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PREFACE

1 The purpose of the book

Paleomagnetic data are useful in many applications in Earth Science from deter-
mining paleocurrent directions to analyzing the long-term behavior of the geomag-
netic field. Despite the diversity of applications, the techniques required to obtain
and analyze the data are similar. This book attempts to draw together the vari-
ous principles and practices within paleomagnetism in a consistent and up-to-date
manner. It was written for several categories of readers:

1) for Earth Scientists who use paleomagnetic data in their research,
2) for students taking a class with paleomagnetic content, and
3) for other professionals with an interest in paleomagnetic data.

There are a number of excellent references on paleomagnetism and on the
related specialties (rock magnetism and geomagnetism). For an excellent introduc-
tory text on paleomagnetism, the reader is encouraged to explore Butler [1992]. For
in-depth coverage of rock magnetism, I recommend Dunlop and Özdemir [1997].
Similarly for geomagnetism, please see Backus et al. [1996]. A rigorous analysis
of the statistics of spherical data is given by Fisher et al. [1987]. The details of
paleomagnetic poles are covered in van der Voo [1993] and magnetostratigraphy is
covered by Opdyke and Channell [1996]. My book is intended to augment or distill
information from the broad field of paleomagnetism, complementing the existing
body of literature.

This book requires a knowledge of basic Earth Science, as well as some physics
and statistical theory. Also, access to a UNIX or LINUX computing platform is
desirable. One need not understand every detail of the book to be able to make use
of the techniques in many applications, however.

2 What is in the book

Chapter 1 begins with a review of the physics of magnetic fields. Maxwell’s equa-
tions are introduced where appropriate and the magnetic units are derived from
first principles. The conversion of units between cgs and SI conventions is also
discussed and summarized in a handy table. The book then turns to the Earth’s
magnetic field, discussing the geomagnetic potential, geomagnetic elements, and
the geomagnetic reference fields. The various magnetic poles of the Earth are also
introduced. Finally, Chapter 1 briefly describes the ancient magnetic field.

Chapter 2 deals with rock magnetism. The most important aspect of rock mag-
netism to the working paleomagnetist is how rocks can become magnetized and
how they can stay that way. In order to understand this, the chapter begins with a
discussion of what the origin of magnetism is in rocks, including induced and rema-
nent magnetism, anisotropy energy, and mechanisms of magnetization. The mag-

ix



x Preface

netic properties of geologically important minerals are described and tabulated, as
well as tools for their recognition.

The nuts and bolts of how to obtain paleomagnetic samples and how to treat
them in the laboratory is the topic of Chapter 3. It covers sampling strategy and
routine laboratory procedures, including measurement and demagnetization. Tech-
niques for obtaining both directional and paleointensity information are outlined.

Chapter 4 describes what to do with directional data. It begins with a thorough
discussion of Fisher [1953] statistics, describing many useful tests. The chapter
then illustrates how to determine if a particular data set is likely to be Fisherian and
introduces a bootstrap procedure for treating data that are not. Included are many
bootstrap tests that perform similar functions to the Fisher based tests that have
proved so useful over the years.

Magnetic tensor data, primarily anisotropy of magnetic susceptibility are useful
in a number of geological applications. The acquisition and treatment of such data
is described in Chapter 5. Traditional (Hext [1963]) and more modern (bootstrap)
approaches are presented in some detail. Tests for discrimination of eigenparame-
ters are developed and illustrated with many examples.

The final chapter, Chapter 6, provides a whistle-stop tour of various paleomag-
netic applications. It includes discussion of magnetostratigraphy, paleointensity
studies, apparent polar wander. Also included are examples of how to use magnetic
tensor data for investigations on sedimentary, igneous and metamorphic rocks.

Two appendices are included in the book. The first is a description of the com-
panion public domain software package pmag1.0, used in the examples at the back
of every chapter. Appendix 1 describes how to get the programs and how to use
them. Because the programs are designed to take advantage of many features of
the UNIX operating system, there is also a section on “survival UNIX”. Appendix
2 is a tabulation of many terms, acronyms and constants used throughout the book.
It is there that the reader will find the meaning of many of the acronyms of which
paleomagnetists are so fond.

3 How to use the book

The reader is encouraged to begin with Appendix 1. The utility of the book will be
greatly enhanced by successfully installing and using the programs and examples
at the end of each chapter. These are numbered and are referred to in the body
of each chapter. By working through the examples, the reader will gain famil-
iarity not only with UNIX and the pmag1.0 software package, but also with the
concepts discussed in the chapters. Each chapter builds on the principles outlined
in the previous chapters, so the reader is encouraged to work through the book
sequentially.
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I have attempted to maintain a consistent notation throughout the book. Vectors,
axes and tensors are in bold face; other parameters, including vector components,
are in italics. The most important paleomagnetic variables are listed in Appendix 2.

4 Acknowledgements

Although I am the sole author, I am indebted to many people for assistance great
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grateful for the many pairs of eyes that hunted down the errors (and hopefully
caught them all) in the text and the programs: Cathy Constable, Brad Clement, Jeff
Gee, Ton van Hoof, Bernie Housen, Jan Klingen, Yvo Kok, Luca Lanci, Cor Lan-
gereis, David Lowe, Chad McCabe, Tom Mullender, Andrew Newell, Bob Parker,
Peter Selkin, and Andy Roberts. Acknowledgement is owed to the many sources
of public domain software that ended up in the package pmag1.0, including: Phil
McFadden, Jeff Gee, Cathy Constable, Steve Constable, Charlie Barton. Special
thanks go to Bob Parker and Loren Shure who gave the world the gift of plotxy.
When I first used plotxy (before commercial plotting software could be had), I
sang to myself the words to Amazing Grace, “I was blind, but now I see”. I am also
grateful for the authors of the books which both educated and inspired me which
are too many to enumerate, but which are listed in the bibliography. Several people
deserve special mention for assistance of a more personal kind: Carmen Luna and
Hubert Staudigel. Thanks go to the people at Fort Hoofddijk who offered refuge for
the long leave of absence from Scripps Institution of Oceanography that spawned
this book. Finally, I would like to acknowledge two pearls of wisdom gleaned from
acquaintances along the way. From Lou Jacobs, a paleontologist: “Don’t get it
right, get it written” and from George Clark, a carpenter: “It’s what it is!”
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Geomagnetism 3

Paleomagnetism is the study of the magnetic properties of rocks. It is
one of the most broadly applicable disciplines in geophysics, having uses in
diverse fields such as geomagnetism, tectonics, paleoceanography, volcanol-
ogy, paleontology, and sedimentology. Although the potential applications
are varied, the fundamental techniques are remarkably uniform. Thus, a
grounding in the basic tools of paleomagnetic data analysis can open doors
to many of these applications. One of the underpinnings of paleomagne-
tic endeavors is the relationship between the magnetic properties of rocks
and the Earth’s magnetic field. In this chapter, we will briefly introduce
aspects of geomagnetism that are fundamental to paleomagnetism, includ-
ing the present field and its behavior through geological time. There are
many useful textbooks on geomagnetism and/or paleomagnetism that are
of general interest such as McElhinny [1973], Butler [1992], van der Voo
[1993], Blakely, [1995], Opdyke and Channell [1996], Merrill et al. [1996],
and Backus et al. [1996]. Here we briefly sketch an outline of geomagnetism.

We will start with a review of the physics of magnetic fields in general.
For excellent background reading, see Jiles [1991] and Aharoni [1996].
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1.1.     The Physics of Magnetism

1.1.1. MAGNETIC FIELDS

Magnetic fields, like gravitational fields, cannot be seen or touched. We can
feel the pull of the Earth’s gravitational field on ourselves and the objects
around us, but we do not experience magnetic fields in such a direct way.
We know of the existence of magnetic fields by their effect on objects such
as magnetized pieces of metal, naturally magnetic rocks such as lodestone,
or temporary magnets such as copper coils that carry an electrical current.
If we place a magnetized needle on a cork in a bucket of water, it will slowly
align itself with the local magnetic field. Turning on the current in a copper
wire can make a nearby compass needle jump. Observations like these led
to the development of the concept of magnetic fields.

In classical electromagnetism, all magnetic fields are the result of electric
currents. We can define what we mean by “magnetic fields” in terms of
the electric currents that generate them. Figure 1.1a is a sketch of what
might happen if we pierced a flat sheet with a wire carrying a current. If
iron filings are sprinkled on the sheet, the filings would line up with the
magnetic field produced by the current in the wire. A circle tangential to
the field is shown to the right, which illustrates the right-hand rule, that
is, if your right thumb points in the direction of current flow, your fingers
will curl in the direction of the magnetic field. The magnetic field H is at
right angles to both the direction of current flow and to the radial vector
r. The magnitude of H is proportional to the strength of the current  In
the simple case illustrated in Figure 1.1, the magnitude of H is given by
Ampère’s law:
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The more general case (known as the Biot-Savart law) in which the wire
need not be straight is given by:

where is the incremental magnetic field caused by incremental length
of       wire is the unit vector along r. The Biot-Savart law is equivalent to
Ampère’s law and also to one of Maxwell’s equations of electromagnetism.
In a steady electrical field,            where is the electric current
density. In English, we say that the curl (or circulation) of the magnetic
field is equal to the current density. The origin of the term “curl” for the
cross product of the gradient operator with a vector field is suggested in
Figure 1.1 in which the iron filings seem to curl around the wire.

1.1.2. MAGNETIC FLUX

The flux of a vector field (be it flowing water, wind, or a magnetic field)
is the integral of the vector over a given area. Magnetic fields in free space
generate magnetic flux. Magnetic Flux can be quantified when a source of
flux passes through a closed circuit because it produces a current which
can be measured. The density of flux lines is one measure of the strength of
the magnetic field called the magnetic induction B. Magnetic induction can
be thought of as something that creates an observable torque (u × B) on
a length of wire carrying an electric current Similarly, the torque
m × B is what causes the compass needle with magnetic moment m to jump
when you turn on the current in a nearby wire (and consequently produce
a magnetic induction B). A force of 1 newton per meter is generated by
passing a current of 1 ampere perpendicular to the direction of a magnetic
induction of one tesla. Thus the tesla (T) is equivalent to
Reducing these units to their most fundamental form we find that 1 T = 1

The volt-second is a unit in its own right, the weber (Wb), which logi-
cally must be a unit of magnetic flux. The weber is defined as the amount
of magnetic flux which, when passed through a one-turn coil of conductor
carrying a current of one ampere, produces an electromotive force of one
volt. This definition suggests a means to measure the strength of magnetic
induction and is the basis of the “fluxgate” magnetometer.

1.1.3. MAGNETIC MOMENT

We noted that an electrical current in a wire produces a magnetic field that
curls around the wire. A current loop surrounding an area and carrying
a current as shown in Figure 1.2, creates what is called a magnetic moment
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m whose magnitude is and so has units of A magnetic moment
making an angle with a magnetic field vector H has a magnetostatic
energy associated with it. This energy is given by or
where and H are the magnitudes of m and H, respectively and is the
magnetic permeability of free space (see Table 1.1).

Magnetization M is a moment per unit volume (units of ) or per
unit mass Sub-atomic charges such as protons and electrons
can be thought of as tracing out tiny circuits and behaving as tiny mag-
netic moments. They respond to external magnetic fields and give rise to
a magnetization that is proportional to them. The relationship between M
in the material and the external field H is defined as:

The parameter is known as the bulk magnetic susceptibility of the
material and can be a complicated function of orientation, temperature,
state of stress and applied field (see Chapter 5).

Certain materials can produce magnetic fields in the absence of external
electric currents. As we shall see in Chapter 2, these so-called “spontaneous”
magnetic moments are also the result of spins of electrons which, in some
crystals, act in a coordinated fashion, thereby producing a net magnetic
field. The resulting magnetization can be fixed by various mechanisms and
can preserve records of ancient magnetic fields. This remanent magnetiza-
tion forms the basis of the field of paleomagnetism and will be discussed at
length in the rest of this book.

From the foregoing discussion, we see that B and H are closely related.
In paleomagnetic practice, both B and H are referred to as the magnetic
field. Strictly speaking, B is the induction and H is the field, but the
distinction is often blurred. The relationship between B and H is given by:

In the SI system, has dimensions of henries per meter and is given by
In cgs units, is unity and H is identical to B

in free space. Because SI units have only recently become the standard in
paleomagnetic applications, the loose usage of B and H may perhaps be
forgiven.

Magnetic fields are different from electrical fields in that there is no
equivalent to an isolated electrical charge, there are only pairs of “opposite
charges”, or magnetic dipoles. An isolated electrical charge produces elec-
trical fields that begin at the source (the charge) and diverge outward. This
property of the vector field can be quantified by the “divergence” As
there is no equivalent magnetic source, the magnetic field has no divergence.
Thus, we have another of Maxwell’s equations:
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Because the curl of the magnetic field        is not generally zero, but
depends on the current density and the time derivative of the electric field,
magnetic fields cannot generally be represented as gradient of a scalar field.
However, in the special case away from currents and changing electric fields,
the magnetic field can be written as the gradient of a scalar field that is
known as the magnetic potential i.e.,

The presence of a magnetic moment m creates a magnetic field which
is the gradient of a scalar field (Figure 1.3). This scalar field is a function
of distance from the moment. Given a dipole moment m, the potential of
the magnetic field produced by m is:

The radial and tangential components of H at P (Figure 1.3) are:



as shown earlier.

1.2. Units conversion and confusion

We have derived magnetic units in terms of the Système International (SI).
However, you will quickly notice that in many laboratories and in the liter-
ature people frequently use what are known as cgs units. The conversions
between the two systems are given in Table 1.1 to make the process as
painless as possible.

1.3. The Earth’s Magnetic Field

One of the principal goals of paleomagnetism is to study ancient geomag-
netic fields. Here, we review the general properties of the Earth’s present
magnetic field. The geomagnetic field is generated by convection currents
in the liquid outer core of the Earth which is composed of iron, nickel and
some unkown lighter component(s). Motions of the conducting fluid, which
are partially controlled by the spin of the Earth about its axis, act as a
self-sustaining dynamo and create an enormous magnetic field. To first or-
der, the field is very much like one that would be produced by a gigantic
bar magnet located at the Earth’s center and aligned with the spin axis. In

8 CHAPTER 1

and

respectively. The units of H are moment per unit volume which reduce to
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Figure 1.4, we show a cross section of the Earth with a dipolar magnetic
field superimposed. If the field were actually that of a geocentric axial dipole
(GAD), it would not matter which cross section we chose because such a
field is rotationally symmetric about the axis going through the poles; in
other words, the magnetic field lines would always point North. The an-
gle between the field lines and the horizontal at the surface of the Earth,
however, would vary between zero at the equator and 90° at the poles.
Moreover, the magnetic field lines would be more crowded together at the
poles than at the equator (the magnetic flux is higher at the poles) resulting
in a polar field that would have twice the intensity of the equatorial field.

This so-called dipole model will serve as a useful crutch throughout our
discussions of paleomagnetic data and applications, but as will be pointed
out in more detail, it is a poor physical representation for what is actually
producing the magnetic field.

Before looking at global maps of the geomagnetic field, we will first
consider the properties of the magnetic field at a point on the surface of
the Earth. The geomagnetic field is a vector, hence has both direction and
intensity (see Figure 1.5). A vector in three dimensions requires three pa-
rameters to define it fully no matter what coordinate system you choose.
In cartesian coordinates these would be, for example,             and          De-
pending on the particular problem at hand, some coordinate systems are
more suitable to use because they have the symmetry of the problem built
into them. We will be using several coordinate systems in addition to the



The convention used in this book is that axes are denoted while
the components along the axes are In the geographic frame of
reference, positive is to the north, is east and is vertically down;
components of B, for example, can alternatively be designated

From Figure 1.5 we see how to convert from the angular coordinate
system of declination, inclination and total field magnitude to cartesian
coordinate systems, using a little trigonometry, i.e.,

The horizontal component can also be projected onto the north and
East axes (the directions in which measurements are often made), i.e.,

10 CHAPTER 1

cartesian one. We will need to convert among them at will.

1.3.1. COMPONENTS OF MAGNETIC VECTORS

The three elements of a magnetic vector that will be used most frequently
are magnitude B, declination D and inclination I, as shown in Figure 1.5.



[See Example 1.3]
Magnetic field and magnetization directions can be visualized as unit

vectors anchored at the center of a unit sphere. Such a unit sphere is difficult
to represent on a 2-D page. There are several popular projections, including
the Lambert equal area projection; we will be making extensive use of this
projection in later chapters. The principles of construction of the equal area
projection are shown in Figure 1.6. The point P corresponds to a D of 40°
and I of 35°. D is measured around the perimeter of the equal area net and
I is transformed as follows:

Geomagnetism 11

Equations 1.4 and 1.5 work equally well for components of magnetization.
[See Example 1.1]

If you have the cartesian coordinates of B (or H or M), they can be
transformed to the geomagnetic elements D, I and B:

Be careful of the sign ambiguity of the tangent function. You may end
up in the wrong quadrant and have to add 180°

[See Example 1.2]

1.3.2. PLOTTING MAGNETIC DIRECTIONAL DATA



where and are Gauss coefficients calculated for a particular year and are
given in units of nT, or magnetic flux. The and subscripts indicate fields
of external or internal origin and is the radius of the Earth (

) and the are proportional to the Legendre polynomials, normal-
ized according to the convention of Schmidt (see, for example, Chapman

CHAPTER 112

In general, regions of equal area on the sphere project as equal area
regions on this projection, as the name implies. Plotting directional data
in this way enables rapid assessment of data scatter. A drawback of this
projection is that circles on the surface of a sphere project as ellipses.
Also, because we have projected a vector onto a unit sphere, we have lost
information concerning the magnitude of the vector. Finally, lower and
upper hemisphere projections must be distinguished with different symbols.
The paleomagnetic convention is: lower hemisphere projections use solid
symbols, while upper hemisphere projections are open.

1.3.3. REFERENCE MAGNETIC FIELD

For many purposes, it is useful to have a compact representation of the
the spatial distribution of the geomagnetic field for a particular time. It is
often handy to have a mathematical approximation for the field along with
estimates for rates of change such that field vectors can be accurately esti-
mated at a given place at a given time (within a few hundred years at least).
Because the magnetic field at the Earth’s surface can be approximated by
a scalar potential field, a convenient mathematical representation for the
magnetic field is in terms of spherical harmonics. Such a representation is
used for another potential field, gravity.

The geomagnetic field is the gradient of the scalar potential as already
mentioned, but the scalar potential is a more compact representation of the
field. The formula for the scalar potential of the geomagnetic field at radius

co-latitude longitude is often written:

where
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and Bartels [1940] and Backus et al. [1996]). The Schmidt polynomials are
increasingly wiggly functions of the argument Examples are:

Once the scalar potential is known, the components of the magnetic
field can be calculated by the following relationships:

where are radius, co-latitude (degrees away from the North pole)
and longitude, respectively. Here, is positive down and to the north,
the opposite of and as defined in Figure 1.3. Note that equation 1.8
is in units of tesla, not as in equation 1.3.

The Gauss coefficients are determined by fitting equations 1.9 and 1.8
to observations of the magnetic field made by magnetic observatories or
satellite data for a particular time epoch.

The International (or Definitive) Geomagnetic Reference Field for a
given time interval is an agreed upon set of values for a number of Gauss
coefficients, and their time derivatives. The IGRF for 1995 is given in
Table 1.2 (see Barton [1996]). IGRF (or DGRF) models and programs
for calculating various components of the magnetic field are available on
the Internet from the National Geophysical Data Center; the address is
http://www.ngdc.noaa.gov. Using the values listed in, for example, Ta-
ble 1.2 or any more recent model with the equations 1.8 and 1.9, we can
calculate values of B, D and I at any location on Earth. Examples of maps
made from such calculations using the IGRF for 1995 are shown in Fig-
ure 1.7. These maps demonstrate that the field is a complicated function
of position on the surface of the Earth.

[See Example 1.4]
The intensity values in Figure 1.7a are in general highest at the poles

and lowest near the equator but the contours are
not straight lines parallel to latitude as they would be for a field gener-
ated strictly by a geocentric axial dipole such as that shown in Figure 1.4.
Similarly, a GAD would produce lines of inclination that vary in a regular
way from -90° to +90° at the poles, with 0° at the equator; the contours
would parallel the lines of latitude. Although the general trend in incli-
nation shown in Figure 1.7b is similar to this GAD model field, there is
considerable structure to the lines, which again suggests that the field is
not perfectly described by a geocentric bar magnet.

Finally, if the field were a GAD field, declination would be everywhere
zero. This is clearly not the case, as is shown by the plots of declination
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in Figure 1.7c. Perhaps the most important result of spherical harmonic
analysis for our purposes is that the field is dominated by the first order
terms and the external contributions are very small. The first order
terms can be thought of as geocentric dipoles that are aligned with three
different axes: the spin axis  and two equatorial axes that intersect the
equator at the Greenwich meridian         and at 90° East 

The vector sum of the geocentric dipoles is a dipole that is currently
inclined by 11° to the spin axis. The axis of this so-called best-fitting dipole
pierces the surface of the Earth at the diamond in Figure 1.8. This point and
its antipode are called geomagnetic poles. Points at which the field is vertical
(I = ±90° shown by a triangle in Figure 1.8) are called magnetic poles, or
sometimes, dip poles. These poles are distinguished from the geographic
poles where the spin axis of the Earth intersects its surface. The Northern
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geographic pole is shown by a dot in Figure 1.8. Averaging ancient magnetic
poles over some 10,000 years gives what is known as a paleomagnetic pole.

Because the geomagnetic field is axially dipolar to a first order approx-
imation, we can write:

where  is can be read from Table 1.2).
Thus, from equation 1.10,

Consider some latitude on the surface of the Earth in Figure 1.4. Using
the equations for and we find that:
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This equation is sometimes called the dipole formula or dipole equation
which shows that the inclination of the magnetic field is directly related
to the co-latitude for a field produced by a geocentric axial dipole (or ).
This allows us to calculate the latitude of the measuring position from
the inclination of the magnetic field, a result that is fundamental in plate
tectonic reconstructions. The intensity of a dipolar magnetic field is also
related to (co)latitude because:

The dipole field intensity has changed by more than an order of magnitude
in the past and the dipole relationship of intensity to latitude turns out to
be unuseful for tectonic reconstructions.

The dipole formula assumes that the magnetic field is exactly axial.
Because there are more terms in the geomagnetic potential than just we
know that this is not true. Because of the non-axial geocentric dipole terms,
a given measurement of I will yield an equivalent magnetic co-latitude

Paleomagnetists often assume that is a reasonable estimate of and
the validity of this assumption depends on several factors. We consider
first what would happen if we took random measurements of the Earth’s
present field (see Figure 1.9). We randomly selected 200 positions on the
globe (shown in Figure 1.9a) and evaluated the direction of the magnetic
field at each site using the IGRF for 1995. These directions are plotted in
Figure 1.9b using the paleomagnetic convention of open symbols pointing
up and closed symbols pointing down. We also plot the inclinations as
a function of latitude on Figure 1.9c. We see that, as expected from a
predominantly dipolar field, inclinations cluster around the values expected
for a geocentric axial dipolar field.

1.3.4. VIRTUAL GEOMAGNETIC POLES

We are often interested in whether the geomagnetic pole has changed, or
whether a particular piece of crust has rotated with respect to the geo-
magnetic pole. Yet, what we observe at a particular location is the local
direction of the field vector. Thus, we need a way to transform an observed
direction into the equivalent geomagnetic pole.

In order to remove the dependence of direction merely on position on the
globe, we imagine a geocentric dipole which would give rise to the observed
magnetic field direction at a given latitude and longitude The
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virtual geomagnetic pole (VGP) is the point on the globe that corresponds
to the geomagnetic pole of this imaginary dipole (Figure 1.10).

Paleomagnetists use the following conventions:    is measured positive
eastward from the Greenwich meridian and goes from is mea-
sured from the North pole and goes from Of course relates to
latitude, by is the magnetic co-latitude and is given by
equation 1.14. Be sure not to confuse latitudes and co-latitudes. Also, be
careful with declination. Declinations between 180 and 360° are equivalent
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to D - 360 and are counter-clockwise with respect to North.

[See Examples 1.5 and 1.6]
The first step in the problem of calculating a VGP is to determine the

magnetic co-latitude by equation 1.14. Furthermore, the declination D
is the angle from the geographic North Pole to the great circle joining S
and P, and is the difference in longitudes between P and S,
Now we need some tricks from spherical trigonometry.

In Figure 1.11, and are the angles between the great circles la-
belled and On a unit sphere, and are also the angles subtended
by radii that intersect the globe at the apices A, B, and C (see inset on
Figure 1.11). Two formulae from spherical trigonometry come in handy for
the purpose of calculating VGP, the Law of Sines:



If then   However, if 
then

and the Law of Cosines:

which allows us to calculate the VGP co-latitude The VGP latitude is
given by:

We can locate VGPs using these two relationships. The declination D
is the angle from the geographic North Pole to the great circle joining S
and P (see Figure 1.10) so:

so in the northern hemisphere and                        in the southern
hemisphere.

To determine we first calculate the angular difference between the
pole and site longitude
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Sometimes the site co-latitude as opposed to magnetic co-latitude is used
in the above equation, giving a virtual axial dipole moment (VADM).

As pointed out earlier, magnetic intensity varies over the globe in a similar
manner as inclination. It is often convenient to express paleointensity values
in terms of the equivalent geocentric dipole moment which would have
produced the observed intensity at that paleolatitude. Such an equivalent
moment is called the virtual dipole moment (VDM) by analogy to the VGP.
First, the magnetic paleoco-latitude is calculated as before from the
observed inclination and the dipole formula of equation 1.12, then following
the derivation of equation 1.13,

1.3.5. VIRTUAL DIPOLE MOMENT

Now we can convert the directions in Figure 1.9b to VGPs (Figure 1.12).
The grouping of points is much tighter in Figure 1.12 than in the equal area
projection because the effect of latitude variation in dipole fields has been
removed.
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The restless nature of the non-dipole field appears to be an inherent
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1.4. Earth’s ancient magnetic field

1.4.1. PALEO-SECULAR VARIATION, EXCURSIONS AND REVERSALS

It is well known that magnetic field direction and intensity change with
time. Compare the declination maps calculated from the IGRF for 1945
and 1995 (Figure 1.13). The declination in San Diego, for example, has
changed by more than a degree over the fifty year time-span. The constantly
changing nature of the geomagnetic field is known as secular variation (SV).
There are observatory records of the magnetic field vector going back several
centuries. Beyond that, we rely on so-called paleosecular variation or PSV
records that are preserved in archeological and geological materials.



When viewed over sufficient time, the geomagnetic field reverses its
polarity, by which we mean that the sign of the axial dipole changes. An
example of a so-called polarity reversal is shown in Figure 1.15 (Clement
and Kent [1984]). The intensity of the magnetic field appears to drop to
approximately 10% of its average value and the directions migrate from one
pole to the other over a period of approximately 4000 years.
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part of the geodynamo process. In Figure 1.14, we see an example of what
is observed at a single location over time. The geomagnetic field oscillates
around the GAD direction with an amplitude of some 30° over an interval
of some 9 meters (approximately 23 kyr) in the lake sediments that sur-
round Mono Lake (Lund et al. [1988]). On rare occasions, the field departs
drastically from what can be considered normal of secular variation and
executes what is known as a geomagnetic excursion.



When the polarity is the same as the present polarity it is said to be
normal. When it is in the opposite state, it is said to be reverse. On average,
the field spends about half its time in each state, and only a tiny fraction (1-
2%) of the time in an intermediate state. Rocks of both polarities have been
documented from early in the Earth’s history, although the frequency of
reversal has changed considerably through time (see Opdyke and Channell
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[1996] and Merrill et al. [1996]).

1.4.2. GEOMAGNETIC POLARITY TIME SCALE

A list of dates of past geomagnetic polarity reversals is known as a geomag-
netic polarity time scale (GPTS). The first GPTS was calibrated for the
last five million years by dating basalts of known polarity (see the excel-
lent book by Glen [1982]). The polarity sequence is broken down into times
of dominantly normal polarity and times of dominantly reverse polarity.
These time units are known as chrons.

The uncertainty in the dating of young basalts exceeded the average
duration of polarity intervals for times prior to about five million years
until the advent of high precision dating techniques. The most
complete historical record of paleomagnetic reversals (at least for the last
160 million years or so) is retained in the ocean crust. Modern time-scales
are all based on the template provided by magnetic field anomalies mea-
sured by magnetometers towed across the oceans (see e.g., Cande and Kent
[1992] and Figure 1.16).

Magnetic anomalies are generated at oceanic ridges or spreading centers,
where molten rock from the mantle solidifies and acquires a magnetization
during cooling (see Chapter 2). These strongly magnetized rocks are gra-
dually carried away from the ridge by the process of seafloor spreading,
and, as the polarity of the magnetic field changes, quasi-linear bands of
oceanic crust with magnetizations of alternating polarity are generated.
These bands produce magnetic fields that alternately add to and subtract
from the Earth’s ambient magnetic field, resulting in lineated magnetic
anomalies. The anomalous magnetic field is obtained by subtracting the
IGRF from the total magnetic field data (Figure 1.16c). These data are
processed in order to make the anomalies as “square” as possible. Then, a
square-wave is fitted to the data which are interpreted in terms of changes
in polarity. In practice, several profiles can be stacked in order to aver-
age out noise and to produce a template that best represents the reversal
history of the geomagnetic field.

The template of reversals obtained from marine magnetic anomaly data
is in terms of kilometers from the ridge crest and covers the period of time
for which there is sea floor remaining (since the Jurassic). The numerical
calibration of the time-scale is frequently updated. All time-scale calibra-
tions rely on the tying of numerical ages to known reversals (see e.g., Cande
and Kent [1992] and Harland et al. [1989]). Ages for other reversals are in-
terpolated or extrapolated. Numerical age information in recent time scales
comes from both decay of radioactive isotopes and from calculations of long-
term variations in the Earth’s orbit (see e.g., Shackleton et al. [1990] and
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Hilgen [1991]). It is worth pointing out that the difference between the first
Cenozoic time scale, based on extrapolation from about 3 Ma to about 80
Ma, and the most recent ones, which are based on many more dates, is no
more than about 10%; the time scale is therefore reasonably well known
and the current arguments are concerned with the details.

