispersion is due to random magnetization of multidomain grains, 
the additional relationship exists that (2 /k)*  = (3/2)*(m/m0)/T* where (m/m,) is 
the ratio of the random to the constant component of magnetization of each grain 
and T is the total number of ferromagnetic grains in each specimen. 
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