In Figure 1.17 we show the polarity history from the marine magnetic
anomaly template (Cande and Kent [1992], Harland et al. [1989]). The
details of the history of reversals for times older than the oldest sea floor
magnetic anomaly record (about 160 Ma) are sketchy, but will eventually
be documented using sedimentary records of the magnetic field (see Opdyke
and Channell [1996]).

Examination of the reversal history shown in Figure 1.17 suggests that
reversals occur at apparently random intervals without a predictable pat-
tern. Furthermore, the frequency of reversals appears to change (see for
example, Merrill et al. [1996]). Above the polarity pattern in Figure 1.17,
we plot the number of reversals in four million year intervals as a histogram.
The reversal frequency is relatively high in the interval 124-150 Ma, but ap-
pears to drop gradually to zero at the beginning of the so-called Cretaceous



The magnetization in a rock, as well as retaining a record of the direction of
the magnetic field when cooled from high temperature, has an intensity that
is also a function of field magnitude. It is sometimes possible to estimate the
magnitude of the Earth’s field from geological samples (see e.g., Thellier
and Thellier [1959] and Chapter 3). We plot compilations of such data

1.4.3. PALEOINTENSITY

Normal Superchron (CNS), a period of some 40 m.y. in which no (or very
few) reversals occurred. Since the end of the CNS at about 84 Ma, the
frequency of reversals has increased to the present average rate of about
four per million years.
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since the Jurassic in Figure 1.17, from Juárez et al. [1998] and Tanaka et
al. [1995]. For the Tanaka et al. [1995] data, we plot only non-transitional
data with more than a single sample normalized by the so-called Thellier-
Thellier technique (see Chapter 3). Much of the Mesozoic had a rather low
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The frequency of polarity reversals changes dramatically from the CNS
to the present. The sparse paleointensity data in Figure 1.17 are consistent
with the view that the long-term average field intensity has something to
do with the average reversal frequency. The link between reversal frequency
and paleointensity is more strongly made by the sedimentary paleointensity
data of Tauxe and Hartl [1996] (Figure 1.18). These data indicate that the
field is generally higher in the early part of the Oligocene when there are
fewer reversals (about 1.6 ) than in the last half of the Oligocene
when there were more reversals (about 4 ). If we replot the polarity
interval averages (diamonds in Figure 1.18) against polarity interval length
in Figure 1.19, there is a weak but significant correlation between polarity
interval length and average intensity.
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field intensity (the Mesozoic dipole low of Prévot et al. [1990]) with an

The compilation of high quality paleointensity data by Juárez
et al. [1998] shows that the Cenozoic also had a predominantly low field,
suggesting that the Mesozoic “dipole low” is probably the most common
state of the geomagnetic field, with anomalously high values occurring in
the latter part of the Cretaceous and early Cenozoic and during the last
few thousand years.

apparent average intensity of about 25% of the present field which is
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1.4.4. TIME-AVERAGED FIELD

It is often supposed that when averaged over some time interval, the direc-
tions of the magnetic field will average to those generated by a geocentric
axial dipole. That is, all terms but      will cancel. This is the GAD hypothe-
sis. Because this hypothesis is central to many paleomagnetic applications,
it is worthwhile considering its validity. If the GAD hypothesis is true, then
the average declinations     of in situ rock formations should point directly
toward the Earth’s spin axis and the average inclinations    should relate
to the site latitude    by the dipole formula (equation 1.12).

In Figure 1.20, we plot inclination data from over 100 deep-sea sedi-
ment cores (Schneider and Kent [1990]) as a function of paleolatitude. The
solid lines are the inclination expected from the dipole formula. It seems
that the data fit the GAD model to first order, but data from reversed po-
larity intervals seem to be shifted to somewhat more positive values than
expected from the GAD hypothesis (Schneider and Kent [1990]). The er-
ror in estimating paleolatitude that results from assuming a GAD model
is about 3-4°. While this is not large, it should be kept in mind that the
GAD hypothesis may not strictly be true (see also Johnson and Constable
[1996]).



1.5.   Examples
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Example 1.1
Use the program dir_cart to convert the following data from declination
D, inclination I and intensity M to

Solution
The programs described in this book are listed in the Appendix, with in-
structions on their use. Also, all programs respond with help commands
to the syntax: % programname -h where the % symbol stands for the
command line prompt. So to find out what dir_cart does, type:
% dir_cart -h
to which the computer responds:
Usage: dir_cart [-m] [Standard I/O]

options:
-m read magnitude field
input:

declination, inclination, [magnitude]
or

longitude,latitude
output:

x1,x2,x3
From this, we see that to convert D, I, M data to cartesian components,
we can type the following:
% dir_cart -m
20 46 1.3 [Input D, I, M]

0.848595 0.308863 0.935142 [Output ]
175 -24 4.2

-3.82229 0.334409 -1.70829
[ type <control-D> to finish]
or:
enter D, I, M data into data file by typing:
% cat>ex1.1
20 46 1.3
175 -24 4.2
[ type <control-D> to finish]
then type:
% dir_cart -m < ex1.1

D

20
175

I

46
-24

M

1.3
4.2
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and the computer responds:
0.848595 0.308863 0.935142
-3.82229 0.334409 -1.70829

Taking advantage of the UNIX ability to redirect output, the output can
be put into a file by:
% dir_cart -m < ex1.1 > ex1.1a
ex1.1a can be printed (with lpr on many systems), listed to the screen
(with cat or more), or used as input for another program with the UNIX
pipe facility.

Solution
Type:
% cart_dir
0.3971 -.1445 0.9063 [Input ]

340.0 65.0 0.100E+01 [Output D, I, M]
-.5722  .0400  -.8192

176.0 -55.0 0.100E+01
[type <control-D> to finish]
or use cat as in the first example.

Example 1.3
Use the program eqarea to plot an equal area projection of the following
directions.

Example 1.2
Use the program cart_dir to convert these cartesian coordinates to geo-
magnetic elements:

D

346.5
49.4
340.9
349.8
169.7
196.4
186.1

I

2.7

42.6
0.1

-12.4
2.3

39.3
2.5

D

334.4
8.9
70.5
166.3
182.3
165.9

I

-12.9
31.2
29.7
20.7
15.0
3.6

0.3971
-0.5722

-0.1445
.0400

0.9063
-0.8192
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Solution
First enter the data ex1.3 (using e.g., cat, as in Example 1.1). Then type:
% eqarea < ex1.3 | plotxy
The program plotxy produces Postscript output which can be viewed with
ghostscript, ghostview, or any other Postscript viewer or manipulator.
The output should look like Figure1.21.

Example 1.4
Use the program igrf to estimate the field on June 1, 1995 in Amsterdam,
The Netherlands (52.5°N, 5°E).
Solution
Type the following:
% igrf
1995.5 0 52.5 5 [Input decimal year, altitude (km), lat. (N), long. E)]

358.0 67.4 48549 [Output D, I, B (nT)]
[type <control-D> to finish]
or use cat as in the first example.

Example 1.5
Use the program di_vgp to convert the following:

D

11

154

I

63

-58

(N)

55

45.5

(E)

13

-73
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Solution
Type the following:
% di_vgp
11 63 55 13 [Input ]

154.7 77.3 [Output ]
154 -58 45.5 -73

6.6 -69.6
[ type <control-D> to finish]
or put the data into a file using cat > ex1.5, as demonstrated in Example
1.1. Then use the following:
% di_vgp < ex1.5

Example 1.6
Use the program vgp_di to convert the following:

Solution
Type the following:
% vgp_di
68 191 33 243 [Input data]

335.6 62.9 [Output answer]
[type <control-D> to finish]
or use cat, as illustrated in Example 1.1.

68 191 33 243



Chapter 2

RUDIMENTS OF ROCK MAGNETISM
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Scientists in the late 19th century considered that it might be possi-
ble to exploit the magnetic record retained in rocks in order to study the
geomagnetic field in the past. Early work in rock magnetism provided the
theoretical and experimental basis for presuming that rocks might retain a
record of past geomagnetic fields. There are several books and articles that
describe the subject in detail (see e.g., Stacey and Banerjee [1974], O’Reilly
[1984], Fuller [1987], Dunlop and Özdemir [1997]), while Butler [1992] gives
an excellent introduction for the general earth science audience. We present
here a brief overview of theories on how rocks become and stay magnetized.

Substances generally respond to magnetic fields; a few generate them.
Therefore it is convenient to separate the magnetization of a material M
into two contributions: that which exists only in the presence of an exter-
nal magnetic field (induced magnetization) and that which exists in zero
external magnetic field (remanent magnetization). As stated in Chapter 1,
most of the magnetic behavior of solids results from electronic spin. Classi-
cal physics suggests that the moment generated by an orbiting electron is
proportional to its angular momentum. Quantum physics tells us that the
angular momentum must be quantized. The fundamental unit of magnetic
moment of electrons is termed the Bohr magneton and has a value of

2.1. Induced magnetization

2.1.1. ROLE OF ELECTRONIC ORBITS

The orbit of an electron can be characterized as a moving charge with
velocity and charge (see Figure 2.1 and Aharoni [1996]). What keeps the

The magnetic moments of electrons respond to externally applied mag-
netic fields, which creates an induced magnetization that is observable
outside the substance. is a function of the applied field H, i.e.,

From Chapter 1, we see that is the magnetic susceptibility. At its sim-
plest, can be treated as a scalar and is referred to as the bulk magnetic
susceptibility In detail, magnetic susceptibility can be quite compli-
cated. The relationship between induced magnetization and applied field
can be affected by crystal shape, lattice structure, dislocation density, state
of stress, etc., which give rise to possible anisotropy of the susceptibility.
Furthermore, there are only a finite number of electronic moments within
a given volume. When these are fully aligned, the magnetization reaches
saturation. Thus, magnetic susceptibility is both anisotropic and non-linear
with applied field. We will explore the origin of magnetic susceptibility only
briefly here.

Rudiments of Rock Magnetism
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charge in orbit is the balance of the attractive force of the proton drawing
the electron towards the nucleus and the “centripetal force” pushing the
electon away from the nucleus. The attracive force between the proton
and the electron is given by Coulomb’s law:

where is Boltzmann’s constant, and the “centripetal
force” is given by:

where and are the electronic mass and orbital frequency, respectively.
Balancing these two competing forces and solving for gives a fundamental
orbital frequency The tiny current generated by the electronic orbit
creates a magnetic moment. In the presence of an external field H, there is
a torque on the electron. The new balance of forces changes by
some increment which is known as the Larmor frequency.
The change in orbital frequency results in a changed magnetic moment.
The change in net magnetization is inversely proportional to H. The
ratio is the diamagnetic susceptibility it is negative, essentially
temperature independent, and quite small.
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2.1.2. ROLE OF ELECTRONIC SPINS

Unpaired electronic spins also behave as magnetic dipoles. In the absence of
an applied field, or in the absence of the ordering influence of neighboring
spins which are known as exchange interactions, the spins are essentially
randomly oriented. An applied field acts to align the spins which creates a
net magnetization equal to is the paramagnetic susceptibility.

Each unpaired spin has a moment of one Bohr magneton The ele-
ments with the most unpaired spins are the transition elements. These are
responsible for most of the paramagnetic behavior observed in rocks.

A useful model for paramagnetism (see e.g., Chikazumi and Charap
[1986] or Aharoni [1996]), Langevin theory, is based on a few simple premises:

Each unpaired spin contributes a dipole moment.
In the absence of an applied field, the moments are essentially ran-

domly oriented, i.e., all directions are equally likely to occur.
An applied field acts to align the spins which creates a net moment.
There is competition between thermal energy (T is temperature

in kelvin) and the magnetic energy of a magnetic moment m
at an angle with an external magnetic field H is given by:

where is the permeability of free space (see Table 1.1).

Magnetic energy is at a minimum when the magnetic moment is parallel
to the magnetic field. Using the principles of statistical mechanics, we find
that the probability density of a given moment having energy is:

Because we have made the assumption that there is no preferred align-
ment within the substance, we can assume that the number of moments
between angles and with respect to H is proportional to the solid
angle and the probability density function, i.e.,

When we measure the induced magnetization, we really measure only
the component of the moment parallel to the applied field (see Section 2.4
on hysteresis), or The net magnetization of a population of
particles with volume is therefore:

Rudiments of Rock Magnetism
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where is the number of moments between the angles and
integrates to N, the total number of moments:

The total saturation moment of a given population of N individual
magnetic moments is The saturation value of magnetization
is thus normalized by the volume Therefore, the magnetization
expressed as the fraction of saturation is:

By substituting and we write

and finally

The function enclosed in square brackets is known as the Langevin func-
tion and is shown in Figure 2.2. It approaches saturation (in this case,

when is some 10-20 times When is
approximately linear with a slope of ~ 1/3. At room temperature and fields
up to many tesla, L(a) is approximately If the moments are
unpaired spins then and:

We have neglected all deviations from isotropy including quantum me-
chanical effects as well as crystal shape, lattice defects, and state of stress.
We can rewrite the above equation as:

To first order, paramagnetic susceptibility is: positive, larger than
diamagnetism and inversely proportional to temperature. This inverse T
dependence is known as Curie’s law of paramagnetism.

CHAPTER 2
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2.2. Remanent magnetization

Some substances give rise to a magnetic field in the absence of an applied
field. This magnetization is called remanent or spontaneous magnetization,
and constitutes the phenomenon which is loosely known as ferromagnetism
(sensu lato). Magnetic remanence is caused by strong interactions between
neighboring spins that occur in certain crystals. The so-called exchange
energy is minimized when the spins are aligned parallel or anti-parallel
depending on the details of the crystal structure. Exchange energy is a
consequence of the quantum mechanical principle which states that no two
electrons can have the same set of quantum numbers. In the transition
elements, the 3d orbital is particularly susceptible to exchange interactions
because of its shape and the prevalence of unpaired spins, so remanence is
characteristic of certain crystals containing transition elements with unfilled
3d orbitals. As temperature increases, the scatter in spin directions also
increases. Above a temperature characteristic of each crystal type (known
as the Curie temperature cooperative spin behavior disappears and the
material becomes paramagnetic.
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While the phenomenon of ferromagnetism results from complicated in-
teractions of neighboring spins, it is useful to think of the ferromagnetic
moment as resulting from a quasi-paramagnetic response to a huge internal
field. This imaginary field is termed here the Weiss molecular field In
Weiss theory,  is proportional to the magnetization of the substance,
i.e.,

where is the constant of proportionality. The total magnetic field that
the substance experiences is:

where H is the external field. By analogy to paramagnetism, we can sub-
stitute for H in equation 2.8

For temperatures above the Curie temperature we set
to zero. Substituting for and using the low-field approxi-

mation for equation 2.10 can be rearranged to get:

Equation 2.11 is known as the Curie-Weiss law and governs ferromagnetic
susceptibility above the Curie temperature.

Below the Curie temperature, we can neglect the external field H and
get:

Substituting again for and rearranging, we get:

where is the Curie temperature and is given by:

Equation 2.12 can be solved graphically or numerically and is sketched in
Figure 2.3. Below the Curie temperature, exhange interactions are strong
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relative to the external field and the magnetization is governed by equa-
tion 2.12. Above the Curie temperature, it follows the Curie-Weiss law
(equation 2.11).

2.2.1. TYPES OF FERROMAGNETISM

As we have seen, below the Curie temperature, certain crystals have a per-
manent (remanent) magnetization resulting from the alignment of unpaired
electronic spins over a large area within the crystal. Spins may be either
parallel or anti-parallel; the sense of spin alignment is controlled entirely
by crystal structure. The energy term associated with this phenomenon
is the exchange energy. There are three categories of spin alignment: fer-
romagnetism (sensu stricto), ferrimagnetism and antiferromagnetism (see
Figure 2.4).

In ferromagnetism (sensu stricto, Figure 2.4a), the exchange energy is
minimized when all the spins are parallel, as occurs in pure iron. When
spins are perfectly antiparallel (antiferromagnetism, Figure 2.4b), there is
no net magnetic moment, as occurs in ilmenite. Occasionally, the antiferro-
magnetic spins are not perfectly aligned in an antiparallel orientation, but
are canted by a few degrees. This spin-canting (Figure 2.4c) gives rise to
a weak net moment, as occurs in hematite. Also, antiferromagnetic mate-
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rials can have a net moment if spins are not perfectly compensated owing
to defects in the crystal structure, as occurs in fine-grained hematite. The
uncompensated spins result in a so-called defect moment (Figure 2.4d).
Also, the temperature at which spins become disordered in antiferromag-
netic substances is termed the Néel temperature. In ferrimagnetism, spins
are also aligned antiparallel, but the magnitudes of the moments in each
direction are unequal, resulting in a net moment (Figure 2.4e).

2.3. Magnetic anisotropy energy

Single crystals may have net magnetic moments which remain in the ab-
sence of an applied field. However, the direction of the net moment is free to
rotate within the crystal, if it is not “blocked” by some other factor. Such
a remanence would not have a long memory of ancient fields and would
be useless for paleomagnetic purposes. The direction that a particular mo-
ment will have within a crystal will tend to lie in a direction that minimizes
the magnetic energy. Magnetic anisotropy energy (see also O’Reilly [1984]
and Dunlop and Özdemir [1997]) is responsible for blocking magnetic mo-
ments in particular directions within a crystal. By magnetic anisotropy, we
mean that magnetic grains have “easy” directions of magnetization. A grain
tends to be magnetized along these easy directions and energy is required
to move the magnetic moment through the intervening “hard” directions.
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An example of anisotropy energy resulting from crystal shape is illustrated
in Figure 2.5.

As anyone will remember from playing with magnets in school or on
the refrigerator, magnetic moments prefer to be aligned head to tail, rather
than with heads abutting. The magnetic energy of moments aligned along
the length of a crystal is lower than those in which the moment is aligned
crosswise. The direction along the length of the grain is “easy” and across
the length is “hard”. The energy required to move the moment from one
easy direction to the other (through the hard direction) is the anisotropy
energy. The case illustrated in Figure 2.5 is for anisotropy energy result-
ing from grain shape (magnetostatic energy). Other sources of anisotropy
energy are crystal structure (magnetocrystalline energy) and the state of
stress within the crystal (magnetostrictive energy). The magnitude of the
magnetic field that supplies sufficient energy to overcome the anisotropy
energy  is  called  the  switching  or  coercive  field

Consider a particle with volume whose easy axis makes an angle
with the magnetic field H (see Figure 2.6). The magnetic moment m is
drawn away from the easy axis, making an angle with the easy axis. The
component of m parallel to H is given by The energy of
such a particle is governed by two competing sources (Stoner and Wohlfarth
[1948]). The anisotropy energy encourages alignment of m with the easy
axis, and the magnetostatic energy acts to align m with H.

Anisotropy of the type depicted in Figure 2.5 and 2.6 has one preferred
axis and a single constant controls the magnetic anisotropy energy to
first order. The anisotropy energy density for a uniaxial material is given
by:
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Most often, uniaxial magnetic anisotropy results from anisotropic shape
as in Figure 2.5. In this case, where is a dimension-
less, shape dependent factor called the demagnetizing factor. This type of
anisotropy energy is termed magnetostatic energy or shape anisotropy.

Magnetic anisotropy caused by magnetocrystalline sources can lead to
several easy axes, depending on the symmetry of the crystal structure. In
the case of a cubic crystal whose easy axis is aligned along the body diagonal
(as in magnetite), the energy equation is somewhat more complicated than
equation 2.13. One must take into account the relationship of m to the
three crystal axes. Thus the magnetocrystalline anisotropy energy for a
cubic mineral is:

where are the direction cosines of m with respect to the crystal axes.
and are controlled by exchange interactions between nearest neighbor
electronic spins. In magnetite at room temperature, and
so the easy axis is along the body diagonal ([111] direction). The magne-
tocrystalline anisotropy constants are strongly dependent on temperature,
and changes in sign or relative magnitudes result in diagnostic features in
thermomagnetic curves, as discussed later.

Another source of magnetic anisotropy is stress. Magnetic crystals change
shape as a result of the ordering of magnetic moments below the Curie
temperature, a phenomenon known as magnetostriction. As the spins move
about in the crystal in response to applied fields, the crystal undergoes fur-
ther deformation. The fractional change in length, is termed Mag-
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netostriction caused by a stress creates the anisotropy energy density
which is given to first order by:

where is the angle between m and the principal stress direction.

2.4. Magnetic hysteresis

Because the response of a magnetic substance to an applied field depends
strongly on the physical properties of the material, it is rapidly becoming
routine to measure what is known as hysteresis loops in rock and paleomag-
netic studies (see e.g., Tauxe et al. [1996b] for a more complete discussion).
While the interpretation of these loops is not simple, much can be learned
in a short amount of time by analyzing the loops in an informed way.

Hysteresis loops are generated by subjecting a small sample to a large
magnetic field The magnetization is monitored as the applied field
decays to zero, switches polarity and approaches then returns
through zero to

Before describing the analysis of loops in detail, we must first consider
what controls the shape of loops in a simple system. If we imagine a particle
similar to that illustrated in Figure 2.6 that has a single easy axis at some
angle to the applied field, the direction of magnetization will be at some
angle with respect to the easy axis, reflecting the balance of anisotropy
and magnetic energies.

In the uniaxial case is given by equation 2.13. The magnetic energy
from the external field is Thus, the energy density of the magnetic
grain depicted in Figure 2.6 is given by:

As shown in Figure 2.6b, the magnetometer is only sensitive to the
induced component of m parallel to the applied field which is

If the easy axis is aligned parallel to the field the induced
moment remains parallel to H. The angle and the component of
m parallel to equals the magnitude of m, (see the square loop
in Figure 2.7). As the field decreases to zero and then to
remains unchanged until the field is sufficiently large to cause m to switch
through the intervening hard direction to the other direction along the
easy axis (contributing to the resulting loop). This field is known as
the switching field and is a function of                and Fo For          we define
the switching field to be the intrinsic coercivity which is related to
and by:
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Following the curve from            to           and then to H = 0 in

moment again switches at and then

The calculation of for other than 0 is more difficult. The portion
of the loop from to 0 (the “descending loop”) is calculated by first
numerically evaluating the smallest for which E is at a minimum. Then

The portion back to (the “ascending loop”)
must be calculated in two parts. We begin by assuming that the moments
are in a state of saturation from exposure to and evaluate as
a function of H for increasing H until the intrinsic coercive field is reached.
At this point the ascending loop joins the descending loop. In Figure 2.7,
we show several examples of loops for various values of
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In the case of the “loop” is a line. The moment is entirely
“bent” into the direction of H for large H. As the field decreases, the
moment relaxes back into the easy direction and is zero at zero field.

In rocks, there are many individual magnetic particles whose contribu-
tions sum to produce the observed hysteresis loops. In Figure 2.8, we show
the sum of 10,000 hypothetical grains with randomly oriented whose
magnetic anisotropy is uniaxial. After exposure to fields in excess of the in-
trinsic coercivities of all the grains in the sample (the saturating field a
sample will have a saturation remanent magnetization In the uniaxial
case, is 0.5.

In some geologically important cases, minerals may have an anisotropy
energy that is controlled by magnetocrystalline sources; hence they may not
be uniaxial, but instead may be, say, cubic in symmetry (see e.g., Gee and
Kent [1995]). In magnetite (at room temperature), the easy axis is along
the body diagonal. There are four easy axes within a given crystal and the
maximum angle between an easy axis and any H direction is 55°. Because
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this is much less than 90°, there is no individual loop that goes through the
origin. A random assemblage of particles with cubic anisotropy will have
a much higher saturation remanence. In Figure 2.9 we show a synthetic
loop generated from 500 grains with randomly distributed crystal axes for

was cubic in origin. The theoretical ratio of for such assemblages
is 0.87, as opposed to 0.5 for uniaxial anisotropy (see Joffe and Heuberger
[1974]).

2.4.1. HYSTERESIS PARAMETER ESTIMATION

Hysteresis loops are rich in information, but require a large number of pa-
rameters to describe them (a typical loop can consist of hundreds of mea-
surements). It would be useful to characterize the main features of the loop
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with a few well chosen parameters. For example, the maximum magnetiza-
tion achieved is the saturation magnetization In order to estimate this,
data must be carefully adjusted to remove any para- or diamagnetic contri-
butions. The maximum (saturation) remanence acquired is estimated
by the value at the intercept of the descending curve (see Figure 2.8).
The bulk (or average) coercivity is the intercept of the ascending
loop. Another useful parameter is the field required to achieve the satu-
ration remanence, the saturating field In a saturation hysteresis loop,
the field required to “close” the loop whereby the ascending and descending
curves join, is and is indicated by in Figure 2.8. The prime indicates
that this value was deterimined from a hysteresis loop, as opposed to direct
measurement as described later.

In Figure 2.10 we illustrate the acquisition of remanence after subjecting
a sample to successively higher DC fields. This remanence is termed an
isothermal remanent magnetization (IRM). In this case, is around 0.4
tesla. The saturation IRM is the same as calculated from hysteresis
loops, as shown in Figure 2.8.

The value of the field necessary to remagnetize half the moments aligned
at thereby reducing the net magnetization to 0, is termed the coercivity
of remanence or There are several ways of estimating It can be
measured directly by subjecting the saturation remanence to an increas-
ingly strong field in the opposite direction and measuring remanence
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after each step. The field required to reduce to zero is as illustrated
in Figure 2.10. Alternatively, it can be calculated from the hysteresis loop,
as shown in Figure 2.8. Imagine that, instead of continuing from 0 to the
maximum field on the ascending loop, one switches the field off at some
value of H larger than and allows the magnetization to relax back to
some remanent value. The value of H which results in a net remanence of
0 provides another estimate of the coercivity of remanence which we call

This parameter can be estimated numerically by sliding the descend-
ing loop down by the value of (so that it has a zero intercept) and
determining the field at which the axis intercepts the ascending loop of
the adjusted curve. This method gives is a reasonable estimate of

A third way to estimate is illustrated in Figure 2.11. The difference
between the descending and ascending loops in Figure 2.8 is plotted
in Figure 2.11a. This curve was termed by Tauxe et al. [1996b] the
curve”. The derivative of the curve (called is shown in
Figure 2.l1b. The field required to reduce to half its initial value is
another measure of the coercivity of remanence and is termed here

The derivative of the curve (see Figure 2.11b) represents the distri-
bution of coercivities within the sample. The large hump in centered
on approximately ~30 mT reflects the single coercivity of the population.

2.5. Magnetic domains

Until now, we have assumed that a magnetic crystal behaves as a single
isolated magnetic dipole. Such grains are termed single domain (SD) grains.
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In nature, this condition is rarely met. The “free poles” at the grain’s surface
create a magnetic energy which increases with grain volume. At some size,
it becomes energetically more favorable to break the magnetization into
several uniformly magnetized regions, or magnetic domains, as this reduces
the associated magnetic field. Magnetic domains are separated by domain
walls. Such grains are termed multi-domain (MD) grains.

Magnetic grains with few domains behave much like single domain
grains in terms of magnetic stability and saturation remanence. These
grains have earned the name pseudo-single domain (PSD) grains (e.g.,
Stacey and Banerjee [1974]) and are apparently responsible for most of
the stable remanence coveted by paleomagnetists.

The field produced by MD grains could be reduced in several ways (Fig-
ure 2.12). Each configuration has a penalty with respect to one or more
of the various energy terms. For example, the circular spin option (Fig-
ure 2.12d), while eliminating the associated magnetic field, dramatically
increases exchange energy.

It requires a great deal of energy for magnetic grains to nucleate domain
walls. Within the wall, the spins must change from one easy direction to
another (see Figure 2.13). The narrower the wall, the greater the exchange
energy because the spins are not parallel. The wider the wall, the greater
the magnetocrystalline energy, because the spins will orient at some angle
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to the easy direction. The number of walls in a given grain will depend on
its size, distribution of defects, state of stress and shape, to mention a few
factors. The reader is referred to Dunlop and Özdemir [1997] for a more
complete discussion of domain theories and observations.

Because moving domain walls is easier than switching the entire mo-
ment of SD grains, MD grains have lower coercivities and lower saturation
remanences than SD grains. A typical hysteresis loop for a population of
MD magnetite grains is shown in Figure 2.14a. The ratio for such
a population is typically less than about 0.05 and the ratio is typ-
ically larger than four. As might be expected from the name, loops for
populations of PSD grains lie somewhere in between the SD (Figure 2.8)
and the MD loops (Figure 2.14a), as shown in Figure 2.14b.

Day et al. [1977] measured a number of samples of magnetite whose
grain sizes were reasonably well known. When plotted on a log-log plot (see
Figure 2.15), the hysteresis ratios and fall along a line of
increasing grain size from the smallest SD grains (highest to the
largest MD grains (lowest ratios). Day et al. [1977] divided the plot
into regions of SD, PSD, and MD behavior and suggested that hysteresis
parameters could be used to infer magnetic grain size. As we shall see later,
physical interpretation of hysteresis loops is more complex and simple plots
of the ratios alone are virtually meaningless.

2.6. Mechanisms of remanence acquisition

We turn now to the subject of how geological materials become magnetized
in nature. In order for rocks to stay magnetized in a particular direction, we
must consider the role of the competition between exchange energy, aniso-
tropy, and thermal energies in particles. There are a number of mechanisms
by which magnetic remanence can be acquired. These are important to pale-
omagnetists because the mode of magnetic remanence acquisition is critical
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to the interpretation as to age and reliability of the remanence isolated in
the laboratory. In the following, we will discuss the most important of these

Rudiments of Rock Magnetism



56

in some detail. Appendix 2 contains a list and short definition of many of
the common forms of magnetic remanence.

2.6.1. MAGNETIC VISCOSITY AND RELAXATION TIME

The essence of paleomagnetic stability can be illustrated with a discus-
sion of magnetic viscosity, or the change in magnetization with time at
constant temperature. The following ideas are explained in more detail by
Néel [1949, 1955] (see also Stacey and Banerjee [1974] and Dunlop and
Özdemir [1997]). Imagine a block containing an assemblage of randomly
oriented, non-interacting, uniformly magnetized particles. Let us further
suppose that each particle has a single easy axis and that the magneti-
zation lies in either direction along that axis. Occasionally, a particular
particle has sufficient thermal energy to overcome the magnetic anisotropy
energy associated with the intervening hard directions and the moment
switches its direction along the easy axis. In the absence of an applied field,
the moments of an assemblage of particles will tend to become randomly
oriented and any initial magnetization will decay away according to the
following equation:

where is the initial magnetization, is time and is an empirical con-
stant called the relaxation time. is the time for the remanence to decay
to of its initial value.

The value of is a function of the competition between magnetic aniso-
tropy energy and thermal energy. It is a measure of the probability that a
grain will have sufficient thermal energy to overcome the anisotropy energy
and switch its moment. Therefore:

where C is a frequency factor with a value of something like The
anisotropy energy is given by the dominant anisotropy constant K (either

times the grain volume Thermal energy is given by
Thus, the relaxation time is proportional to coercivity, and volume, and

is inversely related to temperature. Relaxation time varies rapidly with
small changes in and T. There is a sharp transition between grains with
virtually no stability is on the order of seconds) and grains with stabili-
ties of years. Grains with seconds have sufficient thermal
energy to overcome the anisotropy energy frequently and are unstable on
a laboratory time-scale. In zero field, these grain moments will tend to
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rapidly become random and in an applied field, they tend to rapidly align
with the field. The net magnetization is related to the field by a Langevin
function. Therefore, this behavior is quite similar to paramagnetism, hence
these grains are called superparamagnetic (SP). Such grains can be distin-
guished from paramagnets, however, because the field required to saturate
the moments is typically less than a tesla, whereas that for paramagnets
can exceed hundreds of tesla.

2.6.2. VISCOUS REMANENT MAGNETIZATION

The magnetization which is acquired by viscous processes is called a vis-
cous remanent magnetization or VRM. With time, more and more grains
will have sufficient thermal energy to overcome anisotropy energy barriers
and will switch their magnetizations to an angle that is more in alignment
with the external field. If a specimen with zero initial remanence is put
into a magnetic field, the magnetization will grow to the equilibrium
magnetization by the complement of equation 2.17:

The more general case, in which the initial magnetization of a specimen
is non-zero, can be written as (see Kok and Tauxe [1996a]):

which grows (or decays) exponentially from The rate
is not only controlled by but also by the degree to which the magneti-
zation is out of equilibrium. Some data sets appear to follow the relation

(see e.g. Shimizu [1960]). Such a relation suggests infinite re-
manence as which cannot be true over a long period of time. Such
behavior can generally only be observed over a restricted time interval,
long-term observations rarely show a strict

From equation 2.18 we know that is strongly temperature dependent. Ac-
cording to Néel’s theory for single domain thermal remanence (Néel [1949,

perature at which is equal to about seconds is defined as the
blocking temperature At or above the blocking temperature, but below
the Curie temperature, a grain will be superparamagnetic. Further cooling

2.6.3. THERMAL REMANENT MAGNETIZATION
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increases such that the magnetization is effectively blocked and the rock
acquires a geologically significant thermal remanent magnetization or TRM.

Consider a lava flow which has just been extruded. First, the molten lava
solidifies into rock. While the rock is above the Curie temperature, there is
no remanent magnetization; thermal energy dominates the system. As the
rock cools through the Curie temperature of its magnetic phase, exchange
energy becomes more important and the rock acquires a remanence. In the
superparamagnetic state, the magnetization is free to track the prevailing
magnetic field because magnetic anisotropy energy is still less important
than the thermal energy.

The magnetic moments in the lava flow tend to flop from one easy di-
rection to another, with a slight statistical bias toward the direction with
the minimum angle to the applied field. Thus, the equilibrium magnetiza-
tion of superparamagnetic grains is only slightly aligned, and the degree
of alignment is a linear function of the applied field for low fields such
as the Earth’s. The magnetization approaches saturation at higher fields
(from ~ 0.2 T to several tesla, depending on the details of the source of
anisotropy energy).

Now imagine that the lava continues to cool. The thermal energy will
decrease until the magnetic anisotropy energy becomes important enough
to “freeze in” the magnetic moment wherever it happens to be. As the
particles cool through their blocking temperatures, the magnetic moments
become fixed because reaches a time that is geologically meaningful.

From the preceeding discussion, we can make several predictions about
the behavior of a TRM.

1. The remanence of an assemblage of randomly oriented particles, ac-
quired by cooling through the blocking temperature in the presence of a
field, should be parallel to the orientation of that field.

2. The intensity of thermal remanence should be linearly related to the
intensity of the magnetic field applied during cooling (for weak fields such
as the Earth’s).

In a rock, each grain has its own blocking temperature and moment.
Therefore, by cooling a rock between two temperatures, only a portion of
the grains will be blocked; the rock thus acquires a partial thermal rema-
nent magnetization or pTRM. An essential assumption in paleomagnetic
applications is that each pTRM is independent of all others and that a
pTRM acquired by cooling through two temperatures can be removed by
exposure to the same peak temperature and cooling in zero field.

Experimental results tend to substantiate the pTRM theory outlined
above although the behavior of non-SD grains appears to be quite differ-
ent. For details on multi-domain TRM see Dunlop and Xu [1994], Xu and
Dunlop [1995], and Dunlop and Özdemir [1997].
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Although not a naturally occurring remanence, it is worthwhile at this point
to introduce a type of remanence that is closely analogous to TRM, but
which is acquired in gradually declining oscillating magnetic fields instead
of during cooling. Examination of equation 2.18 reveals that is dependent
on the magnetic anisotropy energy of the grain. If, instead of raising the
temperature, we subject a grain to an alternating field sufficient to overcome
the anisotropy energy, the magnetization of the grain will follow the field.
If we have a population of grains with a range of coercivities and we lower
the peak field reached in each successive oscillation, the magnetic moments
will get stuck in whatever direction they were pointing when the field went
below their coercive fields. In zero field, the net magnetization will be zero.
If there is a small DC bias field, then there will be a statistical preference for
the direction of the bias field, which is analogous to the aquisition of TRM
acquired during cooling. This net magnetization is termed the anhysteretic
remanent magnetization or ARM. A partial ARM (pARM) is an ARM
acquired when the DC field is applied between two specific values of the
AF as opposed to the entire range from a saturating AF field to zero.

2.6.5. CHEMICAL REMANENT MAGNETIZATION

Inspection of equation 2.18 reveals that is also a strong function of grain
volume. A similar theoretical framework can be built for remanence ac-
quired by grains growing in a magnetic field as for those cooling in a mag-
netic field. As a starting point for our treatment, consider a diamagnetic
porous matrix, say a sandstone. As ground water percolates through the
sandstone, it begins to precipitate tiny grains of a magnetic mineral. Each
new crystal is completely isolated from its neighbors. For very small grains,
the thermal energy dominates the system and they are superparamagne-
tic. When the volume becomes sufficient for magnetic anisotropy energy to
overcome the thermal energy, the grain moment is blocked and can remain
out of equilibrium with any changes in the magnetic field for geologically
significant time periods. Keeping temperature constant, there is a critical
blocking volume below which a grain maintains equilibrium with the
applied field and above which it does not. Thus, the magnetization acquired
during grain growth is controlled by the alignment of grain moments at the
time that they grow through the blocking volume. Based on these princi-
ples, the so-called chemical remanent magnetization (CRM) should behave
very similarly to TRM (see e.g., Haigh [1958]).

There have been a few experiments carried out with an eye to testing
the CRM model, and although the theory predicts the zero-th order results
quite well (that a simple CRM parallels the field and is proportional to

2.6.4. ANHYSTERETIC REMANENT MAGNETIZATION

Rudiments of Rock Magnetism



60

it in intensity), the details are not well explained primarily because the
magnetic field itself affects the growth of magnetic crystals and the results
are not exactly analogous to TRM conditions (see e.g., Stokking and Tauxe
[1990]).

CRM can also be acquired when one magnetic mineral alters into an-
other. The behavior of such an alteration CRM is extremely complicated.
It can parallel the magnetic field during alteration, or it can remain in the
initial magnetization direction, or it can carry a magnetization with no dis-
cernable relationship to any past field (see Dunlop and Özdemir [1997] for
a more complete discussion). In order to determine the reliability of mag-
netic remanence in general, we rely on a variety of techniques as described
in later chapters.

2.6.6. DETRITAL REMANENT MAGNETIZATION

In sedimentary environments, rocks become magnetized in quite a differ-
ent manner than igneous bodies (see Tauxe [1993] for a review). Detrital
grains are already magnetized, unlike igneous rocks which crystallize from
above their Curie temperatures. In the water column, where viscosity is
low, there is a strong tendency for magnetic grains to become aligned with
the magnetic field in response to the magnetic torque Nonethe-
less, there is competition among forces arising from turbulent motions of
the water and perhaps from thermal agitation (Brownian motion) of the
grains themselves. There is a small net alignment of magnetic grains in
the direction of the prevailing field. When the grain strikes the sediment-
water interface, this net moment may be disrupted and even distorted by
gravitational effects that act on grains as they settle on the bottom. The
remanence acquired is a depositional or detrital remanent magnetization or
DRM.

Magnetic grains can be remobilized for some time after deposition, how-
ever, owing to the bioturbation of superficial sediments. If resuspended, the
grains may realign with the field, thus acquiring a post-depositional detrital
remanent magnetization or pDRM. At some depth, magnetic grains become
fixed. This depth varies from place to place and is controlled by (among
other factors) the depth of bioturbation, clay content, and/or (magnetic)
mineralogy. When sediments settle in the laboratory and undergo stirring
to simulate the effect of bioturbation, the remanence has a strong linear
dependence on the applied field, similar to TRM and CRM (although the
remanence for a given field is lower by at least an order of magnitude).
When sediments are deposited with no subsequant stirring, the remanence
vectors of laboratory magnetizations are often shallower than the applied
field, a phenomenon known as inclination error. The tangent of the ob-
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served inclination is usually some fraction (~ 0.4 – 0.6) of the tangent of
the applied field (King [1955], Tauxe and Kent [1984]). Thus, inclination
error is at a maximum at inclinations near 45° and is negligible at high and
low inclinations.

Interestingly, many natural sediments (e.g., deep sea or slowly deposited
lake sediments) display no inclination error (e.g., Opdyke and Henry [1969]).
In the laboratory, if sediments are disturbed (by tapping or stirring) after
deposition, then the inclination error disappears (but the dependence of
M on H remains). The tapping may be analogous to a pDRM in the deep
sea which is acquired when the sediments are disturbed by bioturbation or
rotation of particles in fluid-filled voids. Also, when sediments are allowed
to settle “grain by grain” in the laboratory, they do not display inclination
error (see e.g., Barton and McElhinny [1979]).

Tauxe et al. [1996a] compared the position of the Brunhes/Matuyama
reversal boundary in marine carbonate cores with features in oxygen iso-
topic curves. They concluded that the magnetization was “locked-in” very
close to the sediment-water interface at least in pelagic carbonates.

Furthermore, Hartl and Tauxe [1996] found that smoothing of the se-
dimentary record filters out only features with wavelengths less than a
thousand years, while features longer than this are preserved. The slower
the sedimentation rate, the greater the degree of smoothing. It should also
be noted that, when sediments are squeezed in the laboratory to simulate
compaction due to burial, the DRM becomes shallower (e.g., Anson and
Kodama [1987]) and compaction related shallowing has been inferred in
deep sea cores from depths greater than 100 m.

2.6.7. NATURAL REMANENT MAGNETIZATION

A rock collected from a geological formation has a magnetic remanence
which may have been acquired by a variety of mechanisms some of which
we have described. The remanence of this rock is called a natural rema-
nent magnetization or NRM in order to avoid a genetic connotation in the
absence of other compelling evidence. The NRM is often a combination
of several components, each with its own history. The NRM must be ex-
amined in detail and the various remanence components must be carefully
analyzed before their origin can be ascribed. The procedures for doing this
are described later in the book.

2.7. Magnetic mineralogy

An essential part of every paleomagnetic study is a discussion of what is
carrying the magnetic remanence and how the rocks got magnetized. For
this, we need some knowledge of what the important natural magnetic
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phases are, how to identify them, how they are formed, and what their
magnetic behavior is. We now provide a brief description of geologically
important magnetic phases. Useful magnetic characteristics of important
minerals can be found in Table 2.1.

Because iron is by far the most abundant transition element in the solar
system, most paleomagnetic studies depend on the magnetic iron species:
the iron-nickels (which are particularly important for extra-terrestrial mag-
netic studies), the iron-oxides such as magnetite, maghemite and hematite,
the iron-oxyhydroxides such as goethite, and the iron-sulfides such as grei-
gite and pyrrhotite. We are concerned here with the latter three since iron-
nickel is very rare in terrestrial paleomagnetic studies.

2.7.1. IRON-OXIDES

Two solid solution series are particularly important in paleomagnetism: the
ulvöspinel-magnetite and ilmenite-hematite series as shown on the ternary
diagram in Figure 2.16. Each of the solid lines in Figure 2.16 (labelled
Titanomagnetite and Hemoilmenite) represent increasing substitution of
titanium into the crystal lattices of magnetite and hematite respectively,
as one moves up and to the left along the lines. The amount of Ti sub-
stitution in titanomagnetites is denoted by while substitution in the
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hemoilmenites is denoted by “y”. Values for and range from 0 (mag-
netite or hematite) to 1 (ulvöspinel or ilmenite). After crystallization, later
oxidation will alter compositions along the dashed lines to the right and a
titanomagnetite can become a titanomaghemite. The degree of oxidation is
denoted by

Titanomagnetites
Magnetite has an inverse spinel structure The oxygen
atoms form a face-centered cubic lattice into which cations fit in either
octahedral or tetrahedral symmetry. For each unit cell there are four tetra-
hedral sites (A) and eight octahedral sites (B). To maintain charge balance
with the four oxygen ions there are two ions and one ion.

has five unpaired spins, while has four. As discussed earlier, each
unpaired spin contributes one Bohr magneton The divalent iron ions
all reside in the octahedral lattice sites, whereas the trivalent iron ions are
split evenly between octahedral and tetrahedral sites:
The A and B lattice sites are coupled with antiparallel spins and mag-
netite is ferrimagnetic. Therefore, the net moment of magnetite is per
molecule (at 0 K).

Titanomagnetites occur as primary minerals in igneous rocks. Mag-
netite, as well as various members of the hemoilmenite series, can also form
as a result of high temperature oxidation. In sediments, magnetite often
occurs as a detrital component, but it can also be produced by bacteria or
authigenically during diagenesis.

Substitution of which has no unpaired spins, has a profound effect
on the magnetic properties of the resulting titanomagnetite. substi-
tutes for a trivalent iron ion. In order to maintain charge balance, another
trivalent iron turns into a divalent iron ion. The end members of the solid
solution series are:

Ulvöspinel is antiferromagnetic because the A and B lattice sites have
the same net moment. When is between 0 and 1, the mineral is called
a titanomagnetite. If is 0.6, the mineral is called TM60. Above 600°C,
there is complete solid solution between ulvöspinel and magnetite. Below
this temperature, the spinel can exolve into two phases, one with a high
titanium content and the other with a low titanium content.

Titanium substitution has the effect of: 1) increasing the cell dimensions,
2) decreasing the Curie temperature, 3) decreasing saturation magnetiza-
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tion and susceptibility, and 4) slightly increasing coercivity. The diagnostic
properties of magnetite are listed in Table 2.1.

The large of magnetite (see Table 2.1) means that for deviations
from equant grains as small as 10%, the magnetic anisotropy energy be-
comes dominated by shape. Nonetheless, aspects of the magnetocrystalline
anisotropy provide useful diagnostic tests. The magnetocrystalline aniso-
tropy constants are a strong function of temperature. On warming to
100°C from near absolute zero, changes in these constants can lead to an
abrupt loss of magnetization, which is known loosely as the Verwey tran-
sition. Identification of the Verwey transition suggests a remanence that
is dominated by magnetocrystalline anisotropy. Furthermore the tempera-
ture at which it occurs is sensitive to oxidation and the transition can be
completely supressed by maghemitization (see Özdemir et al. [1993]).

Hematite-Ilmenite
Hematite has a corundum structure. It is rhombohedral with a pseudoclea-
vage (perpendicular to the c axis); hematite tends to break into flakes. It
is antiferromagnetic, with a weak parasitic ferromagnetism resulting from
either spin-canting or defect ferromagnetism (see Figure 2.4). Above about
-10°C (the Morin transition), the magnetization is constrained by aspects
of the crystal structure to lie perpendicular to the c axis. Below the Morin
transition, spin-canting disappears and the magnetization is parallel to the
c axis. This effect could be used to demagnetize the grains dominated by
spin-canting but it does not affect the defect moments.

Hematite occurs widely in oxidized sediments and dominates the magne-
tic properties of red beds. It occurs as a high temperature oxidation product
in certain igneous rocks. Depending on grain size, among other things, it
is either black (specularite) or red (pigmentary). Diagnostic properties of
hematite are listed in Table 2.1.

Oxidation of (titano)magnetites to (titano)maghemites
The titanomagnetite series of minerals is subject to low temperature oxi-
dation. The resulting mineral has an “open” spinel structure and is called
titanomaghemite. Maghemite has the same composition as hematite but it
has a spinel structure, with vacancies left from the diffusion of iron ions
out of the crystal.

Maghemite is metastable and inverts with time and temperature to the
more compact hematite structure. Inversion of natural maghemite is usually
complete by about 350° C, but it can survive until much higher tempera-
tures (see e.g., Özdemir and Banerjee [1984]). Maghemitization results in a
decrease in saturation magnetization and an increase in Curie temperature.
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2.7.2. IRON-OXYHYDROXIDES AND IRON-SULFIDES

Of the many iron oxyhydroxides that occur in any abundance in nature,
only goethite is magnetic. It is antiferromagnetic with what
is most likely a defect magnetization. It occurs widely as a weathering
product of iron-bearing minerals and as a direct precipitate from iron-
bearing solutions. It is metastable under many conditions and dehydrates
to hematite with time or elevated temperature. Dehydration is usually com-
plete by about 325° C. It is characterized by a very high coercivity but a low
Néel temperature of about 100–150° C. Diagnostic properties of goethite are
listed in Table 2.1.

There are two iron-sulfides that are important to paleomagnetism: grei-
gite and pyrrhotite These are ferrimagnetic and
occur in reducing environments. They both tend to oxidize to various iron
oxides leaving paramagnetic pyrite as the sulfide component. The Curie
temperature of pyrrhotite is about 325°C (see Table 2.1) and the max-
imum unblocking temperature of greigite is approximately 330°C. Other
diagnostic properties of greigite and pyrrhotite are listed in Table 2.1.

2.8. Tools to constrain magnetic mineralogy

We now have an idea of how rocks might become and stay magnetized and
what minerals might carry the magnetic remanence. Different minerals im-
ply different modes of remanence acquisition, which have in turn profound
implications for the probable reliability of the magnetic record. Therefore,
it is useful to be able to identify the magnetic minerals in the rock.

There are many tools for mineral identification: optical and electron
microscopy, x-ray diffraction, electron probe microanalysis, etc. Here we
consider selected rock magnetic methods.

2.8.1. CURIE TEMPERATURE ESTIMATION

As is clear from a glance at Table 2.1, the Curie temperature can be di-
agnostic of magnetic mineralogy. Curie temperatures are measured by ap-
plying a large field and measuring the response of a sample as a function
of temperature. Ferro- and paramagnetic substances will be drawn into a
magnetic field, while diamagnetic substances are repulsed. A Curie balance
compensates for the attractive (repulsive) force of the field gradient on the
sample by generating a field which nulls the attraction exactly. The cur-
rent required to do this is proportional to the magnetization of the sample.
Two so-called thermomagnetic curves generated in this manner are shown
in Figure 2.17.

[See Example 2.1]
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As might be expected from our theoretical treatment of paramagnetism,
paramagnetic substances have magnetizations that are proportional to
(see Figure 2.17a). Ferromagnetic samples produce behavior something like
that shown in Figure 2.17b, as would be expected from equation 2.12.

Estimating the Curie temperature is not as simple as it seems at first
glance. Grommé et al. [1969] proposed the use of the intersection point
of the two tangents to the thermomagnetic curve that bounds the Curie
temperature, as shown in Figure 2.17b. The intersecting tangents method
is straightforward to do by hand, but is rather subjective and is difficult
to automate. Moskowitz [1981] developed a method for extrapolating the
ferromagnetic behavior expected from experimental data through the Curie
temperature to determine the point at which the ferromagnetic contribution
reaches zero.

A third method for estimating Curie temperatures from thermomagne-
tic data, the differential method, seeks the maximum curvature in the ther-
momagnetic curve. This method is shown in Figure 2.18. First, we calcu-

Then, these data are differentiated once again to produce (Fig-
ure 2.18b). The maximum in the second derivative occurs at the point of
maximum curvature in the thermomagnetic curve and is a reasonable esti-
mate of the Curie temperature.

The principal drawback of the differential method of Curie temperature
estimation is that noise in the data is greatly amplified by differentiation,
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which makes identification of the Curie temperature difficult. The draw-
backs of the differential method can often be overcome by smoothing the
data either by calulating three or more point running means, or using some
filter either by Fourier methods or in the temperature domain. We find that
a triangular filter works well.

[See Example 2.2]

2.8.2. INTERPRETATION OF HYSTERESIS LOOPS

Geological materials can be magnetically complicated. The magnetization
of a natural crystal may not be uniform, particularly if it is in the PSD
or MD state. The moments may be strongly affected by thermal energy
and they may display superparamagnetic (SP) behavior, or they may be
mixtures of a wide variety of naturally occurring magnetic phases with
very different behavior. Furthermore, there may also be diamagnetic or
paramagnetic material in the sample. As a result, determining the controls
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on the magnetic properties of a particular rock specimen can be difficult.

Because hysteresis behavior is strongly controlled by mineralogy and
grain size, hysteresis loops have the potential to help constrain the makeup
of a given rock specimen. The hysteresis loop of a given sample will be the
sum of all the curves generated by the individual grains. Each population
of grains with a consistent coercivity spectrum will leave its imprint on
the resulting loop. We illustrate some of the building blocks of possible
hysteresis loops in Figure 2.19. Figure 2.19a shows the negative slope typical
of diamagnetic material such as carbonate or quartz, while Figure 2.19b
shows a paramagnetic slope. Such slopes are common when the sample
has little ferromagnetic material and is rich in iron-bearing phases such as
biotite or clay minerals.

When grain sizes are very small, a sample can display superparamagne-
tic “hysteresis” behavior (Figure 2.19c). The SP curve follows a Langevin
function (see equation 2.8) where is

Above some critical volume, grains will have relaxation times that are
sufficient to retain a stable remanence. As discussed earlier in the chapter,
populations of randomly oriented stable grains can produce hysteresis loops
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with a variety of shapes, depending on the origin of magnetic anisotropy and
domain state. We show loops from samples that illustrate several typical
end-member styles of hysteresis behavior in Figure 2.19d-f.

Figure 2.19d shows a loop characteristic of samples whose remanence
stems from SD magnetite with uniaxial anisotropy. In Figure 2.19e, we
show data from specular hematite whose anisotropy is magnetocrystalline

of the ratio, so the ratios and plot along a different
slope in the “Day plot” than those expected for particles that range from
SD to MD size, (see Figure 2.15). In Figure 2.21, we compare the effect of
increasing the population of SP grains on the hysteresis ratios (from the
simulations of

Tauxe et al. [1996b]) with that of increasing grain size (data of Day et
al. [1977]).

Considering the loops shown in Figure 2.20, we immediately notice that
there are two distinct causes of loop distortion: mixing two phases with dif-
ferent coercivities (see Wasilewski [1973], Roberts et al. [1995]), and mixing
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in origin (hexagonal within the basal plane). Note the very high
ratio of nearly one. Finally, we show a loop that is generally interpreted to
indicate the dominance of PSD (Figure 2.19f).

In the messy reality of geological materials, we often encounter mixtures
of several magnetic phases and/or domain states. Such mixtures can lead
to distorted loops, such as those shown in Figure 2.20. In Figure 2.20a,
we show a mixture of hematite plus SD-magnetite. The loop is distorted
in a manner that we refer to as goose-necked. Another commonly observed
mixture is SD plus SP magnetite (see Tauxe et al. [1996b]) which results
in loops that are either wasp-waisted (see Figure 2.20b) or pot-bellied (see
Figure 2.20c). Another effect of mixing SP with SD grains is a suppression
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SD and SP domain states (see Pick and Tauxe [1994]). We differentiate the
two types of distortion as “goose-necked” and “wasp-waisted” (see Fig-
ure 2.20) because they look different and they mean different things. Be-

several representative loops, along with the and curves. Dis-
tortion resulting from two phases with different coercivities (e.g., hematite
plus magnetite or two distinct grain sizes of the same mineral) results in a
“two humped” curve, whereas wasp-waisting which results from
mixtures of SD + SP populations have only one “hump”.

In practice, hysteresis measurements may yield rather noisy data. Jackson
et al. [1990] suggested that noisy hysteresis data could be filtered using
a Fourier transform. The advantages of Fourier smoothing are that the
calculated hysteresis parameters are less sensitive to noise and that the

and curves are more readily interpreted.
The steps involved in Fourier smoothing of hysteresis loops are as follows

(see Figure 2.23):

2.8.3. FOURIER ANALYSIS OF HYSTERESIS LOOPS
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cause the and curves are sensitive only to the remanence
carrying phases, and not, for example, to the SP fraction, we can use these
curves to distinguish the two sources of distortion. In Figure 2.22, we show
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[See Example 2.3]

First, the contribution of paramagnetic and diamagnetic phases must
be removed. Figure 2.23a shows some typical data from carbonate rich
sediments. These samples have a strong diamagnetic (negative high field
slope) contribution. We remove the diamagnetic contribution by calcu-
lating a best-fit line using linear regression for the data at high fields
(after the ferromagnetic phases have reached saturation) and removing
its contribution by subtraction (see Figure 2.23b).

In order to ensure uniformity of data treatment, Jackson et al. [1990]
recommend truncating the data at some fixed percentage of (after
slope adjustment). We truncate the data at 99.9% of in Figure 2.23b.

A Fourier transform requires data with a single value for every
value and hysteresis data, as normally plotted are not suitable. The
loops can be mapped into a suitable form for Fourier analysis by trans-
forming the field values into radians, as shown in Figure 2.23c. The
unfolded loop starts at the point when the descending curve intersects
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the axis From H is mapped linearly to
radians From H is mapped to

From we map H to
and finally, for H is converted to

The “unfolded” data can then be subjected to a Fourier Transform
as described by Jackson et al. [1990]. The data can be smoothed by
retaining only a specified number of terms (see Figure 2.23d). Finally,
hysteresis parameters can be calculated from the reconstituted loop and

and curves can be plotted (see Figure 2.23e-f).

2.9. Summary

This chapter has dealt with the nitty gritty of rock magnetism. We have
explored how rocks get and stay magnetized. We have also discussed rock
magnetic methods for identifying magnetic minerals. In the following chap-
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ter we turn our attention to sampling techniques and we discuss what to
do with samples once we have them in the laboratory.
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2.10. Examples

Example 2.1
Plot the thermomagnetic data in file ex2.1 using plotxy. Then convert to
absolute temperature and find the inverse. Plot these data using plotxy.
Solution:
Type the boldfaced commands (the computer responses are in normal type-
face):
% plotxy

Enter commands for graph 1
file ex2.1
read
xlabel Temperature
ylabel M
plot 1 1

PostScript file written to: mypost

Enter commands for graph 2
stop
These commands cause plotxy to generate the postscript file mypost as
shown in Figure 2.24.
Now type:
% nawk ’{print 1/($1+273),$2}’ ex2.1 > ex2.1a
The Unix utility nawk is similar to awk and performs a number of spread-
sheet like operations on data files.
To plot the inverted temperatures, type:
% plotxy

Enter commands for graph 1
file ex2.1a
read
xlabel Inverse Temperature
ylabel M
plot 1 1

PostScript file written to: mypost

Enter commands for graph 2
stop
This generates the postcript file mypost as shown in Figure 2.25.

Example 2.2
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Use the program curie to calculate the Curie temperature of the data con-
tained in file ex2.1. First scan through a range of smoothing intervals from
1 to 100° , and then choose the optimal smoothing interval (the small-
est interval necessary to isolate the correct peak in the second derivative).
Finally, repeat this, but truncate the data set to between 400° to 600°.
Solution:
First type:
% curie -s 3 100 1 < ex2.1
which produces a list of Curie temperatures for smoothing intervals from 3
to 100° at 1° invervals:

Tc = 203
3 203
4 203
5 203
6 549
7 549
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Now type:
% curie -lsp 20 3 100 1 < ex2.1 | plotxy
This causes plotxy to produce a postscript file mypost shown in Figure
2.26, and the output Curie temperature is 538°C.
It may be that there are several Curie temperatures in a particular data
set and that you wish to focus in on one of them. The curie program
allows truncation of the data set to a given interval by specifying Tmin
and Tmax with the -t option. As usual, check Appendix 1, or type curie
-h :
% curie -h
Usage: curie -[lspt] [smooth] [low hi step] [Tmin Tmax] Standard I/O

-l low pass filter using smoothing interval [smooth]
NB: [smooth] must be an odd number 3

-s scan range of frequencies
[low] to [hi] using a spacing of step
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[low], [hi] and [step] must be odd
-p plot option on to generate Plotxy command file

can be piped directly to plotxy and viewed:
curie -p < filename | plotxy; ghost view mypost

printed:
curie -p < filename | plotxy; lpr mypost

or saved to a file for modification:
curie -p < filename > eqarea.com

-t truncates to interval between [Tmin] and [Tmax]
defaults are:

no smoothing
plot option off
uses entire record

To complete the exercise, type the following:
% curie -lspt 20 3 100 1 400 600 < ex2.1 | plotxy
View the mypost file, as in Figure 2.27.

Use the program hystcrunch to calculate the hysteresis parameters,
and from the data in file ex2.3. These data are in the raw

format that is the output from the available Micromag 2900 alternating
gradient magnetometer. NB: retaining only the first 30 Fourier harmonics
results in a smoother curve.
Solution
Type the following:
% hystcrunch -mt 30 < ex2.3 | plotxy
This causes plotxy to produce a postcript file (mypost, see Figure 2.28)
which can be viewed or plotted as desired.

Example 2.3
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As discussed in the previous chapter, rocks become magnetized in a
variety of ways. Both igneous and sedimentary rocks can be affected by
chemical change, thereby acquiring a secondary magnetization. Many mag-
netic materials are affected by viscous remanent magnetization. The various
components of magnetization sum together to constitute the NRM which is
the “raw” remanence of the sample after extraction. The goal of paleomag-
netic laboratory work is to isolate the various components of remanence
and to ascribe origin, age and reliability to the components. Before the
laboratory work can begin, however, samples must be collected. Sampling
strategy is crucial to a successful study. We will briefly describe techniques
for sampling, methods of orientation and overall philosophy. We will then
turn to an overview of some of the more useful field and laboratory tech-
niques. The reader is referred to Butler [1992] for an excellent introductory
book on paleomagnetism.

3.1. Paleomagnetic sampling

There are several goals in sampling rock units. One is to average the errors
involved in the sampling process itself. Another is to assess the reliability
of the geological recording medium. In addition, we often wish to average
the scatter caused by secular variation of the geomagnetic field in order to
estimate the time-averaged paleomagnetic field direction representative of
the time that the rock unit acquired its magnetization.

The objectives of averaging geological and sampling “noise” are achieved
by taking a number N of individually oriented paleomagnetic samples from
a single rock unit (called a paleomagnetic site). The most careful sample
orientation procedure has an uncertainty of some 3°. Precision is gained
proportional to so to improve the precision from 3° to 1°, nine indivi-
dually oriented samples are required. The number of samples taken should
be tailored to the particular project at hand. If one wishes to know polarity,
perhaps three samples would be sufficient (these would be taken primarily
to assess “geological noise”). If, on the other hand, one wished to make
inferences about secular variation of the geomagnetic field, more samples
would be necessary to suppress sampling noise.

Some applications in paleomagnetism require that the secular variation
of the geomagnetic field (the paleomagnetic “noise”) be averaged in order
to determine the time-averaged field direction. The geomagnetic field varies
with time constants ranging from milliseconds to millions of years. It is a
reasonable first order approximation to assume that, when averaged over,
say, 10,000 years, the geomagnetic field is that of a geocentric axial dipole
(equivalent to the field that would be produced by a bar magnet at the
center of the Earth, aligned with the spin axis; see Chapter 1). Thus, when



86 CHAPTER 3

a time-averaged field direction is required, enough sites must be sampled
to span sufficient time to achieve this goal. A good rule of thumb is about
ten sites (each with nine to ten samples), spanning 10,000 years.

Samples can be taken in the field using a gasoline or electric powered
drill or as “hand samples”. The samples must be oriented before they are
removed from the rock unit. There are many ways to orient samples and
possible conventions are shown in Figures 3.1 and 3.2.

If a magnetic compass is used to orient samples in the field, the mea-
sured azimuth must be adjusted by the local magnetic declination, which
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can be calculated from the known reference field (IGRF or DGRF; see Ex-
ample 1.3 and Chapter 1). Calculation of a direction using a sun compass
is more involved. A dial with a vertical needle (a “gnomon”) is placed on
the horizontal platform shown in Figure 3.3. The angle that the sun’s
shadow makes with the drilling direction is noted as well as the exact time
of sampling and the location of the sampling site. With this information
and the aid of the Astronomical Almanac or a simple algorithm, it is pos-
sible to calculate the desired direction to reasonable accuracy (the biggest
cause of uncertainty is actually reading the shadow angle!).

[See Example 3.1]

Referring to Figure 3.3, we see that the azimuth of the desired direc-
tion is the direction of the of the shadow plus the shadow angle The
declination of the shadow itself is 180° from the direction toward the sun.
In Figure 3.4, the problem of calculating declination from sun compass in-
formation is set up as a spherical trigonometry problem, similar to those

by 180 - We also know the latitude of the sampling location We
need to calculate the latitude of S (the point on the Earth’s surface where

introduced in Chapter 1. The declination of the shadow direction is given
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the sun is directly overhead), and the local hour angle H.
Knowing the time of observation (in Universal Time), the position of

S ( in Figure 3.4) can be calculated with reasonable precision
(to within 0.01°) for the period of time between 1950 and 2050 using the
procedure recommended in the 1996 Astronomical Almanac:

First, calculate the Julian Day J. Then, calculate the fraction of the
day in Universal Time U. Finally, calculate the parameter which is
the number of days from J2000 by:

The mean longitude of the sun corrected for aberration, can be
estimated in degrees by:

The mean anomaly (in degrees).
Put and in the range 0 360°.
The longitude of the ecliptic is given by

0.020 sin (in degrees).
The obliquity of the ecliptic is given by
Calculate the right ascension (A) by:

where                    and 
The so-called “declination” of the sun ( in Figure 3.4 which should

not be confused with the magnetic declination D), which we will use as
the latitude is given by:
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versal Time U (in minutes) by The local hour
angle (H in Figure 3.4) is We calculate using the laws of
spherical trigonometry (see Chapter 1). First we calculate by the Law of
Cosines (remembering that the cosine of the colatitude equals the sine of
the latitude):

and finally using the Law of Sines:

If then the required angle is the shadow direction given by:
The azimuth of the desired direction in Figure 3.3 is plus

the measured shadow angle

Finally, the equation of time in degrees is given by

We can now calculate the Greenwich Hour Angle GHA from the Uni-
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3.2. Transformation of coordinate systems

Samples are brought to the laboratory and trimmed into standard sizes and
shapes. These sub-samples are called paleomagnetic specimens. The sample
coordinate system is defined by a right-hand rule where the thumb is
directed parallel to an arrow marked on the sample, the index finger is
in the same plane but at right angles and clockwise to and the middle
finger is perpendicular to the other two (Figure 3.5a). Data often
must be transformed from the sample coordinate system into, for example,
geographic coordinates. This can be done graphically with a stereonet or
by means of matrix manipulation. We outline the latter method here.

The transformation of coordinates from the axes to the coor-
dinates in the desired coordinate system is done by
or:

where the are the direction cosines (the cosines of the angles between the
different axes), where the subscript refers to the new coordinate system

and the subscript refers to the old X coordinates. Thus, is the
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cosine of the angle between and The various can be calculated
using spherical trigonometry (Chapter 1). For example, for the general
case depicted in Figure 3.5 is cos which is given by the Law of Cosines
(see Chapter 1) by using appropriate values, or:

The other can be calculated in a similar manner. In the case of most
coordinate system rotations used in paleomagnetism, is in the same
plane as and (and is horizontal) so This problem is much
simpler. The directions cosines for the case where are:

The new coordinates can be obtained from equation 3.1, as follows:

The declination and inclination can be calculated by inserting these values
in equation 1.3 in Chapter 1.

In practice, there are two transformations that are routinely made in pa-
leomagnetism. Magnetizations are measured in sample coordinates. First,
they must then be rotated into geographic coordinates. For this, the az-
imuth and plunge of the sample axis can be used for and re-
spectively in equations 3.2 and 3.3. Second, samples are often taken from
geologic units that are no longer in the same position as when they were
magnetized; they are tilted. If paleo-horizontal can be recognized, for exam-
ple, from quasi-horizontal laminations in sedimentary rocks, the orientation
of the bedding plane can be measured as strike and dip, or as dip and dip
direction. The strike is the direction of a horizontal line within the bedding
plane and the dip is the angle that the plane makes with the horizontal.
Our convention is that dip is measured to the “right” of the strike direction.
If the direction cosines relating the dip and dip direction to the geographic
coordinate systems are plugged in for the the data can be transformed
into so-called tilt adjusted coordinates using equation 3.3.

[See Example 3.2]

3.3.   Field strategies

In addition to establishing that a given rock unit retains a consistent mag-
netization, it is also of interest to establish when this magnetization was
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acquired. Arguments concerning the age of magnetic remanence can be
built on indirect petrographic evidence as to the relative ages of various
magnetic minerals, or by evidence based on geometric relationships in the
field. There are two key field tests that require special sampling strategies:
the fold test and the conglomerate test.

The fold test relies on the tilting or folding of the target geological ma-
terial. If, for example, one wanted to establish the antiquity of a particular
set of directions, one could deliberately sample units of like lithology, with
different present attitudes (Figure 3.6). If the recovered directions are more
tightly grouped before adjusting for tilt (as in the lower left panel), then
the magnetization is likely to have been acquired after tilting. On the other
hand, if directions become better grouped in the tilt adjusted coordinates
(see upper right panel), one has an argument in favor of a pre-tilt age of
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the magnetization. Methods for quantifying the tightness of grouping in
various coordinate systems are discussed in Chapter 4 (see section on the
“fold test”).

In the conglomerate test, lithologies that are desirable for paleomagnetic
purposes must be found in a conglomerate bed (Figure 3.7). In this rare
and happy circumstance, we can sample them and show that: 1) the rock
magnetic behavior is the same for the conglomerate samples as for those
being used in the paleomagnetic study, 2) the directions of the studied
lithology are well grouped, (Figure 3.7) and 3) the directions from the
conglomerate clasts are randomly oriented (see Figure 3.7 and Chapter 4).
If the directions of the clasts are not randomly distributed (Figure 3.7), then
presumably the conglomerate clasts (and, by inference, the paleomagnetic
samples from the studied lithology as well) were magnetized after deposition
of the conglomerate. We will discuss statistical methods for deciding if a
set of directions is random in Chapter 4.

The baked contact test is illustrated in Figure 3.8. It is similar to the
conglomerate test in that we seek to determine whether the lithology in
question has undergone pervasive secondary overprinting. When an igneous
body intrudes into an existing host rock, it heats (or bakes) the contact zone
to above the Curie temperature of the host rock. The baked contact imme-
diately adjacent to the intrusion should therefore have the same remanence
direction as the intrusive unit. This magnetization may be in an entirely
different direction from the pre-existing host rock. The maximum temper-
ature reached in the baked zone decreases away from the intrusion and
remagnetization is not complete. Thus the NRM directions of the baked
zone gradually change from that of the intrusion to that of the host rock.
Such a condition would argue against pervasive overprinting in the host rock
that post-dated the intrusion, and the age of the intrusion would provide
an upper bound on the age of remanence in the host rock.

3.4.     Measurement

We measure the magnetic remanence of paleomagnetic samples in a mag-
netometer, of which there are various types. The cheapest and most readily
available are called spinner magnetometers because they spin the sample to
create a fluctuating electromotive force (emf). The emf is proportional to
the magnetization and can be determined relative to the three axes defined
by the sample coordinate system. The magnetization along a given axis
is measured by detecting the voltages induced by the spinning magnetic
moment within a set of pick-up coils.

Another popular way to measure the magnetization of a sample is to use
a cryogenic magnetometer. These magnetometers operate using so-called
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superconducting quantum interference devices (SQUIDs). In a SQUID, the
flux of an inserted sample is opposed by a current in a loop of supercon-
ducting wire. The superconducting loop is constructed with a weak link
which stops superconducting at some very low current density, correspond-
ing to some very small quantum of flux. Thus the flux within the loop can
change by discrete quanta. Each incremental change is counted and the to-
tal flux is proportional to the magnetization along the axis of the SQUID.
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Cryogenic magnetometers are much faster and more sensitive than spinner
magnetometers, but they cost much more to buy and to operate.

Magnetometers are used to measure the three components of the mag-
netization necessary to define a vector These data can be
converted to the more common form of D, I and M by methods described
in Chapter 1.

3.5.   Demagnetization techniques

Anyone who has dealt with magnets (including magnetic tape, credit cards,
and magnets) knows that they are delicate and likely to demagnetize or
change their magnetic properties if abused by heat or stress. Cassette tapes
left on the dashboard of the car in the hot sun never sound the same. Credit
cards that have been through the dryer may lead to acute embarrassment
at the check-out counter. Magnets that have been dropped, do not work
as well afterwards. It is not difficult to imagine that rocks that have been
left in the hot sun or buried deep in the crust (not to mention altered
by diagenesis or bashed with hammers, drills, pick axes, etc.), may not
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have their original magnetic vectors completely intact. Because rocks often
contain millions of tiny magnets, it is possible that some (or all) of these
have become realigned, or that they grew since the rock formed. In many
cases, there are still grains that carry the original remanent vector, but
there are often populations of grains that have acquired new components
of magnetization.

Through geologic time, certain grains may acquire sufficient energy to
overcome the magnetic anisotropy energy and change their direction of mag-
netization (Chapter 2). In this way, rocks can acquire a viscous magnetiza-
tion in the direction of the ambient field. Because the grains that carry the
viscous magnetization necessarily have lower magnetic anisotropy energies
(they are “softer”, magnetically speaking), we expect their contribution to
be more easily randomized than the more stable (“harder”) grains carrying
the ancient remanent magnetization.

There are several laboratory techniques that are available for separat-
ing various components of magnetization. Paleomagnetists rely on the rela-
tionship of relaxation time, coercivity, and temperature in order to remove
(demagnetize) low stability remanence components (Chapter 2). The fun-
damental principle that underlies demagnetization techniques is that the
lower the relaxation time the more likely the grain will carry a secondary
magnetization. The basis for alternating field (AF) demagnetization is that
components with short relaxation times also have low coercivities. The ba-
sis for thermal demagnetization is that these grains also have low blocking
temperatures.

In AF demagnetization, an oscillating field is applied to a paleomag-
netic sample in a null magnetic field environment. All the grain moments
with coercivities below the peak AF will track the field. These entrained
moments will become stuck as the peak field gradually decays below the co-
ercivities of individual grains. Assuming that there is a range of coercivities
in the sample, the low stability grains will be stuck half along one direction
of the AF and half along the other direction; the net contribution to the
remanence will be zero. In practice, we demagnetize samples sequentially
along three orthogonal axes, or while “tumbling” the sample around three
axes during demagnetization.
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The standard practice in demagnetization is to measure the NRM and
then to subject the sample to a series of demagnetization steps of increas-
ing severity. The magnetization of the sample is measured after each step.
During demagnetization, the remanent magnetization vector will change
until the most stable component has been isolated, at which point the vec-
tor decays in a straight line to the origin. This final component is called the
characteristic remanent magnetization or ChRM. Visualizing demagnetiza-
tion data is a three-dimensional problem and therefore difficult to plot on

3.6. Demagnetization data display
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We sketch the principles of progressive demagnetization in Figure 3.9.
Initially, the NRM is the sum of two components carried by populations
with different coercivities. The distributions of coercivities are shown in the
histograms to the left in Figure 3.9. Two components of magnetization are
shown as heavy lines in the plots to the right. In these examples, the two
components are orthogonal. The sum of the two components at the start
(the NRM) is shown as a + on the vector plots to the right. After the first
AF demagnetization step, the contribution of the lowest coercivity grains
has been erased and the remanence vector moves to the position of the
first dot away from the +. Increasing the AF gradually eats away at the
remanence vectors (shown as dashed arrows and dots in the plots to the
right) which eventually approach the origin.

There are four different sets of coercivity spectra shown in Figure 3.9,
each with a distinctive behavior during demagnetization. If the two co-
ercivity fractions are completely distinct, the two components are clearly
defined (Figure 3.9a) by the progressive demagnetization. Hoffman and Day
[1978] (see also Zijderveld [1967]) pointed out however, that if there is some
overlap in the coercivity distribution of the components the resulting de-
magnetization diagram is curved (Figure 3.9b). If the two components
completely overlap, both components are removed simultaneously and an
apparently single component demagnetization diagram may result (Fig-
ure 3.9c). It is also possible for one coercivity spectrum to include another
as shown in Figure 3.9d. Such cases result in “S” shaped demagnetization
curves.

Because complete overlap actually happens in “real” rocks, it is desirable
to perform both AF and thermal demagnetization. If the two components
overlap completely in coercivity, they might not have overlapping blocking
temperature distributions and vice versa. It is unlikely that samples from
the same lithology will all have identical overlapping distributions, so mul-
tiple samples can provide clues to the possibility of completely overlapped
directions in a given sample.
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paper. Paleomagnetists often rely on a set of two projections of the vectors,
one on the horizontal plane and one on the vertical plane. These are vari-
ously called Zijderveld diagrams (Zijderveld [1967]), orthogonal projections,
or vector end-point diagrams.

In orthogonal projections, the North component is plotted versus
East (solid symbols) in one projection, and North is replotted ver-
sus Down (open symbols) in another projection. Here, paleomagnetic
convention differs from the usual x-y plotting convention because and

are on the axis. The paleomagnetic conventions make sense if one
visualizes the diagram as a map view for the solid symbols and a vertical
projection for the open symbols. It may be advantageous to plot North on
the vertical axis and East positive to the right. In this case the vertical pro-
jection is East versus Down. This projection is useful if the magnetization
is more East-West than North-South. In fact, the horizontal axis can be
any direction within the horizontal plane.

In Figure 3.10, we show three general types of demagnetization behav-
ior. In Figure 3.10a-b, the sample has a North-Northwest and downward
directed NRM (plotted as +’s). The direction does not change during de-
magnetization and the NRM is a single vector. The directional data are
also plotted on the equal area net to the right (Figure 3.10b) and fall in the
NW quadrant of the lower hemisphere. The sample in Figure 3.10c shows
a progressive change in direction from a North-Northwest and downward
directed component to a South-Southeast and upward direction. The vec-
tor continuously changes direction to the end and no final “clean” direction
has been confidently isolated. These data are plotted on an equal area pro-
jection to the right (Figure 3.10d) along with the trace of the best-fitting
plane (a great circle). The most stable component probably lies somewhere
near the best-fitting plane.

In Figure 3.10e, we show what is informally known as a “spaghetti”
diagram. The NRM switches from direction to direction, with little cohe-
rence from step to step. Such data are difficult to interpret and are usually
thrown out.

Some people choose to plot the pairs of points versus
where H is the horizontal projection of the vector given by In this
projection, which is sometimes called a component plot, the two axes do not
correspond to the same vector from point to point. Instead, the coordinate
system changes with every demagnetization step because H almost always
changes direction, even if only slightly. Plotting H versus is therefore
a confusing and misleading practice. The primary rationale for doing so is
because, in the traditional orthogonal projection, the vertical component
reveals only an apparent inclination. If something close to true inclination
is desired, then, instead of plotting H and one can simply rotate the
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horizontal axes of the orthogonal plot such that it closely parallels the
desired declination (Figure 3.10f).

3.7.  Vector difference sum

An equal area projection may be the most useful way to present demagneti-
zation data from a sample with several strongly overlapping remanence
components (such as in Figures 3.10c-d and 3.11). In order to represent
the vector nature of paleomagnetic data, it is necessary to plot intensity
information. Intensity can be plotted versus demagnetization step in an
intensity decay curve (Figure 3.11c). However, if there are several compo-
nents with different directions, the intensity decay curve cannot be used to
determine, say, the blocking temperature spectrum, because it is the vec-
tor sum of the two components. It is therefore advantageous to consider
the decay curve of the vector difference sum (VDS.) The VDS “straightens
out” the various components by summing up the vector differences at each
demagnetization step, so the total magnetization is plotted, as opposed to
the resultant (see Figure 3.11).

3.8. Principal component analysis

Orthogonal vector projections aid in identification of the various remanence
components in a sample. The remanence directions are usually calculated
by principal component analysis (Kirschvink [1980]). A sequence of data
points which form a single component are equally weighted. The D, I, and
M data are converted to corresponding values (see Chapter 1). Then we
calculate the coordinates of the “center of mass” of the data points:

where N is the number of data points involved. We then transform the
origin of the data cluster to the center of mass:

where are the transformed coordinates.

3.8.1. THE ORIENTATION TENSOR AND EIGENVECTOR ANALYSIS

The orientation tensor T (Scheidegger [1965]) (also known as the matrix
of sums of squares and products), is extremely useful in paleomagnetism:
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T is a 3 x 3 matrix, where only six of the nine elements are independent.
It is constructed in some coordinate system, such as the geographic or
sample coordinate system. Usually, none of the six independent elements
are zero. There exists, however, a coordinate system along which the “off-
axis” terms are zero and the axes of this coordinate system are called the
eigenvectors of the matrix. The three elements of T in the eigenvector
coordinate system are called eigenvalues. In terms of linear algebra, this
idea can be expressed as:

where V is the matrix containing three eigenvectors and is the diagonal
matrix containing three eigenvalues. Equation 3.7 is only true if:

If equation 3.8 is expanded, we have a third degree polynomial whose
roots are the eigenvalues:

The three possible values of can be found with iteration
and determination. In practice, there are many programs for calculating
and the reader is referred to Press et al. [1986] for a thorough discussion.
Please note that the conventions adopted here are to scale the  such that
they sum to one; the largest eigenvalue is termed and corresponds to the
eigenvector

3.8.2. PRINCIPAL COMPONENTS OF THE ORIENTATION MATRIX

Inserting the values for the transformed components calculated in equation
3.5 into T gives the covariance matrix for the demagnetization data. The
direction of the axis associated with the greatest scatter in the data (the
principal eigenvector ) corresponds to a best-fit line through the data.
This is usually taken to be the direction of the component in question.
This direction also corresponds to the axis around which the “moment of
inertia” is least. The eigenvalues of T are the variances associated with
each eigenvector. Thus the standard deviations are The so-called
maximum angular deviation or MAD of Kirschvink [1980] is defined as:
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[See Example 3.3]
If no unique principal direction can be isolated (as for the sample in

Figure 3.10c-d), the eigenvector associated with the least eigenvalue
can be taken as the pole to the best-fit plane wherein the component of
interest must lie. Kirschvink [1980] also defines a MAD angle for the plane
as:

3.9. Blocking temperature and coercivity spectra

Because geological materials are often complicated mixtures of several mag-
netic minerals, it is useful to determine the coercivity and/or blocking tem-
perature spectra of the NRM using the VDS technique described in the last
section. By plotting the VDS curves for sister samples that underwent AF
and thermal demagnetization, much can be learned about the carrier the
NRM.

Some important magnetic phases in geological materials (Table 2.1) are
magnetite (maximum blocking temperature of ~580°C, maximum coerci-
vity of about 0.3 T), hematite (maximum blocking temperature of ~ 675°C
and maximum coercivity much larger than 5 T), goethite (maximum block-
ing temperature of ~ 125° C and maximum coercivity of much larger than 5
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T), and various sulfides. The relative importance of these minerals in bulk
samples can be constrained by a simple trick that exploits both differences
in coercivity and unblocking temperature (Lowrie [1990]).

The Lowrie “three axis IRM test” proceeds as follows:

Apply an IRM along three orthogonal directions in three different
fields. The first field, applied along should be sufficient to satu-
rate all the minerals within the sample and is usually the largest field
achievable in the laboratory (say 2 T). The second field, applied along

should be sufficient to saturate magnetite, but not to realign high
coercivity phases, such as goethite or fine-grained hematite (say 0.4 T).
The third IRM, applied along should target low coercivity minerals
and the field chosen is typically something like 0.12 T.
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The composite magnetization can be characterized by determining
the blocking temperature spectra for each component. This is done by
thermally demagnetizing the sample and plotting the magnitude of the

and components versus demagnetizing temperature.

[See Example 3.4]
An example of three axis IRM data are shown in Figure 3.12. The

curve is dominated by a mineral with a maximum blocking temperature of
between 550° and 600°C and has a coercivity less than 0.4 T, but greater
than 0.12 T. These properties are typical of magnetite (Table 2.1). There
is a small fraction of a high coercivity (>0.4 T) mineral with a maximum
unblocking temperature > 650°C, which is consistent with the presence of
hematite (Table 2.1).

3.10. Paleointensity determination

We turn now to the question of the variation in intensity of the Earth’s mag-
netic field. Until now we have only discussed methods for obtaining direc-
tional data from rock samples. In principle, it is also possible to determine
the intensity of ancient magnetic fields, because the primary mechanisms
by which rocks become magnetized (e.g., thermal, chemical and detrital
remanent magnetizations) are approximately linearly related to the ambi-
ent field (for low fields such as the Earth’s). In the ideal case, one would
determine the proportionality factor that relates magnetization and field.
For example, because TRM is proportional to the magnitude of B, we need
only measure the NRM, then give the rock a TRM in a known field. Because

the ambient field responsible for the NRM is easily calculated.
Similarly, for a DRM, one could redeposit the sediment in a known field
and thereby calculate the ratio of DRM to B and estimate the ancient field
from the NRM. In practice, however, there are problems which limit the
usefulness of each of these simple approaches. We discuss more appropriate
approaches for obtaining paleointensity information from TRMs and DRMs
in the following sub-sections.

3.10.1. PALEOINTENSITY WITH TRMS

The simple method for extracting paleointensity data from TRMs outlined
in the foregoing text often fails because rocks alter when heated in the
laboratory. The TRM that is acquired by heating the rock to above its
Curie temperature and cooling in a known field may have no relationship
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to the original TRM. Some minerals, such as maghemite, are unstable at
elevated temperatures and convert to other magnetic phases. Magnetite
also oxidizes at elevated temperatures. The NRM may have a component
of VRM as well as TRM. Such changes in the magnetic properties can have
a drastic effect on the magnetization. We therefore need a way to detect
such problems and to compensate for them.

The most effective way to determine paleointensity from igneous rocks
was suggested by Thellier and Thellier [1959] and was refined by Coe et
al. [1967a,b] (see also Coe et al. [1978], Prévot et al. [1985], and Pick and
Tauxe [1993]). The Thellier-Thellier technique relies on a property of single-
domain TRM called the law of additivity of partial thermal remanence
(Chapter 2). This law states that if a sample is heated to below the Curie
temperature, only grains whose blocking temperatures are below that tem-
perature will be affected, so the pTRM that is acquired when cooled in a
field does not affect what remains of the original TRM. In practice, the rela-
tionship between the TRM and the field can be obtained by first measuring
the NRM, then by heating the sample to some temperature, say 100°C, and
cooling the sample in zero field. The NRM is then remeasured. The sample
is then reheated to the same temperature but is cooled in a known field
(of the order of the Earth’s field) and measured again. This double heating
procedure is repeated until the highest unblocking temperature is reached.
The reproducibility of the pTRM step can be assessed by performing a
so-called pTRM check, whereby a pTRM at some lower temperature is re-
introduced after the NRM measurement at a higher temperature step. If
the second pTRM is significantly different from the first, then the capacity
of the sample to acquire TRM has changed, which provides a strong hint
that the pTRM data acquired above that temperature are unreliable.

[See Example 3.5]

In Figure 3.13 we show results of a Thellier-Thellier experiment. The
data can be plotted in a number of ways; the Arai plot of Nagata et al.
[1963] is perhaps the most popular (see Figure 3.13c). In the Arai plot, the
pTRM gained in the “in-field” step is plotted versus the NRM remaining
after the “zero field” step at the same temperature. If a sample does not
alter during the experiment, a single component has been isolated, and
the law of additivity of pTRM holds true. In this case, the NRM-pTRM
ratio should remain constant throughout the experiment. Thus, the ideal
Arai plot results in a straight line with a negative slope. Provided that the
TRM is linearly related to the applied field, the absolute value of the slope
of the line equals the ratio of ancient field to laboratory field. Deviations
from a line result from multi-domain behavior (e.g., Dunlop and Xu [1994]),
sample alteration, and/or from non-ideal experimental conditions such as
substantial differences in cooling rate, or poorly controlled temperature or
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sample orientation.
The procedure for calculating the best-fit slope, which is the best esti-

mate for the paleofield, is as follows:

Taking the N data points that span two temperature steps  and
the best-fit slope relating the NRM and the pTRM data in a
least squares sense (taking into account variations in both and (see
Coe et al. [1978]) is given by:

where is the average of all values and is the average of all values.
The standard error of the slope is:

[See Example 6.4]
The data can be iteratively searched to find the portion of data with

the lowest value of which is a measure of the uncertainty in the
slope (see Coe et al. [1978]).

The paleofield strength and the equivalent moment
of the axial dipole is given by equation 1.20 from Chapter 1.
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3.10.2.  PALEOINTENSITY WITH DRMS

The principle on which paleointensity studies in sedimentary rocks rests is
that DRM is linearly related to the magnitude of the applied field B under
certain circumstances in the laboratory (e.g., Kent [1973]). The problem
with sedimentary paleointensity data is that laboratory conditions can-
not duplicate the natural environment. First, most sediments carry a post-
depositional remanence (or chemical remanence) as opposed to a deposi-
tional remanence (see Tauxe [1993] for a thorough review). Second, the
intensity of remanence is a function not only of field but of magnetic min-
eralogy and even chemistry of the water column (e.g., Lu et al. [1990]).
Third, sedimentary rocks are lithified and cannot easily be disaggregated
to their original state.

Under the ideal conditions depicted in Figure 3.14, the initial DRM of
a set of samples deposited under a range of magnetic field intensities (B) is
shown as open circles. The relationship is not linear because each sample
has a different magnetic activity as a result of differences in the amount
of magnetic material, magnetic mineralogy, etc. For example, samples with
a higher concentration of magnetic material will have a higher DRM. If
can be successfully approximated, for example, by bulk remanences such
as IRM or ARM, or by bulk magnetic susceptibility (Chapter 2), then
a normalized DRM (shown as dots in Figure 3.14) will reflect the relative
intensity of the applied field.

Our theoretical understanding of DRM is much less developed than for
TRM (Chapter 2). Because of the lack of a firm theoretical foundation for
DRM, there is no simple method for determining Many proxies have
been proposed (see review by Tauxe [1993]) ranging from normalization by
bulk magnetic properties such as ARM, IRM, or to Thellier-Thellier type
normalization (Tauxe et al. [1995], Hartl and Tauxe [1996b]). The principal
assumption in the Thellier-Thellier type experiment in sediments is that the
DRM component behaves in the same way during thermal demagnetization
as would a TRM in the same assemblage (i.e., DRM is linear with TRM).
If this is true for a particular sedimentary sample, the data acquired during
a Thellier-Thellier experiment on the sample will yield a linear Arai plot
(Hartl and Tauxe [1996]).

Sediments are not always amenable to thermal demagnetization, and it
is possible to modify the Thellier-Thellier experiment by using the acquisi-
tion of pARMs in place of the pTRMs in the traditional Thellier-Thellier ex-
periment, in the so-called pseudo-Thellier experiment (Tauxe et al. [1995]).
In the pseudo-Thellier experiment (Figure 3.15), the NRM is first AF de-
magnetized in a stepwise fashion (Figure 3.15a and stars in Figure 3.15b).
Then, pARMs are imparted at the same AF steps (solid squares in Figure
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3.15b). When the pARMs are plotted against the remaining NRM in an
Arai plot (Figure 3.15c), the slope can be calculated in the same manner
as for Thellier-Thellier data. The pseudo-Thellier experiment may be ap-
propriate for sediments that alter or disintegrate on heating. Thellier type
experiments serve well to normalize sedimentary paleointensity in a rela-
tive sense and have the advantage of efficiently separating VRM from DRM
(see Kok and Tauxe [1996]). Because these experiments are extremely time
consuming, it may be sufficient to do them on a selection of pilot samples.
These data can be used to demonstrate the optimum “blanket” treatment,
which would then be applied to the rest of the samples.

[See Example 3.6]
The best for which we can presently hope from sediments is relative

paleointensity (but see Constable and Tauxe [1996]). Nonetheless, there is
cause for optimism that relative paleointensities can be reliably determined
(see King et al. [1983], Tauxe [1993], Guyodo and Valet [1996], Frank et al.
[1996], and Constable et al. [1998]).

3.11. Summary

In this chapter, we have outlined how to obtain samples and reviewed rou-
tine laboratory analyses. The end product of these efforts is a set of pal-
eomagnetic vectors which one hopes represent ancient geomagnetic field
conditions. Calculation of mean directions and quantification of scatter of
paleomagnetic vector data is the subject of the following chapter.
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3.12. Examples

Example 3.1
Use the program sundec to calculate azimuth of the direction of drill.
You are located at 35° N and 33° E. The local time is three hours ahead
of Universal Time. The shadow angle for the drilling direction was 68°
measured at 16:09 on May 23, 1994.
Solution
The program sundec reads the time offset from the command line as an
argument to a switch [-u]. It reads site latitude, longitude, year, month,
day, hours, minutes and shadow angle from standard input (try sundec
-h, or check Appendix 1 for details).
Type the following:
% cat > ex3.1
35 33 1994 5 23 16 09 68
<control-D>
% sundec -u 3 < ex3.1
The computer responds:

154.2

Example 3.2
Use the programs di_geo and di_tilt to convert D = 8.1, I = 45.2 into
geographic and tilt adjusted coordinates. The orientation of laboratory ar-
row on the specimen was: azimuth = 347; plunge = 27. The strike was 135
and the dip was 21. (NB: the convention is that the dip direction is to the
“right” of the strike).
Solution
Type the following:
% cat > ex3.2
8.1 45.2 347 27
< control-D>
% di_geo< ex3.2
The computer responds:

5.3 71.6
which are the D and I in geographic coordinates.
Now type:
% cat > ex3.2a
5.3 71.6 135 21
<  control-D>
% di_tilt< ex3.2a
The computer responds:

285.7 76.6
which are the D and I in tilt adjusted coordinates.
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Example 3.3
1) Use the program pca to calculate the best-fit direction from the data
in Table 3.1. Use only the 20 to 90 mT demagnetization steps. 2) Use the
program gtcirc to calculate the best-fit plane through the NRM to 20 mT
steps. 3) Plot the data (and the best-fit line) using the program plotdmag.
4) Plot the data with D = 300 on the axis.
Solution
Because each laboratory has its own file formatting convention, it is neces-
sary to extract the desired data from a given file format using the grep and
awk commands. If the above data are in a file named yourdata along with
data from other samples, then the data for the particular sample eba24a
can be extracted using the grep command. Type:
% grep “eba24a” yourdata > tmp
Three data formats are supported by plotdmag (Appendix 1). If the data
format of your file is different, the columns needed by plotdmag can be
stripped out using awk. For example, if columns 1, 3, 5, 6, and 7 are
required, then type the following:
% awk ’{print $1,$3,$5,$6,$7}’ tmp > ex3.3
These two commands can be combined:
% grep “eba24a” yourdata | awk ’{print $1, $3,$5,$6,$7}’ > ex3.3
Now pca can be made to analyze the data from the 6th (20 mT) to the
13th (90 mT) treatment steps as follows.
Type:
% pca -p 6 13 < ex3.3
The computer responds:

eba24a p 8 20.00 90.00 4.5 307.9 39.8
To find out what these numbers mean, check Appendix 1 or type:
% pca -h
and get:
Usage pca [-pmd] [beg end] [ta][Standard I/O]

calculates best-fit line through specified input data
-p PCA from [beg] to [end] steps
-d uses .dat file as input
if  [ta]=0 (default), uses geographic (fdec,finc)
if [ta] = 1 uses tilt adjusted (bdec,binc)

-m uses .mag file as input
Input options:
Default input:

Sample name tr int dec inc
.mag file option

Sample name tr csd int dec inc
.dat file option
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Sample name pos tr csd int fdec fine bdec binc
Output is:

Sample name p n beg end mad dec inc
where dec and inc are for the princ. comp.

The “p” indicates that this is a principal component direction (as opposed
to a pole to a great circle), n is the number of data points used, [beg] and
[end] are the bounding treatment steps used, mad is the MAD angle, and
the declination and inclination are for the principal component. The output
can be saved into a file using the UNIX redirect capability. To append to
the end of a file called pca.out, type:
% pca -p 6 13 < ex3.3 >> pca.out
To calculate the pole to the best-fit plane and a corresponding
type the following:
% gtcirc -g 1 6 < ex3.3
The computer responds:

eba24 g 6 0.00 20.00 7.4 193.1 29.3
This output is similar to that from pca except that the g stands for great
circle and the direction is that of the pole to the best-fitting plane. Fi-
nally, to plot the data with the principal component along an axis with a
declination of 300° and to view it with ghostview, type the following:
% plotdmag -rp 300 6 13 < ex3.3 | plotxy ; ghostview mypost
This causes plotxy to create a postscript file mypost as shown in Fig-
ure 3.16.
The program plotdmag can be used iteratively, first with no options for a
quick look at the data and to display the index numbers for the treatment
steps, then again to calculate best-fit lines and planes. To view a whole
data file (e.g., yourfile), one can make a shell script as in the following
example.
First list all the samples in the file (presuming that the sample name is in
the first column.
% awk ’{print $1}’ yourfile | sort | uniq > yourshell
which makes a list of unique sample names (e.g., s1, s2, etc.). Now edit
yourshell to look something like this:
grep s1 yourfile | awk ’{print $1,$3,$5,$6,$7}’ | plotdmag | plotxy;cat my-
post > your.ps
grep s2 yourfile | awk ’{print $1,$3,$5,$6,$7}’ | plotdmag | plotxy;cat my-
post >> your.ps
grep s3 yourfile | awk ’{print $1,$3,$5,$6,$7}’ | plotdmag | plotxy;cat my-
post >> your.ps
grep s4 yourfile | awk ’{print $1,$3,$5,$6,$7}’ | plotdmag | plotxy;cat my-
post >> your.ps
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grep s5 yourfile | awk ’{print $1,$3,$5,$6,$7}’ | plotdmag | plotxy;cat my-
post >> your.ps
Now you must make yourshell executable, by e.g.:
% chmod u+x yourshell
Execute it by:
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%  yourshell

and view the results by:

% ghostview your.ps

By pressing the spacebar, successive plots can be viewed. Finally, the plot-
dmag part of yourshell can be edited to put in the appropriate switches
(e.g., -p 6 13 to put a line through the 6-13 data points, as illustrated
above).

Example 3.4

The data listed in Table 3.2 are thermal demagnetization data for a spe-
cimen that had a 2 T field exposed along a 0.4 T field exposed along

and a 0.12 T field exposed along Convert the data to
components using awk and dir_cart. Put the temperature, and data in
a file called cart using the UNIX utility paste. Now plot the 3-component
IRM demagnetization data using plotxy.

Solution

After putting the data listed in Table 3.2 into a file called ex3.4 using cat or
some text editor, the first task is to peel off the declination, inclination and
intensity data, and pipe them to the program dir_cart (see also Example
1.1). Put them in a file called cart. This is done with the command:

Now we need to peel off the temperature steps from ex3.4 using awk and
paste them with the cartesian component data into a file ex3.4a.

% awk ’{print $1}’ ex3.4 > tmp; paste tmp cart > ex3.4a

Finally we can plot the data using plotxy by putting the commands listed
in Table 3.3 into a command file ex3.4.com. Notes as to the meaning of
the commands are given to the right of Table 3.3.

Now type:

% plotxy<ex3.4.com

The output file mypost is shown in Figure 3.17.

% awk ’{print $2,$3,$4}’ ex3.4 | dir_cart -m > cart
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Example 3.5
1) Use the program arai to convert the data from a paleointensity experi-
ment contained in file ex3.5 to an Arai plot. The laboratory field applied
during the “in-field steps” was 50 At which temperature step do the

checks (triangles) fail? 2) Calculate a best-fit line between the 175°
and 350° C steps.
Solution
First check Appendix 1 for our conventions. To make an Arai plot, calcu-
lating a best-fit line between the 175° and the 350° C temperature steps
using a laboratory field of type:
% arai -sf 175 350 50e-6 < ex3.5 | plotxy
The result is the mypost file shown in Figure 3.18.

Example 3.6
Use the program pseudot to plot an Arai diagram for the pseudo-Thellier
experiment whose data are contained in file ex3.6.
Solution



Type the following:
pseudot < ex3.6 | plotxy; ghostview mypost
and see Figure 3.19.
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In the previous chapter, we learned about routine paleomagnetic sam-
pling and laboratory procedures. Once paleomagnetic directions have been
obtained after stepwise demagnetization, principal component analysis, etc.,
one may wish to interpret them in terms of ancient geomagnetic field di-
rections. To do this, there must be some way of calculating mean vectors
and of quantifying the confidence intervals about a mean vector. In order
to do this, we must understand the statistics of paleomagnetic directions.

Consider the various sets of directions that are shown in Figure 4.1,
which are drawn from distributions with a vertical direction. It would be
handy to be able to calculate a mean direction and to quantify the scatter
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of these directions. The average inclination, calculated as the sum of all
the inclinations and divided by the number of points, will obviously not be
vertical. We will see, however, that the average direction of each data set
is actually nearly vertical. In the following, we will demonstrate the proper
way to calculate mean directions and confidence regions for directional data
that are distributed in the manner shown in Figure 4.1. We will also briefly
describe several useful statistical tests that are popular in the paleomagnetic
literature.

In order to calculate mean directions with confidence limits, paleo-
magnetists rely heavily on the special statistics known as Fisher statistics
(Fisher [1953] ), which were developed for assessing dispersion of unit vec-
tors on a sphere. Paleomagnetic directional data are subject to a number
of factors that lead to scatter. These include:

1) uncertainty in the measurement caused by instrument noise or sample
alignment errors,
2)
3)
4)

uncertainties in sample orientation,
uncertainty in the orientation of the sampled rock unit,
variations among samples in the degree of removal of a secondary

component,
5)
6)

uncertainty caused by the process of magnetization, and
secular variation of the Earth’s magnetic field.

Some of these sources of scatter (e.g., items 1, 2 and perhaps 6 above)
lead to a symmetric distribution about a mean direction. Such a distribution
is called a Fisher distribution, and is the spherical analog of the normal
distribution. Other sources contribute to distinctly non-Fisherian scatter.
For example, in the extreme case, item four leads to a girdle distribution
whereby directions are smeared along a great circle. In most instances,
paleomagnetists assume a Fisher distribution for their data because the
statistical treatment allows calculation of confidence intervals, comparison
of mean directions, comparison of scatter, etc.

We mention briefly an alternative distribution: the Bingham Distribu-
tion (Bingham [1964] ). The Bingham distribution handles bi-modal, ellip-
tically distributed data. It has some advantages over the Fisher approach
which requires uni-modal, spherically symmetric data. However, statistical
tests such as tests for randomness, uniqueness, etc., that lend paleomag-
netism so much power are difficult with Bingham statistics. This book de-
scribes an alternative approach that has the flexibility of Bingham statistics
but also allows for statistical testing: the bootstrap. The bootstrap will be
discussed at length later in this chapter.
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4.1. Parameter estimation

The Fisher probability density function (Fisher [1953] ) is given by:

where is the angle between the unit vector and the true direction and
is a precision parameter such that as dispersion goes to zero.

Because the intensity of the magnetization has little to do with the
validity of the measurement (except for very weak magnetizations), it is
customary to assign unit length to all directions. The mean direction is
calculated by first converting the individual directions to cartesian
coordinates by the methods given in Chapter 1. The length of the resultant
vector, R, is given by:

and the cartesian coordinates of the mean direction are given by:

The cartesian coordinates can, of course, be converted back to geomagnetic
elements by the familiar method described in Chapter 1.

[See Example 4.1]
The precision parameter for the Fisher distribution, is estimated by

(where N is the number of data points). Using this estimate
of we estimate the circle of 95% confidence about the mean,

by:

In the classic paleomagnetic literature, was further approximated by:

which is reliable for larger than about 25 (see Tauxe et al. [1991] ).
Another useful parameter is the so-called circular standard deviation

(CSD, also sometimes called the angular standard deviation), which is ap-
proximated by:
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[See Example 4.2]
If directions are converted to VGPs as outlined in Chapter 1, the trans-

formation distorts a rotationally symmetric set of data into an elliptical
distribution. The associated may no longer be appropriate and many
paleomagnetists (e.g., McElhinny [1973] ) calculate the following for 95%
confidence regions in VGPs.

where is the uncertainty in the paleomeridian (longitude), is the
uncertainty in the paleoparallel (latitude), and is the site paleolatitude.

Two examples of Fisher distributions, one with a large degree of scatter
and one that is relatively tightly clustered are shown in

Figure 4.2. Also shown are the Fisher mean directions and for each
data set.

The Fisher distribution allows a number of questions to be asked about
paleomagnetic data sets.

1)
2)

Is a given data set random?
Is the mean direction of a given (Fisherian) data set different from

some known direction?
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3)
4)

Are two (Fisherian) data sets different from each other?
If a given site has some samples that allow only the calculation of a

best-fit plane and not a directed line, what is the site mean direction
that combines the best-fit lines and planes?

In the following discussion, we will briefly summarize ways of addressing
these issues using Fisher techniques.

4.2. Watson’s test for randomness

Watson [1956] demonstrated how to test a given directional data set for
complete randomness. His test relies on the calculation of R given by equa-
tion 4.2. Because R is the length of the resultant vector, randomly directed
vectors will have small values of R, while, for less scattered directions, R
will approach N. Watson [1956] defined a parameter that can be used
for testing the randomness of a given data set. If the value of R exceeds
the null hypothesis of total randomness can be rejected at a specified level
of confidence. If R is less than randomness cannot be disproved. He
calculated the value of for a range of N for the 95% and 99% confidence
levels. Watson [1956] also showed how to estimate by:

We plot versus N in Figure 4.3 using both the exact method (dots)
and the estimation given by equation 4.6. The estimation works well for
N > 10, but is somewhat biased for smaller data sets. The critical values
of R for 5 < N < 20 from Watson [1956] are listed for convenience in Table
4.1.



128 CHAPTER 4

The test for randomness is particularly useful for determining if, for ex-
ample, the directions from a given site are randomly oriented (the data for
the site should therefore be thrown out). Also, one can determine if direc-
tions from conglomerate clasts are randomly oriented in the conglomerate
test (see Chapter 3).

4.3. Comparing known and estimated directions

The calculation of confidence regions for paleomagnetic data is largely mo-
tivated by a need to compare estimated directions with either a known di-
rection (for example, the present field) or another estimated direction (for
example, that expected for a particular paleopole). Comparison of a pale-
omagnetic data set with a given direction is straightforward using Fisher
statistics. If the known test direction lies outside the confidence interval
computed for the estimated direction, then the estimated and known direc-
tions are different at the specified confidence level. The case in which two
Fisher distributions are compared can also be simple. If the two confidence
regions do not overlap, the two directions are different at the given level of
certainty. When one confidence region includes the mean of the other set
of directions, the difference in directions is not significant. But, when the
two confidence regions overlap, and neither includes the mean of the other,
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determining the significance of the difference becomes more difficult. For
special cases where the two data sets are Fisher distributed with the same
dispersion, criteria have been devleloped to test the significance of the dif-
ference in data sets by comparing R values for the two data sets separately
and together. The Watson test calculates the statistic F as follows:

where and R are the resultants of the first, second, and combined
data sets, respectively, and N is the total number of data points in both
data sets. If F exceeds the value given in an F table for 2 and 2(N-2) degrees
of freedom, the null hypothesis that the two data sets have a common mean
can be rejected. The Watson approach was extended to include data sets
with different degrees of scatter by McFadden and Lowes [1981]. We will
discuss an alternative approach for testing for common mean later in the
chapter.

4.4. Combining vectors and great circles

Consider the demagnetization data shown in Figure 4.4 for various samples
from a certain site. The data from sample tst1a seem to hover around a
given direction; a mean direction for the last few demagnetization steps
can be calculated using Fisher statistics. We can calculate a best-fit line
from the data for sample tst1b (Figure 4.4b) using the principal component
method of Kirschvink [1980] as outlined in Chapter 3. The data from tst1c
track along a great circle path and can be used to calculate the pole to
the best-fit plane. McFadden and McElhinny [1988] outlined a method for
estimating the mean direction and the from sites that mix planes (great
circles on an equal area projection) and directed lines.

Calculate M directed lines and N great circles using principal com-
ponent analysis or Fisher statistics.

Assume that the primary direction of magnetization for the samples
with great circles lies somewhere along the great circle path (i.e., within
the plane).

Assume that the set of M directed lines and N unknown directions
are Fisher distributed.

Iteratively search along the great circle paths for directions that max-
imize the resultant vector R for all the M + N directions.

Having found the set of N directions that lie along their respective
great circles, estimate the mean direction using equation 4.3 and as:
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The cone of 95% confidence about the mean is given by:

where

[See Example 4.3]

4.5. Inclination only data

A different problem arises when only the inclination data are available as
in the case of unoriented drill cores. Cores can be drilled and arrive at the
surface in short, unoriented pieces. Specimens taken from such core material
will be oriented with respect to the vertical, but the declination data are
unknown. It is often desirable to estimate the true Fisher inclination of data
set having only inclination data, but how to do this is not obvious. Consider
the data in Figure 4.5. The true Fisher mean declination and inclination are
shown by the asterisk. If we had only the inclination data and calculated a
gaussian mean (< I >), the estimate would be too shallow as pointed out
earlier.

Several investigators have addressed the issue of inclination-only data
(Briden and Ward [1966], Kono [1980], McFadden and Reid [1982] ). The
approach of Briden and Ward [1966] was graphical and not suited for com-
putational ease. McFadden and Reid [1982] developed a maximum likeli-
hood estimate for the true inclination which is less biased than that of
Kono [1980] and can be written into a computer program. We outline their
approach in the following.

We wish to estimate the co-inclination ( = 90 – I) of N Fisher dis-
tributed data the declinations of which are unknown. We define the
estimated value of to be McFadden and Reid showed that is the
solution of:

which can be solved for numerically.
They further define two parameters S and C as:

An unbiassed approximation for the Fisher parameter is given by:
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The unbiased estimate of the true inclination is:

Finally, the is estimated by:
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where is the critical value taken from the F distribution with 1 and (N-l)
degrees of freedom.

By comparing inclinations estimated using the McFadden-Reid tech-
nique with those calculated using the full vector data, it is clear that the
method breaks down at high inclinations and high scatter, but works well
for most data sets.

[See Example 4.4]
Clearly, the Fisher distribution allows powerful tests and this power lies

behind the popularity of paleomagnetism in solving geologic problems. The
problem is that these tests require that the data be Fisher distributed. How
can we tell if a particular data set is Fisher distributed? What do we do if
the data are not Fisher distributed? These questions are addressed in the
rest of the chapter.

4.6. Is a data set Fisher distributed?

Let us now consider how to determine whether a given data set is Fisher
distributed. The first step is to calculate the orientation matrix T of the
data and the associated eigenvectors and eigenvalues (Chapter 3).
Substituting the direction cosines relating the geographic coordinate sys-
tem X to the coordinate system defined by V, the eigenvectors, where X is
the “old” and V is the “new” set of axes in equation 3.1, we can transform
the coordinate system for a set of data from “geographic” coordinates (Fig-
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ure 4.6a) where the vertical axis is the center of the diagram, to the “data”
coordinate system, (Figure 4.6b). where the principal eigenvector lies
at the center of the diagram, after transformation into “data” coordinates.

Equation 4.1 for the Fisher distribution function suggests that decli-
nations are randomly distributed about the mean. In “data” coordinates,
this means that the declinations are uniformly distributed from
Furthermore, the probability P of finding a direction within the band:

Let us compare the data from Figure 4.6 to the expected distributions
for a Fisher distribution with = 20 (Figure 4.7). Because the data were
generated using the method outlined by Fisher et al. [1987], that draws
directions from a Fisher distribution with a specified We used a of 20,
and it should come as no surprise that the data fit the expected distribution
rather well. But how well is “well” and how can we tell when a data set
fails to be fit by a Fisher distribution? Fisher et al. [1987] describe several
methods for doing this, and we outline one of these here.

We wish to test whether the declinations are uniformly distributed and
whether the inclinations are exponentially distributed as required by the
Fisher distribution. Plots such as those shown in Figure 4.7 are not as
helpful for this purpose as a plot known as a Quantile-Quantile (Q-Q) plot
(see Fisher et al. [1987]). In a Q-Q plot, the data are graphed against the
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value expected from a particular distribution. Data compatible with the
chosen distribution plot along a line. In order to do this, we proceed as
follows (Figure 4.8):

Sort the variable of interest into ascending order so that is the
smallest and is the largest.

If the data are represented by the underlying density function as in
Figure 4.8a, then the divide the curve into (N + 1) areas, the
average value of which is = 1/(N + 1). If we assume a form for
the density function of we can calculate numbers that divide
the theoretical distribution into areas each having an area (see
Figure 4.8b).

An approximate test for whether the data are fit by a given distri-
bution is to plot the pairs of points as shown in Figure 4.8c. If
the assumed distribution is appropriate, the data will plot as a straight
line.

The density function P is the distribution function F times the area,
as mentioned before. The are calculated as follows:

so that:

and where is the inverse function to F. If the data are uniformly
distributed (and constrained to lie between 0 and 1), then both F(x)
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and For an exponential distribution and

and

For a uniform distribution               so  is calculated by first calcu-
lating as the maximum of         and  as the maximum of

. A value of .207 (see Fisher et al
[1987] ) can be grounds for rejecting the hypothesis of uniformity at the
95% level of certainty. Similarly, and can be calculated for

Finally, we can calculate parameters     and  which, when com-
pared to critical values, allow rejection of the hypotheses of uniform and
exponential distributions, respectively. To do this, we first calculate:



or

nor
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the inclination as the maximum of
and maximum of respectively.
Values larger than 1.094 allow rejection of the exponential hypothesis.
If either exceed the critical values, the hypothesis of a Fisher
distribution can be rejected.

In Figure 4.9a, we plot the declinations from Figure 4.6 (in data coordi-
nates) against the values calculated assuming a uniform distribution and
in Figure 4.9b, we plot the co-inclinations against calculated using an
exponential distribution. As expected, the data plot along lines and neither

exceed the critical values.
[See Example 4.5]

The question arises: what do we do if a particular data set is not ad-
equately fit by a Fisher distribution? The tests designed for Fisher dis-
tributions that allow us to ask whether a given data set is different from
another, or from an expected, direction will not work reliably unless the
data sets are Fisherian. In the following sections we will describe methods
for performing similar tests on data that need not be Fisher distributed.

4.7. Non-parametric analysis of vectors

Paleomagnetists have depended since the 1950’s on the special statistical
framework developed by Fisher [1953] for the analysis of unit vector data.
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The power and flexibility of a variety of tools based on Fisher statistics en-
ables quantification of parameters such as the degree of rotation of a crustal
block, or whether the geomagnetic field really averages to a geocentric axial
dipole independent of polarity. These tools, however, require that the pal-
eomagnetic data belong to a particular parametric distribution. In many
geologically important situations, the Fisher distribution fails to model the
data adequately. For example, the magnetic field exists in two stable po-
larity states but the Fisher distribution is uni-modal. The transformation
of directions to VGPs tends to distort rotationally symmetric data into
elliptical distributions. Furthermore, remanence vectors composed of sev-
eral components tend to form streaked distributions. Similarly, structural
complications (e.g., folding) can lead to streaked distributions of direc-
tional data. Thus, non-Fisherian data are a fact of paleomagnetic life. The
Fisher-based tests can, at times, be inappropriate and could result in flawed
interpretations.

In the previous sections we learned the basics of Fisher statistics and
how to test data sets against a Fisher model. For the rest of the chapter, we
will discuss non-parametric methods for performing similar tests that work
on non-Fisherian data sets. A non-parametric method is one which does
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not require data to be distributed according to some known distribution
that can be characterized with a few parameters.

4.8. Non-Fisherian directional data

The data shown in Figure 4.10 have two polarities and appear to have a
more elliptical distribution than the symmetrical distribution required for
a Fisherian data set. Using the Q-Q method outlined earlier (Figure 4.11),
we find that the data set is probably not rotationally symmetric ( is
large) hence it is not well fit by a Fisher distribution.
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In order to accomodate data such as those plotted in Figure 4.10, Tauxe
et al. [1991] developed an alternative way of characterizing uncertainties for
unit vectors. Their method is based on a technique known as the statistical
bootstrap (see Efron [1982] ).
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4.9. The statistical bootstrap

In Figure 4.12, we illustrate the essentials of the statistical bootstrap. We
will develop the technique using data drawn from a normal distribution.
First, we generate a synthetic data set by drawing 500 data points from
a normal distribution with a mean of 10 and a standard deviation
of 2. The synthetic data are plotted as a histogram in Figure 4.12a. In
Figure 4.12b we plot the data as a Q-Q plot against the expected for
a normal distribution (see Abramowitz and Stegun [1970] ). In order to
calculate the appropriate values for assuming a normal distribution:

For calculate
If > 0.5, then then
Calculate the following for all

and

where = 2.515517, = 0.802853, = 0.010328, = 1.432788, =
0.189269, = 0.001388.

If > 0.5, then then
If = 0.5, then

The values of calculated in this way for the simulated Gaussian dis-
tribution are plotted as the “normal quantile” data in Figure 4.12b.

[See Examples 4.6 & 4.7]
The simulated data fall along a line in Figure 4.12b which suggests that

they are normally distributed (as one would hope). To test this in a more
quantitative way, we can calculate        and as follows:

Calculate the mean and standard deviation for the data.
Then calculate:

and

Substitute into the following expression (function 7.1.26 from Abramowi
and Stegun [1970] ):
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where = 0.254829592, = -0.284496736, = 1.421413741, and
= 1.061405429.

Change the sign of erf such that it has the same sign as
Substitute into equations 4.11 and 4.12 for

and respectively. The Kolmogorov-Smirnov parameter D (e.g.,
Fisher et al. [1987] ) is the larger of or           .

The null hypothesis that a given data set is normally distributed can
be rejected at the 95% level of confidence if D exceeds a critical value

given by

Applying the foregoing to the data in Figure 4.12a yields a D value of
0.0306. Because N = 500, the critical value of D, at the 95% confidence
level is 0.0396. Happily, our program has produced a set of 500 numbers for
which the null hypothesis of a normal distribution has not been rejected.
The mean is about 10 and the standard deviation is 1.9. The usual Gaussian
statistics allow us to estimate a 95% confidence interval for the mean as

[See Examples 4.8 & 4.9]
In order to estimate a confidence interval for the mean using the boot-

strap, we first randomly draw a list of N data by selecting data points from
the original data set using a random number generator (see e.g., Press et
al. [1986] ). Of course, some data points will be used more than once and
others will not be used at all. From this “para-data set” we can calculate a
mean. We repeat the procedure of drawing para-data sets and calculating
the mean many times (say 10,000 times). The “bootstrapped” means are
plotted in Figure 4.12c as a histogram. If these are sorted such that the
first mean is the lowest and the last mean is the highest, the 95% confi-
dence interval for the mean is bounded by the means between the
and the mean. The 95% confidence interval calculated for the data
in Figure 4.12 by bootstrap is about ± 0.16 which is nearly the same as
that calculated the Gaussian way. However, the bootstrap required orders
of magnitude more calculations than the Gaussian method, hence it is ill-
advised to perform a bootstrap calculation when a parametric one is ade-
quate. Nonetheless, if the data are not Gaussian, the bootstrap provides a
means of calculating confidence intervals when there is no other satisfactory
way. Furthermore, with a modern computer, the time required to calculate
the bootstrap illustrated in Figure 4.12 was virtually imperceptible.

Before we extend the bootstrap to unit vectors, it is important to point
out that, with the bootstrap, it is assumed that the underlying distribution
is represented by the data, demanding that the data sets are rather large.
Moreover, the bootstrap estimates are only asymptotically true, meaning
that a large number of bootstrap calculations are required for the confidence
intervals to be valid.

or
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What we have described so far is a simple bootstrap. There is a way of
improving bootstrap estimates for small data sets by using the parametric
bootstrap. If the data in the previous example had some associated uncer-
tainty, we could use the uncertainty to increase the variability of a small
data set and improve the estimate of uncertainty in the mean. Let us say
that each data point is a measurement whose uncertainty is Gaussian and
its standard deviation is known. Instead of making para-data sets with the
original data points, we could randomly select a data point as before, but
then calculate a substitute data point drawn from a Gaussian distribution
with the mean and standard deviation associated with the original data
point. In this way, the para-data sets would reflect more of the underlying
distribution than a data set with too few data points.

4.10. A bootstrap for unit vectors

We can now apply the statistical bootstrap to unit vectors:
Randomly draw N data points from the data shown in Figure 4.10.

This is a para-data set for a simple bootstrap. One can also do a “pa-
rametric” bootstrap if each data point represents a site mean of Fisher
distributed directions having an estimated of  In this case, draw a



Analyzing vectors 143

para-data set by random selection of data points and by calculation of
a substitute data point by sampling from a Fisher distribution with the
same N, and mean direction.

Because paleomagnetic data are often bimodal, the data must be
split into normal and reversed polarity modes. To do this, calculate
the orientation matrix and its eigenparameters (Chapter 3) for each
para-data set. In a Fisher distribution, the Fisher mean coincides with
principal eigenvector but this is not exactly true with non-Fisherian
data. If the coordinates of the para-data set are transformed to data
coordinates as described in Chapter 3, the transformed inclinations can
be used to assign polarity in an automated and unbiased way; positive
inclinations belong to one mode and negative inclinations to the other.

Calculate a Fisher mean for each para-data set. Alternatively, if a
more robust estimate of the “average” direction is desired, calculate
the principal eigenvector which is less sensitive to the presence of
outliers (see, e.g., Tauxe et al. [1991] ).

Repeat the above procedure (say 1,000) times. Examples of a set
of bootstrapped means from the data shown in Figure 4.10 are plotted
in Figure 4.13.

Now we can estimate the region of 95% confidence for the bootstrap-
ped means or A non-parametric approach would be to draw a con-
tour enclosing 95% of the bootstrapped means, or to plot histograms of
cartesian coordinates with 95% confidence limits, as in Figure 4.12c. In
many applications, paleomagnetists desire a more compact way of ex-
pressing confidence regions (for example, to list them in a table) and this
necessitates some parametric assumptions about the distribution of the
means. For this limited purpose, approximate 95% confidence regions
can be estimated by noting the elliptical distribution of the bootstrap-
ped means and by assuming that they are Kent [1982] distributed. The
Kent distribution is the elliptical analogue of the Fisher distribution
(Kent [1982] ) and is given as follows:

where is the angle between a given direction and the true mean di-
rection (estimated by the principal eigenvector of the orientation
matrix T), and is an angle in the plane perpendicular to the true di-
rection with parallel to the major eigenvector in that plane.
is a concentration parameter similar to the Fisher and is the “oval-
ness” parameter. is a complicated function of and (Fisher et
al. [1987]), When is zero, the Kent distribution reduces to a Fisher
distribution.
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The parameters of interest are calculated by rotating the set of boot-
strapped means from a given mode into the data coordinates by
the transformation:

where and the columns of  are called the constrained
eigenvectors of T. The vector is parallel to the Fisher mean of the
data, whereas and (the major and minor axes) diagonalize T as
much as possible subject to being constrained by (see Kent [1982],
but note that his corresponds to in conventional paleomagnetic
notation). The following parameters may then be computed

As defined here, (R is closely approximated by equation 4.2).
Also to good approximation, where are the
eigenvalues of the orientation matrix. The semi-angles and sub-
tended by the major and minor axes of the 95% confidence ellipse are
given by:

where
The tensor  is, to a good approximation, equivalent to V, the eigenvec-
tors of the orientation matrix. Therefore, the eigenvectors of the orienta-
tion matrix V give a good estimate for the directions of the semi-angles
by:

where for example the component of the smallest eigenvector is
denoted The 95% confidence ellipses calculated in this way for our
example data set are shown in Figure 4.13b.

[See Example 4.10]

4.11. The parametric bootstrap

The bootstrap described here is a “simple” or “naive” bootstrap in that
no distribution is assumed for the data. We must assume, however, that all
the uncertainty inherent in the data is reflected in the data distribution. If
the data set is smaller than about N = 20, this leads to uncertainty ellipses
that are too small (Tauxe et al. [1991]). Many paleomagnetic data sets are
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smaller than this, yet they are demonstrably non-Fisherian. However, if
we are able to assume some parametric form for data from e.g., a given
site, we can perform a superior technique which is known as the parametric
bootstrap. As applied here, we assume that each site with samples is
Fisher distributed (in principle, a testable assumption). Then, after random
selection of a particular site for inclusion in the para-data set, we draw
new directions from a Fisher distribution with the same mean direction,

and N. From these, we then calculate a substitute mean direction, and
use that in the para-data set. Otherwise, we follow the same procedure as
before.

For large data sets (N > 25), the parametric and simple bootstraps
yield very similar confidence ellipses. For smaller data sets, the parametric
ellipses are larger, and are probably more realistic.

4.12. Application to VGPs

We stated earlier that the transformation of data from directions to VGPs
can cause a distortion from rotationally symmetric data to elliptically dis-
tributed data. To illustrate what happens if data are distributed as in our
hypothetical normal data set, we calculate VGPs in Figure 4.10, the ellipse
described by and our bootstrap confidence ellipses. The VGPs are
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plotted in Figure 4.14 and the dp, dm is shown as a dotted line. Because the
declinations are smeared and the dp must point towards the site (shown as a
triangle), the long axis of the so-called 95% confidence regions is perpendic-
ular to the actual data distribution. The 95% confidence ellipse, calculated
using the bootstrap, is shown as a solid line. The bootstrapped confidence
ellipse gives a better sense of the uncertainty and follows the trend in the
data.

4.13. When are two data sets distinct?

The test for a common mean addresses the question “can the means of two
data sets be discriminated from one another?” Another way of putting it is,
“If a set of bootstrap means is examined, are there two distinct groups or
is there just one?” We explore these ideas by considering several data sets
drawn at random from a Fisher distribution. In Figure 4.15 we show the
means of two data sets      and  each drawn from distributions with a

of 10. The mean direction of each lies outside the confidence region of the
other, but the F test of Watson [1956] gives a value of 2.03, which passes
the test for a common mean (see Section 4.3).

In order to compare the two populations of bootstrapped means, we
convert them to cartesian coordinates. Histograms of the cartesian coordi-
nates of the bootstrap means (Figure 4.15) are uni-modal, which suggests a
common mean. As a more quantitative test, we plot the intervals from each
data set that contain 95% of the respective sets of cartesian coordinates of
the bootstrapped means. These overlap, which confirms that the two data
sets cannot be distinguished at the 95% confidence level.

In Figure 4.16, we show means and from a different pair of Fisher
distributions. The still overlap one another, but they fail the Watson
test for a common mean (F = 3.9). In this case, the histograms of the

cartesian coordinates of the bootstrap means have twin peaks, which is
consistent with the presence of two directions. Furthermore, the 95% con-
fidence bounds do not overlap, thereby providing a quantitative bootstrap
test for a common mean.

[See Example 4.11]

4.14. Application to the “reversals test”

The so-called reversals test in paleomagnetism constitutes a test for a com-
mon mean for two modes, one of which has been “flipped” to its antipode.
We apply our bootstrap test for common mean to the data shown in Fig-
ure 4.10. The histograms of the cartesian coordinates of the bootstrapped
means are shown in Figure 4.17. There are two “humps” in the bootstrap
test. However, the confidence intervals for the normal and reversed an-
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tipodes overlap, thereby suggesting that the two means cannot be distin-
guished at the 95% level of confidence. Thus, the data in Figure 4.10 pass
the bootstrap reversals test.

[See Example 4.12]

4.15. The bootstrap fold test

A final test is extremely useful in paleomagnetism: the fold test (Chapter
3). One of the key components in paleomagnetic studies is to determine the
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coordinate system (geographic, tilt adjusted or somewhere in between) for
which the directional data are most tightly clustered. If a rock has moved
from its original position, was it magnetized in the original, in the present
or in some other position? Moreover, is simple rotation about strike an
appropriate method to restore the beds to their original positions? In the
classic fold test as first proposed by Graham [1949], the directions of mag-
netization of a deformed rock unit are assumed to be most closely parallel
in the orientation in which the magnetization was acquired. Therefore, if a
rock has retained an original magnetization through a subsequent folding
or tilting event, the magnetic directions will cluster most tightly after they
have been rotated back to their original positions.

The fold test appears at first glance to be simple, but it is not (see,
e.g., McFadden and Jones [1981], Fisher and Hall [1990], McFadden [1990],
Watson and Enkin [1993], Tauxe and Watson [1994]). The primary problem
is that paleomagnetic vectors are never perfectly parallel. The scattered
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nature of the data means that a statistical test is necessary to determine
whether clustering is “significantly” better in one orientation or another.

Graham [1949] lived in a world with no adequate statistical framework
for dealing with directional data, which was first introduced by Fisher
[1953]. McElhinny [1964] proposed that the concentration of the data (us-
ing Fisher’s precision parameter, ) could be calculated before and after
adjusting for bedding tilt and that the ratio of the two values should be
compared with those listed in statistical “F” tables. Ratios higher than the
“F” value for a given N were deemed to constitute a significant increase
in concentration after adjusting for tilt, thus representing a positive fold
test. The McElhinny [1964] test can be done on the back of an envelope
and was immediately embraced by the paleomagnetic community; it is still
in frequent use.

Although its simplicity is a great strength, there are several problems
with the McElhinny [1964] fold test (see also McFadden [1990]). First, the
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geomagnetic field has two preferred states and is not perfectly dipolar.
Directions observed in paleomagnetic samples are therefore not only scat-
tered but are often of two polarities. Second, the magnetic directions may
be most tightly clustered somewhere other than in “geographic” or 100%
tilt adjusted coordinates (see e.g., McCabe et al. [1983]). Finally, struc-
tual “corrections” are not perfectly known. Not only are the bedding ori-
entations themselves often difficult to measure accurately, but detection of
complications such as plunging folds, and multiple phases of tilting requires
extensive field work. It is nearly impossible to assess rotation about the ver-
tical axis on the basis of field relations alone, as it results in no visible effect
on the dip of the beds themselves. Because of this uncertainty, we might
reasonably ask whether if the data are actually most tightly clustered at,
say 90% tilt adjusted (as opposed to 100%), does this constitute a “failed”
fold test (see Watson and Enkin [1993]).

We consider first the problem of dual polarity. We plot data from Juárez
et al. [1994] in Figure 4.18. These are sample directions, each of which has
a tectonic correction. The samples were taken for magnetostratigraphic
purposes and one sample constitutes one site. In geographic coordinates
(and even in some cases after adjusting for tilt), the polarity is ambiguous
and the calculation of necessitates using the tilt adjusted data to identify
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the polarity of the samples.
[See Example 4.13]

The classic fold test of McElhinny [1964] requires calculation of which
can only be done with data of a single polarity. Obviously, fold tests that
rely on will not be straightforward with data such as these. An alternative
approach was proposed by Tauxe and Watson [1994], and is based on the
orientation matrix. In the orientation matrix, polarity does not play a role
and the “tightness” of grouping is reflected in the relative magnitudes of
the eigenvalues As the data become more tightly grouped, the variance
along the principal axis grows and those along the other axes shrink. Thus,
examination of the behavior of during unfolding would reveal the point
at which the tightest grouping is achieved, without knowledge of polarity.

Suppose we find that the degree of unfolding required to produce the
maximum in is 98%. Is this a positive fold test suggesting a pre-folding
remanence or is the difference between 98% and 100% significant? For this
we call on the familiar bootstrap. Numerous para-data sets can be drawn.
We can then calculate the eigenparameters of the orientation matrix for
a range of % unfolding. Some examples of the behavior of during tilt
adjustment of representative para-data sets drawn from the data in Fig-
ure 4.18 are shown in Figure 4.19. Figure 4.20 is a histogram of maxima of

from 500 para-data sets. These are sorted as described in Section 4.9 and
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the 95% confidence interval for the degree of unfolding required to produce
the tightest grouping (the highest ) is thus constrained to lie between 97
and 102%.

The data from Figure 4.18 are shown after 100% tilt adjustment in
Figure 4.21. The tilt adjusted data are not only better grouped, but now
the polarities of most samples can be readily determined. An advantage of
the bootstrap approach is the fact that the data do not need prior editing to
split them into normal and reversed polarity groups, which is a particularly
onerous task for the data considered here.

For small data sets, such as that of Gilder et al. [1993] (Figure 4.22), we
employ a parametric bootstrap, whereby para-data sets are generated by
first randomly selecting a site for inclusion, then by drawing a substitute
direction from a Fisher distribution having the same D, I, N, and  Results
from such a parametric bootstrap are shown in Figure 4.22 and both 0 and
100% unfolding are effectively excluded, with the tightest grouping achieved
at around 70% unfolding.

It is possible that the magnetic directions shown in Figure 4.22 were
acquired during folding; fold test results with the tightest grouping between
0 and 100% unfolding are often interpreted as an indication of “syn-folding
remanence” (see McCabe et al. [1983]). However, two phases of folding
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(or one that is not a simple rotation about strike), that are incorrectly
“unfolded” can be grouped most tightly between 0 and 100%. To illustrate
this, Tauxe and Watson [1994] used a simulated data set drawn from a
Fisher distribution having and a mean direction of North, dipping
45° (shown in Figure 4.23a). The data were then split into two “limbs” and
subjected to two rotations (Figure 4.23b). The only observable effect in the
field would be the latter, so we performed a “fold test” undoing only the
second rotation. The “tilt adjusted” data are shown in Figure 4.23c at both
peak concentration (61%) and at 100% unfolding.

The maximum in occurs at about 61% (Figure 4.23d), excluding 0
and 100% unfolding as the appropriate coordinate systems at the 95% level
of confidence. However, 61% unfolding does not yield precisely the initial
distribution because of failure to account for the vertical axis rotation. This
simulation produces results similar to those in Figure 4.22 and proves that
a peak in concentration between 0 and 100% unfolding does not necessarily
imply a syn-folding remanence. Nonetheless, it does indicate that either
because of incorrect structural information or because of complications in
the remanence, the “100% adjusted” data are not valid for paleomagnetic
purposes and justifiably fail the fold test. Of course, it would be dangerous
to use the mean direction from even the partially tilt adjusted data for
paleomagnetic purposes.
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4.16. Summary

In this chapter, we have reviewed the statistical analysis of unit vectors,
as developed by Fisher [1953]. We have also introduced the bootstrap for
unit vectors. Bootstrap procedures allow most of the useful statistical tests
that are frequently performed on paleomagnetic data to be applied to non-
Fisherian data. Many data sets are not Fisher distributed and the use
of parametric tests can lead to erroneous conclusions. In contrast, use of
bootstrap tests, when the data are Fisherian gives the same result – it just
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takes about 1,000 times longer to get it!



CHAPTER 4156

4.17. Examples

Example 4.1
1) Use the program fisher to generate a set of 10 points drawn from a
Fisher distribution with = 15. 2) Make an equal area projection with
eqarea.
Solution
To generate a Fisher distributed data set with N = 10 and = 15, save it
to a file named ex4.1 and see what is in it, type the following:
% fisher -kns 15 10 66 > ex4.1; cat ex4.1
and the computer responds:

248.0 75.2
196.1 70.4
81.4 81.0
64.1 70.5
33.6 70.2
311.7 80.5
207.4 59.2
318.9 48.3
34.0 60.4
169.1 61.5

The -s switch is an integer that is used as a seed for a random number
generator. Different distributions can be made with different values of -s.
To make a postscript file of an equal area projection of these data and to
view it on the screen, type:
% fisher -kns 15 10 66 | eqarea | plotxy; ghostview mypost
This causes plotxy to make a postscript file named mypost that is shown
in Figure 4.24.

Example 4.2
Calculate a mean direction, and from the distribution generated in
Example 4.1 using the program gofish. Repeat for the principal direction
using goprinc.
Solution
Type the following:
% gofish < ex4.1
and the computer responds:

318.1 88.9 10 9.1220 10.3 15.8
To find out what these numbers are, type:
% gofish -h
or check Appendix 1.
As a short-cut, you could take advantage of UNIX’s pipe facility by typing:
% fisher -kns 15 10 66 | gofish
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which does the same thing, without the intermediate file ex4.1.
Now type:
% goprinc < ex4.1
to which the computer reponds:

333.9 89.4 10 0.837
which are the principal directions D, I, N and  respectively.

Example 4.3
1) Use the program fishdmag to calculate a mean direction from the last
seven data points of sample tst1a in file ex4.3 and Figure 4.4. 2) Use the
program pca to calculate the principal component direction from the last
13 data points of sample tst1b. 3) Use program gtcirc to calculate the best-
fitting great circle from the last 22 data points of sample tst1c. 4) Finally,
use the program lnp to calculate the mean direction and using the two
directed lines and the great-circle data for site tst1.
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Solution
To extract data for each sample, type:
% grep tst1a ex4.3 | fishdmag -f 7 13 > ex4.3a
% grep tst1b ex4.3 | pca -p 6 17 >> ex4.3a
% grep tst1c ex4.3 | gtcirc -g 2 23 >> ex4.3a
The columns are: sample name, f/p/g, first step, last step, /MAD/
declination, inclination, where the “f” stands for Fisher mean, “p” stands
for principle component, and “g” stands for the pole to best-fit plane (great
circle). To see what is in the output file ex4.3a, type:
cat ex4.3a
and the computer responds:

tst1a f 7 350.00 550.00 9.3 152.6 -60.7
tst1b p 12 20.00 450.00 22.1 178.1 -54.6
tst1c g 22 1.00 450.00 11.4 341.1 -26.2

To calculate an estimate of the Fisher mean of combined lines and planes,
type:
% lnp < ex4.3a
and the computer responds:

tstl 2 1 76.3 16.7 166.7 -60.1
To find out what these numbers are, type lnp -h or check Appendix 1.

Example 4.4
Use program fishrot to draw a set of 50 data points from a Fisher distribu-
tion with a mean declination of 0, inclination of 20, and a of 30. Calculate
the Fisher statistics of the data set with the program gofish. Now awk out
the inclinations and estimate the mean and 95% confidence bounds using
the program incfish. Repeat this for populations with a mean inclination
of 40, 60 and 80. How well does the inclination-only method work for high
inclinations?
Solution
To learn about fishrot type:
% fishrot -h
or check Appendix 1.
The following command will generate the desired distribution:
% fishrot -kndi 30 50 0 20 > ex4.4
Calculate the Fisher statistics using:
% gofish < ex4.4
and the computer responds:

359.7 19.3 50 48.2450 27.9 3.9
Now type the following to select the inclination data (second column) and
pipe them to incfish:
% awk ’{print $2}’ ex4.4 | incfish
and the computer responds:
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21.0 24.6 17.3 50 27. 3.
To find out what this means, type incfish -h, or check Appendix 1.
Note that the estimated mean inclination using incfish is 21.4 and that cal-
culated using gofish is 21.3. To see what happens at higher inclinations, we
can streamline things a bit using the tee utility. The tee utility transcribes
the standard input to the standard output and copies it to a specified file
name, as follows:
% fishrot -kndi 30 50 0 40 | tee ex4.4a | gofish
to which the computer responds:

359.6 39.3 50 48.2439 27.9 3.9
and silently makes ex4.4a containing the fishrot output. Now type:
% awk ’{print $2}’ ex4.4a | incfish
and get:

40.5 44.3 36.8 50 27. 3.8
also in good agreement with the gofish calculation.
Repeat for an inclination of 60:
% fishrot -kndi 30 50 0 60 | tee ex4.4b | gofish to which the computer
responds:

4.5 61.3 50 48.3150 29.1 3.8
and:
% awk ’{print $2}’ ex4.4b | incfish
to get:

59.6 63.8 55.5 50 27. 4.1
Finally, try an inclination of 80:
% fishrot -kndi 30 50 0 80 | tee ex4.4c | gofish to which the computer
responds:

14.2 81.1 50 48.3154 29.1 3.8
and:
% awk ’{print $2}’ ex4.4c | incfish
to get the message:

This illustrates the point that the method breaks down at high inclinations.

Example 4.5
Use program fishqq to check if a data set produced by fisher is likely to
be Fisherian.
Solution
Type the following to draw 25 directions from a Fisher distribution having
a of 25:
% fisher -kns 25 25 44 > ex4.5
(To draw a different distribution, you can change the random seed from 44
to any non-zero integer.)
Try plotting the data in an equal area projection with the command:
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% eqarea < ex4.5 | plotxy; ghostview mypost
(see Figure 4.25).

To make a Q-Q plot against a Fisher distribution, type:
% fishqq < ex4.5 | plotxy; ghostview mypost
This produces the Q-Q plot shown in Figure 4.26.

Example 4.6
Use the program gauss to generate a data set by drawing 200 data points
from a normal distribution with a mean of 22, a standard deviation of 5.
Plot these data as a histogram with histplot and calculate a mean and
standard deviation using stats.
Solution
Type the following:
% gauss -msni 22 5 200 22 > ex4.6
to generate a file with the normal polarity data in it. Now type:
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% histplot < ex4.6 | plotxy
to cause plotxy to generate the postscript file mypost which can be viewed
or plotted as usual (see Figure 4.27).
Finally, type:
% stats < ex4.6
to get:

200 22.0720 4414.41 4.89825 22.1921 0.346358 0.678863
To find out what these numbers are, type stats -h or check Appendix 1.

Example 4.7
Use the program qqplot to plot a Q-Q plot of the data in ex4.6, and to
calculate the Kolomogorov-Smirnov statistic D, and the 95% asymptotic
significance level for N data points.
Solution
Type:
% qqplot < ex4.6 | plotxy
and view the postscript file mypost as in Figure 4.28. D is below the
critical value so the null hypothesis that the data set is
Gaussian cannot be rejected at the 95% level of confidence.

Example 4.8
Use the program bootstrap to calculate a bootstrap confidence interval
for the data generated in Example 4.6.
Solution
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Type the following:
% bootstrap -p < ex4.6 | plotxy
to generate a distribution of 1,000 bootstrapped means (this is the de-
fault number; a different number of bootstraps can be selected using the
-b switch). The program outputs plotxy commands for the postscript file
mypost shown in Figure 4.29.

Example 4.9
Use program bootdi to see: 1) if the data set in Figure 4.9 (data are in
Table 4.2) are likely to be Fisherian; and 2) what the approximate 95%
confidence ellipses are (try both simple and parametric bootstraps); and
3) what the approximate 95% confidence ellipses are using the principal
eigenvectors instead of Fisher means.
Solution
First enter the data from Table 4.3 into file ex4.9. Then type:
% bootdi < ex4.9
to which the computer responds:

Total N = 49
Mode: Dec, Inc, a95, N, kappa, Fisherian ?
1st: 26.5 39.1 10.7 25 8. no
2nd: 189.2 -44.3 8.3 24 14. no
Mode eta, dec, inc, zeta, dec, inc
1st: 6.61 239.44 45.93 11.79 130.96 17.06
2nd: 4.59 152.36 39.38 10.64 259.14 19.38
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For a parametric bootstrap, type:
% bootdi -p < ex4.9
to which the computer responds:
Total N = 49
Mode: Dec, Inc, a95, N, kappa, Fisherian ?
1st: 26.5 39.1 10.7 25 8. no
2nd: 189.2 -44.3 8.3 24 14. no
Mode eta, dec, inc, zeta, dec, inc
1st: 6.71 240.24 45.67 11.54 131.39 17.52
2nd: 5.30 152.44 39.41 11.25 259.20 19.34

To work on the principal eigenvectors, type:
% bootdi -P < ex4.9
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to which the computer responds:
Total N = 49
Mode: Dec, Inc, a95, N, kappa, Fisherian ?
1st: 30.8 40.9 10.7 25 8. no
2nd: 9.8 44.1 8.3 24 14. no
Mode eta, dec, inc, zeta, dec, inc
1st: 6.26 222.02 48.52 9.77 125.69 5.57
2nd: 4.70 150.84 38.69 10.99 258.38 20.62

Example 4.10
Use plotdi to make an equal area projection of the data and bootstrap
confidence ellipses of the data in ex4.9. Make a plot of the bootstrapped
eigenvectors.
To plot the data and the bootstrap ellipses, type:
% plotdi < ex4.9 | plotxy
See Figure 4.30.

To plot the data and the bootstrap eigenvectors, type:
% plotdi -v < ex4.9 | plotxy
See Figure 4.31.
The command bootdi -v < ex4.9 will generate the list of bootstrapped
eigenvectors used in plotdi -v.
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Example 4.11
Assume that the sampling site for the data in Table 4.2 was at latitude
35° N and longitude ø 120° W. 1) Calculate the direction expected for a
dipole field at that location using the dipole formula (tan (I) = 2 tan )
(see Chapter 1). 2) Use cart  _hist to compare the data set in Table 4.3
with the expected dipole direction. 3) The data were taken in 1997 near
sea level. Use igrf to calculate the expected geomagnetic field direction.
Use cart–hist to compare the data with this direction. 4) Use cart _hist
to perform a parametric bootstrap reversals test.
Solution
1)
2)

The expected dipole direction at the site is D = 0, I = 54.5.
Type the following to find out about cart_hist:

% cart_hist -h
or check Appendix 1.
To compare a set of directions with a known direction, type:
% cart_hist -d 0 54.5 < ex4.9 | plotxy
(see Figure 4.32).
3) To determine the IGRF direction at the site (see also Example 1.3), type
the following:
%  igrf
1997 0 35 -120
and the computer responds:

14.4 59.5 48925.
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4) The geomagnetic reference field at the sampling site was D = 14.3, I =
59.5 so, to compare with the data, type:
%  cart–hist -d 14.4 59.5 <ex4.9 | plotxy
(see Figure 4.33).

Example 4.12
Pretend that a reference pole ( = –140°, = 75°) was determined for
rocks of the same age as those that yielded the data in Table 4.2. The
VGPs that went into the calculation had a reported of 30. 1) Assume
that the VGPs were Fisher distributed and generate a synthetic data set
with the same mean and (N = 100) using fishrot. 2) Convert these data
to the expected directions at the sampling site for the last example. 3) Com-
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pare the data in Table 4.2 to those just generated. Are they significantly
different?
Solution

Because you do not have access to the original data, you can assume that
the VGPs were Fisher distributed and create a synthetic distribution with
the same mean direction and
Because the default kappa, N, and seed of fishrot are acceptable, we need
only specify the VGP position by typing:
% fishrot -di -140 75 > ex4.12a
Now we have to enter the site location, rearrange the pole latitude and
longitude and pipe it to vgp_di (see Example 1.6):
% awk ’{print $2,$1,35,-120}’ ex4.12a | vgp_di > ex4.12b
To complete the problem, we must compare the data in ex4.9 with those
in ex4.12b using cart–hist. We also need to flip the reversed polarity data
and plot the 95% confidence bounds.
Type:



Analyzing vectors 169

% cart_hist -crb ex4.12b ex4.9 | plotxy
and look at Figure 4.34. It appears that the data in ex4.9 are significantly
different from the dipole field, the present geomagnetic field and the refer-
ence directions.

Example 4.13
Use program foldtest to perform a parametric fold test on the data in
Table 4.3.
Solution
First put the data into a data file called ex4.13. Then, type the following:
% foldtest -p < ex4.13 | plotxy
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which produces the postscript file mypost as shown in Figure 4.35.



Chapter 5

ANALYZING TENSORS
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In the previous chapter, we were concerned with magnetic vectors. Mag-
netic tensors are also tremendously useful in geological studies and have
found wide use in studies involving sedimentary, igneous and metamorphic
rocks. Such data have applications in determining such varied parameters
as paleocurrent directions, degree of paleosol maturity, directions of magma
injection, tectonic strain, etc. In this chapter, we will discuss techniques for
obtaining and analyzing magnetic tensor data.

5.1. The magnetic susceptibility tensor

The relationship between a small applied magnetic field vector H and the
induced magnetization vector M can often be approximated by a set of
linear equations. Components of the induced magnetization in a given co-
ordinate system whose axes are denoted by and are related to
the applied field by the following linear equations:

where are the susceptibility coefficients.
A linear relationship between two vectors can be formulated as a second-

order tensor. The constants are the elements of a second-order, sym-
metric tensor which is known as the anisotropy of magnetic susceptibility
(AMS) tensor The set of equations 5.1 can be rewritten in subscript
notation as:

Remanences such as TRM, ARM and IRM (Chapter 2) that are ac-
quired in applied fields are only linearly related to the field under special
conditions (e.g., low fields), hence the equivalent equations cannot, strictly
speaking, be described by a second-order tensor as in equation 5.2. However,
many people (e.g., Jackson et al. [1988, 1989] and Lu and McCabe [1993])
have treated the problem in an analogous manner to the tensor problem.
The analysis described here would be equally appropriate to remanences as
for susceptibility.

Since the susceptibility tensor defines a symmetric, second-
order tensor that has 6 independent matrix elements. For convenience we
define a related column matrix s having six elements that are related to
the elements of by:

Analyzing tensors
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In many laboratories, magnetic susceptibility is measured by placing a
sample in a solenoid with a applied field H. The induced magnetization M
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parallel to H is measured in different orientations. Only and can
be directly measured and the terms to are only indirectly determined.

We define a set of six values of measured susceptibility which are
determined in the six sample positions shown in Figure 5.1. Measurement
in position 1 gives Similarly, and But,

and
Thus the elements of s are related to K in subscript notation by:

where A is the so-called design matrix (see Hext, [1963]).
From the equations for the six measurements shown in Figure 5.1, we

can write:

Although there are six measurements and six unknowns, the elements of s
are overdetermined, because the diagonal measurements depend on three
parameters. In order to calculate the best-fit values for we can use
linear algebra:

where is the transpose of A. The elements of B shown in Figure 5.1
are:

In the special case in which A is a square matrix (as in equation 5.5,
reduces to

There exists one coordinate system V (whose axes are the eigenvectors
of in which the off-axis terms of are zero (Chapter 3). In
this coordinate system:

Analyzing tensors
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Following the treatment of the orientation tensor T in Chapter 3, we
can express the condition of zero off-axis terms as:

where is the diagonal matrix of the eigenvalues and V contains the
components of the eigenvectors:

The solution to equation 5.9 was described in Chapter 3 (see also Press
et al. [1986]). The eigenvalues and correspond to the maximum,
intermediate, and minimum susceptibility, respectively. These are the sus-
ceptibilities along the principal, major and minor eigenvectors and

respectively. Scaling by its trace yields values for that sum to
unity. and are sometimes referred to as                and
respectively in the literature.

[See Example 5.1]
When the coordinate system of the susceptibility data is defined by the

eigenvectors, then the components of magnetization satisfy the follo-
wing:
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When the coordinate system is referred to the eigenvectors, as illustrated
(for the 2D case) in Figure 5.2, the surface described by equation 5.10 traces
an ellipsoid termed the magnitude ellipsoid by Nye [1957] whose semi-axes
directed along V have lengths that  are proportional to  the We will refer
to this ellipsoid in the following as the anisotropy of magnetic susceptibilty
(AMS) ellipsoid.

[See Example 5.2]
Many publications list AMS data in terms of the eigenvalues and ei-

genvectors, collectively referred to as eigenparameters. We need a way to
transform eigenparameters back into matrix elements. This can be done
using tricks from linear algebra. It follows from equation 5.9 that

where is the transpose of V. Furthermore, since anisotropy data are
obtained from samples with an arbitrary orientation, these data must be
transformed into geographic and tilt adjusted coordinates. The procedure
is analogous to the transformation for unit vectors described in Chapter 3
and is achieved by the following matrix multiplication:

where are the components of the eigenvectors in the transformed coor-
dinate system and the as are the appropriate direction cosines.

[See Example 5.3]
The eigenparameters of the susceptibility tensor are related to the sta-

tistical alignment of dia-, para-, and/or ferromagnetic phases within the
rock and the AMS ellipsoid can be used to describe the magnetic fabric
of the rock. Much of the interpretation of AMS data in the literature re-
volves around an assessment of directions of principal axes and relative
magnitudes of the eigenvalues.

There is a bewildering variety of conventions for describing the rela-
tionships among the three eigenvalues (see, e.g., Table 1.1 of Tarling and
Hrouda [1993] and Table 5.1). A practical initial classification scheme can
be made with the following rules: when the shape is a sphere;
when it is oblate. The shape is prolate when
and, finally, the anisotropy ellipsoid is triaxial when Because
there are nearly always three distinct values of it is a statistical problem
to decide whether the eigenvalues from a given data set are significantly
different from one another.

Making only six measurements allows calculation of the eigenparame-
ters, but gives no constraints for their uncertainties. We would like to ask
questions such as the following:

Analyzing tensors
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1) Is a particular axis parallel to some direction? Is vertical as for
a primary sedimentary fabric? Is parallel to some lineation such as
elongated vesicles in volcanic dikes, or deformed ooids in strained rocks?
2) Are two sets of eigenvectors distinct? Are data from two sides of a
dike margin imbricated, allowing interpretation of flow direction? Has
progressive strain rotated the rock fabrics?
3) What is the shape of the AMS ellipsoid? Are the eigenvalues distinct?
Is the fabric oblate, as for primary sedimentary rocks? Does the shape
change as a result of progressive deformation in metamorphic rocks?

In order to address questions such as these, we need some sort of con-
fidence intervals for the eigenparameters; hence we need to make multiple
measurements and we need a means of translating the measurements into
uncertainties in AMS data. The principles of error analysis for anisotropy
measurements were originally laid out by Hext [1963]. Jelinek [1976, 1978]
developed the ideas further and what we describe as linear perturbation
analysis (LPA) has become the standard method of estimating uncertain-
ties (see e.g., Tarling and Hrouda [1993]).

5.2. Linear Perturbation Analysis (LPA)

According to Hext [1963], each measurement has an unknown measure-
ment “error”:

The residual sum of squares is:

and the estimated variance is:

nf is the number of degrees of freedom, given by N – 6 where N is the
number of measurements. The covariance matrix of s is given by:

Following Box and Hunter [1957], Hext [1963] developed measurement
schemes that have nearly spherical variance functions on a unit sphere.
Measurement schemes that are evenly spaced over the unit sphere are
termed rotatable designs. Hext [1963] proposed several rotatable measure-
ment schemes having 12 and 24 measuring positions. Jelinek [1976] pro-
posed a rotatable measurement scheme with 15 measuring positions, as
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illustrated in Figure 5.3. This is the procedure recommended in the manual
distributed with the popular Kappabridge susceptiblity instruments. In the
15 measurement case shown in Figure 5.3, the design matrix is:
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Using equation 5.6 with the B matrix defined in equation 5.18 allows
calculation of the best�fit values for s:

[See Example 5.4]
The best�fit values for which can be calculated by substituting

the A matrix from equation 5.17 for A in equation 5.4:

Now we can calculate the δi by:

and is given by equation 5.14. Here N = 15, so the estimated variance
(equation 5.15) is

Assuming that the uncertainties in have zero mean, and they
are uncorrelated, normally distributed, and small (so that the products of
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uncertainties can be neglected), Hext [1963] proposed that approximate
95% confidence ellipses for the eigenvectors can be found by LPA.

First, we assume that the uncertainties in the eigenvectors are in a plane
that is tangent to the unit sphere. We further assume that they belong to a
two-dimensional normal distribution with semi-axes that are aligned along
the The ellipse with semi-axes that outline a 95% confidence region
in this plane is then projected onto the sphere (Figure 5.4).

There are two approaches for estimating confidence regions by LPA:
a “short-cut” outlined by Hext [1963], and a more intensive calculation
that was sketched by Hext [1963], but which was described more fully by
Jelinek [1978]. We will call these two methods the “Hext” method and the
“Jelinek” method, respectively. The Hext method is implemented in the
popular measurement program ANISO10 as described by Jelinek [1976] and
which is distributed with the Kappabridge instrument. It is unclear which
method most investigators actually use when they refer to the “Jelinek
method.”

5.3. The Hext method of LPA

The procedure for calculating confidence regions using the Hext [1963]
method is as follows:
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Calculate the matrices and the from the measured values of
K (see Example 5.4).

Calculate by equations 5.14 and 5.15. (see Example 5.4).
The confidence regions are outlined by ellipses along semi-axes

aligned with the eigenvectors. The subscripts refer to the axis on which
the ellipse is attached and the subscripts refer to the axis to which it
points. Thus, is the semi-axis that defines the confidence region of

directed toward (Figure 5.4).
The three unique semi-angles of the confidence ellipses are calculated
by:

Calculate the eigenvectors V and eigenvalues      of (see Example 5.1).



183

where

and where is the value from the F table, with 2 and degrees
of freedom, at the p probability level. The value of for N = 15
measurements at the 95% level of confidence (p = .05) is 4.26
and so f = 2.92.

We turn now to the problem of calculating confidence intervals for the
eigenvalues. In practice, there will almost always be three distinct values
of returned from an eigenvalue calculation. But, when are these values
statistically distinct? First, one might ask if the ellipsoid is significantly dif-
ferent from a sphere. LPA allows calculation of F statistics and comparison
with values in F tables; in this way one can test if the data are isotropic

We calculate the F
statistics by:

where the bulk susceptibility is given by:

[See Example 5.5]
The critical value for F is 3.4817 for 95% confidence (for        and

it is 4.2565).  F values below these critical values do not allow rejection of
the hypothesis of isotropy or rotational symmetry, respectively.

5.4. Multiple samples

In the foregoing discussion, we outlined a way of analyzing data from a
sample. Often, we are interested in determining the average behavior from
multiple samples from a given study area. To do this, we must average
multiple samples from each site and somehow combine the data into average
eigenparameters and their uncertainty. There is no a priori reason why the
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Hext analysis cannot be extended to multiple samples from a given site, as
long as the principal assumptions concerning noise are valid. The procedure
is as follows:

Find the s matrix from the measurements for each of samples.
In the following, is the matrix element of the
sample Rotate these into a common coordinate system
(see equation 5.1).

Normalize the data from each sample by so that all
samples are given equal weight.

Use these data to calculate a mean of all the individual estimates
of s in which a given matrix element of is calculated by summing the

estimates of i.e.,

Now calculate the expectation values of K and the for each
element of Calculate (the standard deviation for the site) as was
calculated for an individual sample before, using these values for and
substituting for N.

Calculate the eigenparameters and confidences, as before. Here, how-
ever,

[See Examples 5.6 and 5.7]
As pointed out by Jelinek [1978], the approximations used in the Hext

[1963] method limit its application to data with very small variances. Mea-
surements of single samples on highly sensitive instruments usually fall in
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this category, but data from less sensitive instruments or data from differ-
ent samples from the same study area may not. It was for this reason that
Jelinek [1978] elaborated on the approach of Hext [1963] and described the
following so-called Jelinek method of LPA.

5.5. The Jelinek method of LPA

Taking the l estimates for (normalized) S and the average  as before, we
now calculate the covariance matrix C for a 6 x 6 matrix whose elements
are given by:

The C matrix can be transformed into the coordinates of the eigen-
vectors, by matrix manipulation:
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where G is the matrix:

There is a 2 x 2 covariance matrix Wi for each eigenvector V i which
describes the variability of that axis:

where the indices i, j and k are cyclic permutations of the numbers 1, 2, 3.
Each Wi has two eigenvalues These relate to the semi-axes by:

[See Example 5.8]
While there is a test for overall anisotropy (similar to the F test de-

scribed in the Hext method), there are no analogous tests for distinguish-
ing between different eigenvalues. This is a handicap of the Jelinek method
which we address later in the chapter. First, it is worthwhile considering
when and whether the Jelinek or Hext methods are appropriate.

5.6. When are data suitable for LPA?

The assumptions for using the techniques outlined in the foregoing are that
the uncertainties in the measurements have zero mean, are normally distri-
buted, and are small. While measurement error using modern equipment
is likely to be quite small, data from a collection of samples often do not
conform to these restrictive assumptions. In particular, the values are
often large.

The eigenvector data in Figure 5.5 were obtained by analyzing numerous
individually oriented samples from one of the quenched margins of a dike
in the Troodos Ophiolite on Cyprus (see Tauxe et al. [1998]). We plot the
eigenvectors on an equal area net using the lower hemisphere projection
and follow the convention that the are squares, are triangles, and

are circles (Ellwood et al. [1988]).

where
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The data are rather typical of data taken from a single homogeneous
body of rock. Representative values of  for these samples calculated from
15 measurements (see Figure 5.3) are plotted as a Q-Q plot in Figure 5.6
against a normal distribution (Chapter 4). The data shown in Figure 5.6
have zero mean and, based on the linearity of the Q-Q plots are, likely to
be normally distributed. Moreover, the magnitude of the values is rather
small with of a few parts in 10,000.

In Figure 5.7 we plot the data for calculated for the entire site. Here the
is several times the  for invidual sample measurements. Based on the

linearity of the Q-Q plots and the Kolmogorov-Smirnov test, the values
are also consistent with a normal distribution. Many data sets, particularly
those in which a site does not constitute a single, homogeneous rock body,
produce distributions that are neither normally distributed, nor small.
Moreover, Constable and Tauxe [1990] showed that, in general, from
AMS data calculated for multiple samples (that must be normalized by their
trace) will not generally be normally distributed. Hence, data incorporating
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multiple samples are often not amenable to linear perturbation analysis.

5.7. Bootstrap confidence ellipses

In analogy to the bootstrap for unit vectors, Constable and Tauxe [1990]
developed a bootstrap for anisotropy data. As in Chapter 4, we first take a
number of randomly selected para-data sets of the data from those shown
in Figure 5.5. The eigenparameters of the bootstrapped average matrices
are then calculated. Such bootstrapped eigenvectors are shown in the equal
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area projections in Figure 5.8(a-c).
A non-parametric confidence region for the bootstrapped distributions

shown in Figure 5.8 could be drawn as a contour line enclosing 95% of the
bootstrapped eigenvectors. Because it is often useful to characterize the
average uncertainties with a few parameters (for example, to put them in
a data table), we can proceed as with the unit vectors and assume some
sort of distribution for the eigenvectors. As in Chapter 4, we use the Kent
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distribution. Our method for estimated 95% confidence ellipses guided by
bootstrap distributions of eigenvectors is as follows:

By analogy with the bootstrap for unit vectors and the fold test, we
can also perform two types of parametric bootstraps. The first flavor, or the
sample parametric bootstrap proceeds as follows: After randomly selecting a
particular sample for inclusion, each element of s is replaced by a simulated
element drawn from a normal distribution having the as calculated for the
sample data (see Example 4.1). This Monte Carlo type simulation assumes
that the measurement uncertainties are normal, which as discussed earlier,
is likely to be the case. If instrument noise is significant, then the sample
parametric bootstrap is an important tool.

Because the data from homogeneous rock bodies are often normally
distributed, we can also perform a parametric bootstrap at the level of the
site (the site parametric bootstrap). This is done by drawing para-data sets
as before, but replacing individual elements of s with simulated data drawn
from normal distributions with calculated from the data for an entire
site. This procedure goes a long way toward calculating realistic confidence
intervals from sites with too few samples (see Tauxe et al. [1998]).

[See Example 5.9]
In Figure 5.8 we compare the confidence ellipses obtained from the sim-

ple and parametric bootstraps with those obtained by the Hext and Je-
linek approaches. The best-fit eigenvectors in the bootstrap are orthogonal;
indeed the average eigenparameters are identical in LPA and bootstrap-
ping. The differences between the bootstrap and LPA methods come in the
size, shape and orientation of the uncertainty ellipses. First, in the linear
perturbation calculation there are but three independent semi-axes of the
uncertainty regions and these are oriented along the eigenvectors. This is
not true for the bootstrap method which gives six independent semi-axes
that are not constrained to by the eigenvectors, but are allowed to “follow
the data”.

Randomly select a para-data set from the list of s data and calcu-
late for each para-data set, where is the from the para-data
set.

Calculate the eigenparameters V and for each
Repeat the first two steps (say 1000) times, such that and

represent the principal eigenparameters of the para-data  set.
Use the method outlined in Chapter 4 for estimating the confidence

ellipses for each eigenvector. Although the confidence ellipses are calcu-
lated separately for each eigenvector, the eigenvectors are constrained
to be those of (i.e. the same as for the Hext and Jelinek methods).
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5.8. Comparing mean eigenvectors with other axes

Now we will consider whether a particular axis is distinct from a given
direction or another eigenvector. For example, we may wish to know if a
given data set from a series of sediments has a vertical minor eigenvec-
tor as would be expected for a primary sedimentary fabric (Chapter 6).
In Figure 5.9a we show AMS data from samples taken from the Scaglia
Bianca Formation (Cretaceous white limestones) in the Umbrian Alps of
Italy. They have been rotated into tilt adjusted coordinates; hence the bed-
ding pole is vertical. Instead of plotting the 95% confidence ellipses, which
all require unnecessary parametric assumptions, we show the bootstrap ei-
genvectors in Figure 5.9b. The smear of points certainly covers the vertical
direction consistent with a vertical direction for To make the test at a
given level of confidence (say 95%), we can employ the method developed
for unit vectors in which the eigenvector of choice (here ) is converted to
cartesian coordinates and sorted. Then the bootstrapped 95% confidence
bounds can be directly compared with the expectation value. For a direc-
tion to be vertical, both the and components must be zero. We plot

and as histograms, with the 95% confidence bounds shown above in
Figure 5.9. The expected value of zero is shown by dashed lines. Because
zero is included within the confidence intervals, these data have a direc-
tion of that cannot be distinguished from vertical at the 95% level of
confidence.

Another question that often arises is whether eigenvectors from two sets
of AMS data can be distinguished. For example, are the directions from
data sets collected from two margins of a dike different from one another
and on opposite sides of the dike plane as expected from anisotropy con-
trolled by crystal imbrication (Chapter 6). In Figure 5.10a, we show the
eigenvectors of AMS data from samples obtained from both quenched mar-
gins of a nearly vertical north-south trending dike in the Troodos Ophiolite
in Cyprus. The bootstrapped eigenvectors are shown in Figure 5.10b. In
order to address the problem of whether the are distinct from the dike
plane, we first rotate them into dike coordinates (whereby the dike pole is
parallel to and direction of dip is parallel to Then the question of
whether the direction is distinct reduces to whether the components
can be distinguished from zero (the dike plane). In Figure 5.10c, we show
the histogram of the cartesian components of and the 95% confidence
intervals of the two data sets. As we can see from the overlapping confi-
dence bounds, the data are neither distinct from the dike margin, nor from
each other.
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There are innumerable ways of plotting and characterizing shapes of AMS
ellipsoids in the literature. We will focus here on a few and discuss how
bootstrapping could be helpful in providing a means for discriminating
differences in data sets and so on. We list some popular so-called “shape
parameters” in Table 5.1.

Many researchers use the “total anisotropy” parameter of Owens [1974].
This has the uncomfortable property of ranging up to 300%; hence, we pre-
fer the parameter called here the % anisotropy of Tauxe et al. [1990] as
this ranges from 0 - 100%. The so-called “corrected anisotropy” of Jelinek
[1981] has several definitions in the literature (compare for example Bor-
radaile [1988] with Jelinek [1981]); we have used the original definition of
Jelinek [1981].

With the plethora of parameters comes a host of plotting conventions.
We will consider five types of plots here: histogram of bootstrapped ei-
genvalues, the Flinn diagram(F versus L) after Flinn [1962], the Ramsay
diagram (F' versus L') after Ramsay [1967], the Jelinek diagram (P' versus
T) after Jelinek [1981], and the ternary projection (see Woodcock [1977]
and Tauxe et al. [1990]). The Flinn, Ramsay, and Jelinek diagrams are
shown in Figure 5.12 and the ternary projection is shown in Figure 5.13.

The Flinn and Ramsay diagrams are very similar, but the Ramsay plot
has the advantage of having a zero minimum as opposed to starting at
1.0 as in the Flinn diagram. Both are essentially polar plots, with radial
trajectories indicating increasing anisotropy. Shape is reflected in the angle,
with “oblate” shapes above the line and “prolate” shapes below.

It is important to remember that, in fact, only points along the plot
axes themselves are truly oblate or prolate and that all the area of the plot
is in the “triaxial” region. Because of statistical uncertainties, samples that
plot in this region may fail the        or  tests of Hext and be classifiable
as “oblate” or “prolate”. In general, however, only a narrow zone near the
axes can be considered oblate or prolate, so these terms are often used
loosely.

The Jelinek diagram is more cartesian in nature than the Flinn or Ram-
say plots. “Corrected” anisotropy increases along the horizontal axis and
shape reflected in the vertical axis. There is no real advantage to using
the highly derived P' and T parameters over the Ramsay or Flinn plots.
Nonetheless they are quite popular (Tarling and Hrouda [1993]).

In the ternary projection, there are actually three axes (see Figure 5.13a).
The projection can be plotted as a normalX-Y plot by using the E' and R
parameters listed in Table 5.1 (see Figure 5.13b).

In none of the various types of plots just discussed are the horizontal
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and vertical axes independent of one another, but all the diagrams reflect
the essence of the ellipsoid shape. Unlike the histogram with bootstrap
confidence intervals, it is not possible to determine whether the various
eigenvalues or ratios thereof can be distinguished from one another in a
statistical sense.

All discussions of the “shape” of the AMS ellipsoid revolve around the
relationships between the various eigenvalues. The first question to consider
is whether these can be distinguished in a statistical sense. The Hext version
of linear perturbation analysis has the ability to check for significance of the
anisotropy (using the F parameters). However, the approximations involved
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in the Hext method make it inappropriate for most data sets involving
more than one sample. Bootstrapping allows for testing the significance
of the differences in eigenvalues and the less restrictive assumptions allow
bootstrap tests to be applied more widely.

The simplest means of determining whether two sets of eigenvalues are
distinct from one another requires the assumption that the bootstrapped
eigenvalues are normally distributed. Here we calculate the standard devi-
ations of the populations of eigenvalues. While the eigenvalues may often
satisfy the requirement of normal distribution, they equally often may not.
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Hence, we desire a less restrictive way of deciding whether eigenvalues are
distinct.

[See Examples 5.10-5.13]

One alternative way of checking whether eigenvalues can be discrimi-
nated is quite similar to the bootstrap test for common mean described in
Chapter 4. In Figure 5.11a-d, we sketch the four shape categories defined in
the beginning of the chapter. The eigenvectors calculated for samples from
four sites are shown in Figure 5.11i-l. Bootstrapped eigenvectors are shown
in Figure 5.11m-p. Histograms of the associated bootstrapped eigenvalues
are shown in Figure 5.11e-h. There are three “humps” in all of the his-
tograms, but the 95% confidence bounds provide a means for quantifying
the shape tests defined earlier.

In Figure 5.1 la, we illustrate the behavior of data from an AMS ellipsoid
that is essentially spherical in shape. The three eigenvalues plotted in the
histogram (Figure 5.l1e) have overlapping confidence intervals, hence they
are indistinguishable. The corresponding bootstrapped eigenvectors shown
in Figure 5.11m plot in a cloud with no preferred orientations.

In Figure 5.l1b we show data characteristic of an oblate ellipsoid. The
smallest eigenvalue is distinct from the other two in Figure 5.11f, but the
95% confidence bounds of overlap those of The eigenvector is
consequently reasonably well defined, but the distribution of bootstrapped

and form a girdle distribution (Figure 5.11n).
The data from a prolate ellipsoid (see Figure 5.11c) have a distinct

distribution (Figure 5.11g), while and are clumped together. The
directions are nicely defined, but the and directions are smeared in
a girdle (Figure 5.11o)).

Finally, the triaxial case is shown in Figure 5.l1d. All three eigenvalues
are distinct (Figure 5.llh) and the corresponding eigenvectors well grouped
(Figure 5.l1p).

The histogram method illustrated in Figure 5.11 is most appropriate
for classifying shape characteristics of a relatively homogeneous set of sam-
ples. However, it may not be ideal for examining trends in behavior among
samples or data sets. For example, one may wish to show the progressive
change in shape and degree of anisotropy as a function of metamorphism
(e.g., Chapter 6). In such a case, one of the other plots (Flinn, Ramsay,
Jelinek, or ternary) may serve better.

[See Example 5.13]

By way of illustrating various plots, we show the data from Figure 5.5
on the Flinn, Ramsay and Jelinek type plots. We plot both the individual
sample data (triangles) and the bootstrapped averages for the whole data
set (dots). The dots give a sense of the statistical variability of the average
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data set and can be used for the purposes of discriminating among data
sets in a statistical way (Chapter 6).

While there is no “right” way to plot eigenvalue data, it seems that there
is a clear advantage of the histogram approach. The degree of anistropy is
reflected directly in the “spread” between and (see % anisotropy in
Table 5.1). The shape is reflected in the relationships among the three
eigenvalues which can be quantitatively assessed. Finally, if data from dif-
ferent studies are placed on the same horizontal scale, trends in the data
sets are easily observed.
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5.10. Examples

Example 5.1
Use the program s-eigs to calculate the eigenvalues and eigenvectors of the

data in Table 5.2.

Solution
Put the data into a file called ex5.1.Then type the following:
% s_eigs < ex5.1 > ex5.1a
and the computer responds by putting the eigenvalues and directions of the
associated eigenvectors for each record as listed in Table 5.3 into ex5.1a.
All eigenvectors are mapped to the lower hemisphere.
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Example 5.2
It is often useful to go “backwards” from the eigenparameters to the matrix
elements. Use eigs_s to convert the output from Example 5.1 back to matrix
elements.
Solution
Type:
% eigs_s < ex5.1a > ex5.2
to get back the matrix elements (see Table 5.4).
Notice how these are slightly different from the original data, because of
round-off error; hence the transformation between matrix elements and
eigenvalues is rather unstable and should be done as little as possible.

Example 5.3
Anisotropy data come from specimens with an arbitrary orientation. Use
s_geo to rotate sets of six matrix elements referenced to an orientation ar-
row (along with given azimuth and plunge into geographic coordinates.
Use the data in Table 5.5.
Solution
Put the data into a file ex5.3a and type:
% s_geo < ex5.3a
The computer responds with ex5.1 from the first example. Now rotate the
data in ex5.1 using a strike of 204 and a dip of 25. First attach the desired
strike and dip to the data by:
% awk ’{print $1,$2,$3,$4,$5,$6,204,25}’ ex5.1 > ex5.3b
Then type:
% s–tilt < ex5.3b
to get the data in Table 5.6.
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Example 5.4
Use k15 to calculate the best-fit tensor elements and residual error for
data in Table 5.7. These are: the sample name, azimuth and plunge, and
strike and dip, followed by the fifteen measurements made using the scheme
in Figure 5.2. Calculate the data in geographic and tilt adjusted coordi-
nates.
Solution
Enter the data into datafile ex5.4. To calculate the matrix elements in
specimen coordinates, type:
% k15 < ex5.4
and the computer responds with the data in Table 5.8.
To do just the geographic rotation, type:
% k15 < ex5.4
The computer should respond with the data as in Table 5.2, but with
from the previous example at the end of each record.
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Finally, to do the geographic and tectonic rotations, type:

%  k15 < ex5.4

to get the data in Table 5.9.
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Example 5.5
Use k15_hext to calculate statistics for the data in ex5.4 using the linear
propogation assumptions. Calculate the following: bulk susceptibility, F,
F12, F23, E12, E13, E23 and the assorted directions.
Repeat the same calculations for geographic and tilt adjusted coordinates.
Solution
For specimen coordinates, type
% k15_hext < ex5.4
for:
tr245f bulk susceptibility = 998.733
F = 418.84 F12 = 338.36 F23 = 194.46
0.33521 256.1 45.9 1.8 165.0 1.0 4.2 74.1 44.1
0.33351 74.1 44.1 3.2 165.0 1.0 4.2 256.1 45.9
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0.33127 165.0 1.0 1.8 256.1 45.9 3.2 74.1 44.1
tr245g bulk susceptibility = 1071.67
F = 148.81 F12 = 2.71 F23 = 251.69
0.33604 314.0 32.6 3.4 51.9 12.0 3.7 159.4 54.8
0.33218 159.4 54.8 3.7 314.0 32.6 32.1 51.9 12.0
0.33178 51.9 12.0 3.4 314.0 32.6 32.1 159.4 54.8
tr245h bulk susceptibility = 1225.67
F = 202.61 F12 = 120.34 F23 = 133.64
0.33625 72.8 2.5 2.6 342.8 0.8 5.1 234.7 87.4
0.33328 234.7 87.4 5.1 72.8 2.5 5.4 342.8 0.8
0.33047 342.8 0.8 2.6 72.8 2.5 5.4 234.7 87.4

For geographic coordinates, type
%k15_hext -g < ex5.4
and you will get:

tr245f bulk susceptibility = 998.733
F = 420.98 F12 = 338.40 F23 = 194.44
0.33521 20.7 38.3 1.8 238.6 45.0 4.2 127.3 20.0
0.33351 127.3 20.0 3.2 238.6 45.0 4.2 20.7 38.3
0.33127 238.6 45.0 1.8 20.7 38.3 3.2 127.3 20.0
tr245g bulk susceptibility = 1071.67
F = 148.82 F12 = 2.71 F23 = 251.69
0.33604 13.1 15.5 3.4 282.4 2.5 3.7 183.3 74.3
0.33218 183.3 74.3 3.7 13.1 15.5 32.1 282.4 2.5
0.33178 282.4 2.5 3.4 13.1 15.5 32.1 183.3 74.3
tr245h bulk susceptibility = 1225.67
F = 203.10 F12 = 120.35 F23 = 133.64
0.33625 16.7 6.0 2.6 283.6 26.8 5.1 118.3 62.5
0.33328 118.3 62.5 5.1 16.7 6.0 5.4 283.6 26.8
0.33047 283.6 26.8 2.6 16.7 6.0 5.4 118.3 62.5

For tilt adjusted coordinates, type
k15_hext -t < ex5.4
and you will get:

tr245f bulk susceptibility = 998.733
F = 419.92 F12 = 338.40 F23 = 194.44
0.33521 2.8 32.8 1.8 252.7 28.1 4.2 131.5 44.1
0.33351 131.5 44.1 3.2 252.7 28.1 4.2 2.8 32.8
0.33127 252.7 28.1 1.8 2.8 32.8 3.2 131.5 44.1

..

.
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tr245g bulk susceptibility = 1071.67
F = 149.35 F12 = 2.71 F23 = 251.69
0.33604 7.6 9.5 3.4 101.5 21.9 3.7 255.7 65.9
0.33218 255.7 65.9 3.7 7.6 9.5 32.1 101.5 21.9
0.33178 101.5 21.9 3.4 7.6 9.5 32.1 255.7 65.9
tr245h bulk susceptibility = 1225.67
F = 202.85 F12 = 120.34 F23 = 133.64
0.33625 14.8 2.4 2.6 284.7 2.1 5.1 153.0 86.8
0.33328 153.0 86.8 5.1 14.8 2.4 5.4 284.7 2.1
0.33047 284.7 2.1 2.6 14.8 2.4 5.4 153.0 86.8

Example 5.6
Use k15_hext to calculate the statistics of the whole file ex5.4. Repeat
the excercise for geographic and tilt adjusted coordinates.
Solution
Type:
% k15_hext -a < ex5.4
The [-a] switch tells the program to average over the whole file and the
response is:

F = 2.55 F12 = 2.16 F23 = 1.12
0.33471 265.8 17.6 19.6 356.5 2.1 40.4 93.0 72.2
0.33349 93.0 72.2 31.5 356.5 2.1 40.4 265.8 17.6
0.33180 356.5 2.1 19.6 265.8 17.6 31.5 93.0 72.2

For geographic coordinates, type
k15_hext -ag < ex5.4
and get:

% k15_hext -ag < ex5.4
F = 5.77 F12 = 3.66 F23 = 3.55
0.33505 5.3 14.7 13.3 268.8 23.6 25.5 124.5 61.7
0.33334 124.5 61.7 25.1 268.8 23.6 25.5 5.3 14.7
0.33161 268.8 23.6 13.3 5.3 14.7 25.1 124.5 61.7

For tilt adjustment, type
% k15_hext -at < ex5.4
and get:

F = 6.08 F12 = 3.86 F23 = 3.74
0.33505 1.1 5.7 13.0 271.0 0.7 24.9 173.8 84.3
0.33334 173.8 84.3 24.6 271.0 0.7 24.9 1.1 5.7
0.33161 271.0 0.7 13.0 1.1 5.7 24.6 173.8 84.3

Analyzing tensors
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Example 5.7
Use s_hext to calculate statistics from the averaged matrix elements ob-
tained from k15_s and s_geo in ex5.4.
Solution
The outcome of Example 5.4 was the input for Example 5.1, so
% s_hext < ex5.1
to get:

F = 5.77 F12 = 3.55 F23 = 3.66
N = 8 sigma = 6.41813E-04
0.33505 5.3 14.7 13.3 268.8 23.6 25.5 124.5 61.7
0.33334 124.5 61.7 25.1 268.8 23.6 25.5 5.3 14.7
0.33161 268.8 23.6 13.3 5.3 14.7 25.1 124.5 61

which you will notice is identical to the outcome of Example 5.6. Also,
note that while barely anisotropic (F > 3.48), these data fail the discrim-
ination tests F12 and F13, suggesting that in fact      ,    , and       cannot be 
discriminated.

Example 5.8
Calculate confidence ellipses of Jelinek [1978] for ex5.1 using s_jel78 for
the data in ex5.1.
Solution
Type:
% s_jel78 < ex5.1
to get:

N = 8
0.33505 5.3 14.7 15.1 268.8 23.6 16.8 124.5 61.7
0.33334 124.5 61.7 15.8 268.8 23.6 16.8 5.3 14.7
0.33161 268.8 23.6 15.1 5.3 14.7 15.8 124.5 61.7

Example 5.9
Calculate bootstrap statistics for the data in ex5.4 (transformed into ge-
ographic coordinates) using bootams. Repeat using the parametric boot-
strap option.
Solution
First the data in ex5.4 must be converted to matrix elements, by the
command k15_s -g < ex5.4 > ex5.9 as in Example 5.4. Then, type:
% bootams < ex5.9 to get:

0.33505 0.00021 5.3 14.7 11.6 264.4 35.8 14.2 113.8 50.4
0.33334 0.00021 124.5 61.7 7.2 224.4 5.3 18.3 317.1 27.7
0.33161 0.00016 268.8 23.6 12.3 10.3 24.6 13.6 140.7 54.7

For a parametric bootstrap, type:
bootams -p < ex5.9 to get:

0.33505 0.00021 5.3 14.7 11.1 263.4 38.3 14.1 112.3 48.0
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0.33334 0.00021 124.5 61.7 6.0 225.6 5.9 18.1 318.7 27.5
0.33161 0.00014 268.8 23.6 11.9 2.3 8.1 12.9 110.1 64.9

These measurements have very low signal/noise ratios, hence the outcomes
of the simple and parametric bootstraps are similar.
Also note that, according to the standard deviations of the bootstrapped

values, the three eigenvalues are significantly different, in contrast to the
F test results from Examples 5.6 and 5.7

Example 5.10
1) Compare the four methods of calculating confidence ellipses (parametric
and non-parametric bootstrap, Hext [1963], and Jelinek [1978]) using plot-
ams on the data from Example 5.9. 2) Plot the distribution of eigenvectors
obtained from the site parametric bootstrap in equal area projection.
Solution
1) Type:

2) Now type:

to get the postscript file mypost as shown in Figure 5.15. Compare these
ellipses with the outcomes of s_hext, s_jel78, bootams, bootams -p
in previous examples. The two bootstrap methods are quite similar, the
parametric one being slightly fatter in the V1 ellipse. The Jelinek [1978]
ellipses are rounder than the bootstrapped ones. Those of Hext [1963] are
much larger than the others.

Analyzing tensors

% plotams -pxj < ex5.9 | plotxy
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% plotams -Pv < ex5.9 plotxy
to get plot shown in Figure 5.16.

Example 5.11
Check if the anisotropy data from two chilled margins of a dike indicate
imbrication using plotams and s_hist. The eastern margin data are those
in Example 5.4 and the western margin data are in Table 5.10.
Solution
Enter the data into a file named ex5.11a. Perform the geographic correc-
tions and specimen averaging using k15_s by typing:
% k15_s -g < ex5.11a > ex5.11b
(The data from Example 5.4 should already be in ex5.9.)
To examine these new data, use plotams as before to get the mypost plot
shown in Figure 5.17. Compare this figure with Figure 5.15. Can the eigen-
vectors be distinguished on the basis of confidence ellipses alone? Another
way to consider the problem is to compare histograms of the the mean
eigenvectors of interest (in this case the principal one) generated during
bootstrapping to see if any humps can be distinguished. s_hist will do this
with the appropriate switches.
To see the options available, type:
% s_hist -h
or check Appendix 1.
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To select a parametric bootstrap, because we have the values already,
we choose -p. To compare data from two files, we select the option
and supply the two file names. To plot the principal eigenvector, we select
the -1 option and to plot the 95% confidence bounds for the respective
bootstrapped eigenparameters, we select the -b option. Thus, we type:
% s_hist -pcb1 ex5.9 ex5.11b | plotxy
and get the mypost file shown in Figure 5.18. The 95% confidence intervals
for the   component do not overlap, hence the two data sets are discrete,
indicating imbrication and allowing interpretation of flow direction.

Example 5.12
Use s_hist to see what average shape the data in ex5.9 is. Test whether

Solution
We want to plot the eigenvalues generated by the parametric bootstrap and
the 95% confidence intervals for each eigenvalue. To do this type:
% s_hist -ptb < ex5.9 | plotxy
and get Figure 5.19.

Analyzing tensors
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Example 5.13
Use s_flinn to plot Flinn and Ramsay diagrams using a parametric boot-
strap of the data in ex5.9. Use s_pt to make a Jelinek diagram of the same
data.
Solution
For a Flinn diagram (parametric bootstrap) as shown in Figure 5.20, type:
% s_flinn -p < ex5.9 | plotxy
For a Ramsay diagram (log Flinn) as shown in Figure 5.21, type:
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%  s_flinn -pl < ex5.9 | plotxy
For a Jelinek diagram as shown in Figure 5.22, type:
% s_pt -p < ex5.9 | plotxy

Analyzing tensors
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Chapter 6

PALEOMAGNETIC APPLICATIONS
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In this book we have reviewed the basic tools of paleomagnetism. To
first order, the geomagnetic field is dipolar with the axis of the field corre-
sponding to the spin axis. We learned how rocks could retain a remanence
that reflects the Earth’s magnetic field. In subsequent chapters, we devel-
oped statistical tools for dealing with paleomagnetic data. In this chapter,
we will briefly examine gelogical applications of these paleomagnetic tools.

6.1.

It must be established that a single component of magnetization can
be (and has been) isolated by stepwise demagetization. To demonstrate
this, examples of demagnetization data should be shown (see Chapter 3).
There must also be a clear discussion of how directions were determined
for each sample.

Geological materials are not always perfect recorders of the geomag-
netic field. It often happens that a given stratigraphic horizon has no
consistent magnetization. Multiple samples per horizon (say three to five
separately oriented samples) with coherent directions (i.e., non-random
by tests such as those discussed in Chapters 3 and 4) indicate that the
magnetization at a given level is reproducible. While it is not always
possible to take multiple samples (for example from limited drill core

Magnetostratigraphic applications

An important application of the fact that the geomagnetic field undergoes
frequent reversals, whose ages are fairly well known, at least for the last
hundred million years or so, is to use the reversal time scale as a dating
tool for stratigraphic sequences. The pattern of polarity zones is deter-
mined by measuring the magnetization of samples taken from the strati-
graphic section as shown in Figure 6.1. If the polarity zones in the so-called
magnetostratigraphy can be unambiguously correlated to the GPTS, they
constitute a precise temporal framework for sedimentary or volcanic se-
quences. Such records have proved invaluable for correlating stratigraphic
information on a global basis and are the primary means for calibrating the
Cenozoic fossil record with respect to time.

Sedimentation is not always a continuous process in many environments
and a stratigraphic section may have gaps of significant duration. Also, the
magnetic recording process of the rock may be unreliable over all or part
of the section. Furthermore, incomplete sampling may give a polarity log
that is aliased. For these reasons, there must be ways of establishing the
reliability of a given polarity sequence and the robustness of a given correla-
tion. For a more complete discussion of the subject of magnetostratigraphy,
the reader is referred to the comprehensive book by Opdyke and Channell
[1996] entitled Magnetic Stratigraphy. Briefly, the elements of a good mag-
netostratigraphic study include the following points.
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material), it is alway desirable and certainly should be done whenever
possible.

The directional data must fall into two clearly separated groups, that
are identifiable as either normal or reversed polarity. If fully oriented
samples have been taken, the data can be plotted on an equal area pro-
jection (see Chapter 1) and/or subjected to the reversals test (Chapter
4). Often drill cores are not azimuthally oriented, and the paleomag-
netic inclination is the only indicator of polarity. In this case, one can
plot histograms of the vertical component and establish that the two
polarities (positive and negative) have discrete “humps” at the values
expected for the site latitude.

The average direction should be compared with the reference field (the
GAD field; see Chapter 1), and the expected direction based on the age
of the formation for the sampling location. This can be done on an
equal area projection, or in cartesian coordinates (using a bootstrap),
as described in Chapter 4.

Field tests (such as the fold test or conglomerate test as described
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in Chapter 3) that enable establishment of the age of magnetization
relative to the rock formation are desirable.

An independent estimate of the approximate age of the sequence is
necessary. The better the age constraints, the more confident we can be
in a given interpretation.

The magnetostratigraphic pattern should match the polarity time
scale. Few polarity zones should be ignored either in the section or in
the time scale. Ideally, each polarity zone should be based on multiple
sites in the section.

6.1.1. THE MAGNETOSTRATIGRAPHIC JACKKNIFE

In order to quantify the robustness of a given polarity sequence, Tauxe and
Gallet [1991] defined a parameter J, that is sensitive to the dependence
of a given polarity stratigraphy on the distribution of sampling sites. J
is determined using a jackknife procedure. The jackknife is a statistical
technique (see Efron [1982]) whereby a given parameter is calculated for a
data set, and is then recalculated for the deleted data set with one or more
data points. Repeated calculations for data sets with different data points
deleted gives an idea of the variability of the parameter and the procedure
can be used, among other things, for calculating uncertainty estimates.

To use the magnetostratigraphic jackknife (Figure 6.2), one counts the
number of polarity reversals in a given section, then repeats the count af-
ter deletion of one or more sampling sites. In Figure 6.2a, we show the
magnetostratigraphy obtained by Lowrie et al. [1982] from the Contessa
Road section in the Umbrian Alps of Italy. The polarity pattern is based
on 158 sampling sites and defines 19 polarity zones. The magnetostratigra-
phic jackknife is performed by random deletion of a given percentage of
sampling sites followed by recounting the remaining polarity zones. This
is repeated many times and the average number of polarity zones for a
given number of sites (expressed as the percentage of the initial number
of polarity zones) is plotted against the percentage of sites deleted (Fig-
ure 6.2b). The slope of the resulting line which relates the percentage of
remaining polarity zones and percentage of sites deleted was defined as the
magnetostratigraphic jackknife parameter J (Tauxe and Gallet [1991]). J
for the Contessa Road magnetostratigraphy is -0.24. Based on numerous
simulations, Tauxe and Gallet [1991] recommend J values in the range of
0 to -0.5 for a magnetostratigraphy to be robustly defined. The jackknife
for the magnetostratigraphic pattern shown in Figure 6.1 is also shown in
Figure 6.2b. The low value of J (-0.7) reflects the fact that the magne-
tostratigraphy is not well determined; several polarity zones are based on
a single site. Addition or removal of single sites is therefore likely to result
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in changes in the polarity pattern. In such a case, additional sampling is
recommended.

6.1.2. TRACING OF MAGNETIC ISOCHRONS

Most magnetostratigraphic applications involve determination of a mag-
netostratigraphy through a stratigraphic sequence of sediments. Because
polarity transitions occur relatively rapidly (in less than 4000 years, Chap-
ter 1), the horizon bounding two polarity zones may represent an almost
isochronous level. It is therefore possible to use magnetostratigraphy in
a lateral sense, in order to delineate isochronous horizons within a given
package of sediments (Behrensmeyer and Tauxe [1982]). In Figure 6.3, we
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show the application of magnetostratigraphy for tracing isochrons in a se-
ries of stratigraphic sections. The small sand body (darker gray) labeled
“A” appears to have removed the normal polarity zone seen in sequences
on the right of the figure either by erosion or because of unsuitable pal-
eomagnetic properties of sand. Sand bodies B and C appear to represent
quasi-isochronous horizons.

6.2.  Paleointensity of the geomagnetic field

As discussed in Chapter 3, the geomagnetic field not only undergoes changes
in direction but also changes in intensity. These intensity variations can be
of great interest for several reasons. For example, the Earth’s magnetic field
partially shields the Earth from incoming cosmic rays (e.g., Elsasser et al.
[1956]). Cosmic rays create radionuclides such as 14C and 10Be. Variations
in the geomagnetic field intensity therefore result in variable production
rates of these nuclides, an effect that must be taken into account if their
decay is to be used for age determinations (see, e.g., Bard et al. [1990]).

A second reason for interest in geomagnetic intensity variations is that,
if these variations are accurately known, they could be used as a time scale
that is potentially as effective as, for example, oxygen isotopic variations
in deep sea sediments. Most importantly, geomagnetic field variations arise
from processes deep in the Earth in the outer core. As such, they may hold
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a key to variations in boundary conditions of the outer core, or in convec-
tive styles. Also, because polarity reversals are always accompanied by low
geomagnetic field intensities, perhaps intensity variations will provide some
clues as to why and how the field reverses.

We discussed in Chapter 3 various methods for obtaining absolute pa-
leointensity information from samples whose NRMs include TRM compo-
nents and relative paleointensity information from samples whose NRMs
include a DRM component. The following criteria are useful for judging a
given absolute paleointensity experiment:

The magnetic remanence should be carried by SD magnetite.
The NRM should have a component that decays in a linear trajectory

to the origin in the vector end-point diagram. It should have a MAD of
less than 15°.

Magnetic susceptibility should not change much during the experi-
ment.

The pTRM checks should not display a trend and must agree with
the original pTRM measurement within 5%.

The selected NRM-pTRM data must plot linearly on an Arai plot.
Replicate samples from the same cooling unit should agree to within

10 - 15%.

The data shown in Figure 3.13 meet the highest standards, but the
quality of data can vary substantially, as shown in Figure 6.4. In Figure 6.4a,
we show data that provide a reasonable estimate of paleofield strength. The
orthogonal plot of demagnetization data trends to the origin after removal
of a soft component and the Arai diagram is well-behaved, with linear
behavior and excellent pTRM checks. An iterative line search routine gives
a best-fit line with a slope of -1.37. The laboratory field was hence
the paleofield strength was

In Figure 6.4b, we show data that fail to meet minimum standards.
The pTRM checks are poor, and the data are scattered. The data in the
Arai plot are somewhat concave below the best-fit line. Data in Figure 6.4c
are an example of unreliable data obtained from a Thellier-Thellier type
experiment.

Relative paleointensity data have different reliability criteria (see King
et al. [1983], Tauxe [1993], and Constable et al. [1998]). The following steps
should be taken to insure the best possible relative paleointensity data:

The natural remanence must be carried by stably magnetized mag-
netite, preferably in the grain size range of about The portion
of the natural remanent vector used for paleointensity determination
should be a single, well-defined component of magnetization. The na-
ture of the remanent carrier can be assessed using stepwise demagneti-
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zation combined with judicious use of various rock magnetic techniques,
as described in Chapters 2 and 3.

The detrital remanence must be an excellent recorder of the geomag-
netic field (Tauxe [1993]). Normal and reversed polarity data should be
antipodal (see Chapter 4). There is experimental evidence that the re-
manent intensity of unstirred sediments are not a simple linear function
of field intensity. Thus, stirred (bioturbated) sediments are preferable
to laminated sediments for relative paleointensity studies.

Concentration of magnetic grains should not vary by of more than
about an order of magnitude.

Normalization should be done by several methods, all yielding con-
sistent results. A portion of the Oligocene data from Hartl et al. [1993]
are shown as an example in Figure 6.5. Correlation of the entire magne-
tostratigraphic pattern (Tauxe et al. [1983]) to the time scale of Cande
and Kent [1995] suggests a C12n-C13n age range, as shown. Parameters



222 CHAPTER 6

such as ARM or IRM can be plotted with respect to one another,
in a so-called Banerjee plot (Banerjee et al. [1981]). The various bulk
parameters should be linearly related to one another with a high corre-
lation coefficient R. In the Oligocene data set, there is a strong degree
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of correlation among the bulk parameters (Figure 6.6a,c) as reflected by
R values greater than 0.9.

Alternatively, Constable et al. [1998] pointed out the advantages of ex-
amining coherence (the frequency domain analog of the correlation
coefficient) between the various bulk parameters (Figure 6.7). Analyz-
ing data in the frequency domain allows us to examine the time-scales
over which the parameters behave coherently. As expected from the high
correlation coefficients, the coherence of IRM, ARM and is high, with
the most coherent being IRM and Frequencies greater than about

indicate a drop in coherence, which reflects the increasing
dominance of noise at about the sampling interval (in this case, appro-
ximately 4 kyr).
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The estimated relative paleofield obtained by normalizing the
NRM by some bulk parameter, can be re-normalized by the mean of the
entire time series, such that the average relative paleointensity is unity
(Figure 6.8). This allows comparison of different records with different
average values. The agreement (or lack thereof) among the various esti-
mates can be used as an indication of the reliability of the record. The
normalizer of choice should be the one that is most correlated with the
remanence (Constable et al. [1998]). As shown in Figures 6.6 and 6.7,
IRM is the most highly correlated with NRM in the example data set,
hence it is the best normalizer.

Further confidence in relative paleointensity studies in sediments can
be achieved by the use of Thellier-Thellier and pseudo-Thellier type
experiments (Tauxe et al. [1995]).
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Normalization by a suitable bulk magnetic parameter should signifi-
cantly reduce the coherence of the relative paleointensity estimate with
the normalizer and should increase coherence among different records
from a given region; these should agree well within the limits of a com-
mon time-scale.

Recent analyses of many records distributed over the globe and which
span the last 200,000 years, provide grounds or optimism that it may be
possible to develop an independent time-scale based on relative paleointen-
sity of the geomagnetic field. Guyodo and Valet [1996] showed that when
placed on a common time-scale and scaled to a mean of unity, data sets
from many disparate locations with different lithologies show similar trends
(see Figure 6.9) which strongly suggests that the records have retained a
substantial amount of paleofield information.

6.3. Paleomagnetic poles and apparent polar wander

As rock formations move, either as a result of local, regional or continental
scale tectonic activity, they can carry with them a record of the direction
of past magnetic fields. These records can be, as discussed in Chapter 1,
approximately related to the position of the Earth’s spin axis at the time
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the rocks became magnetized. Thus, there are many tectonic applications
for paleomagnetic data.

As continents move with respect to the North pole, the direction of
the Earth’s magnetic field changes when viewed from a single place. In
the continent’s frame of reference, the position of the magnetic pole ap-
pears to move. Tracks of these past pole positions are called apparent polar
wander paths (APWPs). An example of a hypothetical APWP is shown in
Figure 6.10.

There are several applications for paleomagnetic pole data, including
constructing APWPs for single continents, constraining motions of tectonos-
tratigraphic terranes, testing plate tectonic reconstructions for multiple
continents, and, finally, testing the hypothesis that the paleomagnetic poles
are consistent with some deep mantle reference frame. Tectonic applications
of paleomagnetism have been thoroughly reviewed by many authors, from
McElhinny [1973] to van der Voo [1993] and the reader is referred to these
excellent books for an in-depth discussion. Briefly, the ingredients of reliable
paleo-poles are as follows:

The age of the formation must be known rather accurately.
In order to average errors in orientation of the samples and scatter

caused by secular variation, there must be a sufficient number of indivi-
dually oriented samples from enough sites. What constitutes “sufficient”
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and “enough” here is somewhat subjective and a matter of debate. Van
der Voo [1990, 1993] recommends a minimum of 24 discrete samples of
the geomagnetic field having a Some authors also compare scat-
ter within and between sites in order to assess whether secular variation
has been sufficiently sampled, but this relies on many assumptions as
to what the magnitude of secular variation was, which is rather poorly
known at present.

It must be demonstrated that a coherent characteristic remanence
component has been isolated by the demagnetization procedure.

The age of the magnetization relative to the age of the rock should be
addressed using field tests.

There should be agreement in the pole position from units of similar
age from a broad region.

Be suspicious if a particular pole position falls on a younger part of
the pole path or on the present field direction.

Consider the paleomagnetic poles plotted in Figure 6.11. These are all
the poles (regardless of quality) compiled by van der Voo [1990] for cratonic
North America. The poles form a smear that extends along arcs from the
geographic North pole to south of the equator. The polarity of an ancient
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pole can be ambiguous, without a densely sampled track. The oldest poles
on the diagram are from the early Cambrian. Given that rock units of
increasingly older age become increasingly rare and that the paleomagnetic
behavior becomes more uncertain to interpret with age, it can be difficult
to do paleomagnetism in the Pre-Cambrian.

Data that meet minimum standards (three or more of the criteria de-
scribed above) were grouped by age by van der Voo [1990]. These are plotted
as circles in Figure 6.12. Also shown as triangles is a small selection of so-
called discordant poles (van der Voo [1981]). What is immediately obvious
is that the discordant poles do not fall anywhere near the APWP. Most are
from western North America and indicate some clockwise rotations (the
poles are rotated to the right of the expected poles). When taking into
account the age of the formations, many also seem to have directions that
are too shallow, which suggests possible northward transport of 1000’s of
kilometers. The validity and meaning of these discordant directions is still
under debate, but it is obvious that most of the western Cordillera is not
in situ.

One of the first uses of paleomagnetic data was as a test of the idea of
continental drift (e.g., Wegener [1915]). Data from one continent, like those
shown above, could be interpreted to indicate either motion of the continent
with respect to a fixed geomagnetic pole, or motion of the geomagnetic pole
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with respect to a fixed continent. To test the hypothesis of continental drift,
data from at least two continents are required.

In Figure 6.13, we plot the data compiled by van der Voo [1990], which
meet the minimum standards of reliability, for North America and Europe.
On the left, the poles are plotted with respect to present-day coordinates:
the poles clearly fall on two separate tracks. This indicates that either the
field was not at all dipolar, or that the two continents have moved, not only
with respect to the geomagnetic pole, but also with respect to each other.

Many people who have contemplated the globe have had the desire to
fit North and South America against Europe and Africa by closing the
Atlantic Ocean. One such attempt, known as the Bullard fit (Bullard et
al. [1965]), fits the continents together using misfit of a particular contour
on the continental shelves as the primary criterion. Following van der Voo
[1990], we rotate the European poles, using the Bullard fit, into North
American coordinates on the right-hand side of Figure 6.13. After closing
the Atlantic, the curves overlap rather well, and, if the ages of the poles
are also taken into account, they also match well. The agreement provides
strong support of the continental drift hypothesis and also of the Bullard
fit.

In some studies, the focus is on discordant poles (e.g., Kamerling and
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Luyendyk [1979]). Regions with paleomagnetic directions that are signif-
icantly different from the direction expected from the appropriate refer-
ence pole of the APWP may have rotated or translated from their original
positions as an independent entity (a tectonostratigraphic terrane of mi-
croplate). Paleomagnetic data for such studies should undergo the same
scrutiny as for pole positions.

6.4. Magnetic fabric studies using AMS

Although much of paleomagnetism is devoted to the study of the magne-
tic vectors recorded in rocks, many areas of research seek to understand
a more complex property of the magnetism of rocks, the behavior of rock
magnetic tensors (see e.g., Tarling and Hrouda [1993]). Magnetic vectors
yield information about past magnetic fields, whereas anisotropy in mag-
netic tensors yield information about the statistical alignment of magnetic
crystals within the rock. Analysis of magnetic tensors has potential appli-
cations for unraveling the strain history, the fluid flow field at the rock’s
birth, etc. We will briefly outline several applications in the following.

6.4.1. PALEOCURRENT DIRECTIONS

Some of the earliest magnetic measurements made on sediments were of the
anisotropy of magnetic susceptibility (see Ising [1942], Granar [1958], Rees
[1965], Rees and Woodall [1975]). These studies and others (see summary
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by Tarling and Hrouda [1993]) show that the magnetic fabric of sediments
is strongly affected by the depositional environment (see Figure 6.14). We
list the characteristics of the AMS ellipsoids generated in each type of
sedimentary environment as follows:

In quiet water conditions (see Figure 6.15):

1) V3 directions are perpendicular to the bedding plane, and
2) the fabric is characterized by an oblate AMS ellipsoid.

In moderate currents (no particle entrainment) (see Figure 6.15):

1) particles are imbricated which results in (slightly) off-vertical V3

directions,
2) the V1 direction (in lower hemisphere projections) is antiparallel to
the paleo-flow direction, and
3) the fabric is characterized by an oblate AMS ellipsoid.

When deposition occurs on an inclined bedding plane:

1) V3 has a (slightly) off-vertical orientation,
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2) the V1 direction (in lower hemisphere projections) is antiparallel to
the direction of tilting, and
3) the fabric is characterized by an oblated AMS ellipsoid.

When deposition occurs under high current flow (with particles entrained)
(see Figure 6.16):

1) the V3 distribution is streaked,
2) V1 is perpendicular to the flow direction, and
3) the fabric is characterized by prolate or triaxial AMS ellipsoids.

When tectonic disturbance controls the fabric (see Figure 6.16):

1) V3 is parallel to the shortening direction (not necessarily perpendic-
ular to bedding),
2) V1 is parallel to the elongation direction, and
3) the fabric is characterized by prolate or triaxial AMS ellipsoids.
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6.4.2. PALEOSOL DEVELOPMENT

Tauxe et al. [1990] explored how AMS data could be used to investigate
the effects of paleosol formation on magnetic fabric. They showed that
grey laminated sediments from fluvial deposits in Pakistan had specular
hematite as the dominant magnetic phase and red paleosols were domina-
ted by pigmentary plus specular hematite. In Figure 6.17, it appears that
the grey sediments have nearly vertical V3 directions, while the red sedi-
ments have no preferred orientation. In Figure 6.18 we plot the histograms
of the bootstrapped as discussed in Chapter 5. The grey sediments
have dominantly oblate ellipsoid shapes (Figure 6.18a-c) while the red sed-
iments exhibit a wide range of fabrics including oblate, spherical, triaxial
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and prolate (Figure 6.18d-h). The percent anisotropy in highly developed
soils reaches 7%, which is much higher than for the grey sediments.

Representative histograms for the red and grey units, as shown in Fig-
ure 6.18, illustrate the range of observed AMS behavior, but it is difficult to
show data for more than a few selected samples. We therefore need another
way of examining the behavior of many samples at once. In Chapter 5, we
discussed Flinn, Ramsay, Jelinek, and ternary diagrams for this purpose.
The first three types of diagrams are useful for depicting oblate versus pro-
late shapes and display some measure of the degree of anisotropy. Because
the range in ellipsoid shape for the paleosol study does not involve just
oblate versus prolate shapes, but also spherical and triaxial shapes, we pre-
fer the ternary diagram as being better suited for illustrating the full range
of shapes.

In order to characterize the expected “primary” AMS ellipsoid, it is
useful to examine hematite-bearing sediments that were redeposited in the
laboratory. Lovlie and Torsvik [1984] and Stokking and Tauxe [1990] pub-
lished relevant anisotropy data for such material. Data for both the depo-
sitional and the chemically precipitated fabrics are plotted in Figure 6.19.
Also shown is the expected change in the values of the normalized eigenval-
ues as the sediment undergoes progressive alteration from pristine grey to
heavily altered red. We expect a depositional fabric to plot near the data
of Lovlie and Torsvik [1984]. Randomization of detrital grains would cause
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the eigenvalues to move toward a more spherical shape; progressive growth
of chemically precipitated hematite and realignment of detrital hematite
would lead to eigenvalues that fall along a line toward more triaxial/prolate
ellipsoids with higher anisotropies.
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6.4.3. FLOW DIRECTIONS IN VOLCANIC DIKES

The principles by which flow directions can be determined in volcanic dikes
were laid out by Knight and Walker [1988]. While the magma is flowing in
the dike, elongate particles become imbricated against the chilled margins
(see Figure 6.20). Opaque phases such as magnetite are often observed to be
distributed along the fabric of the silicate phases (see Hargraves [1991]). The
principal eigenvectors arising from such a distribution anisotropy parallel
the fabric of the silicates. In Figure 6.20b, we show that in the ideal case,
the V1 directions from the two margins are distinct and fall on either side
of the dike trace. Because the convention is to plot AMS data in lower
hemisphere projections, the fact that the western margin data plot on the
western side, and the eastern margin data plot on the eastern side suggests
that the flow was upward. Thus, the AMS data from chilled margins of dikes
can give not only a lineation, but a well constrained direction of magma
flow. Following Tauxe et al. [1998], we recommend the following criteria for
obtaining reliable flow direction data.

Samples should be taken from within 10 cm of the chilled margin.
This is necessary because the AMS of samples from the middle of dikes
often has little to do with the direction of flow (Staudigel et al. [1992]).

A minimum of six samples should be taken from each margin. Dikes
can yield highly scattered results; a sufficient number of samples is nec-
essary to establish the reliability of data for a given dike. Monte Carlo
simulations by Tauxe et al. [1998] indicate that fewer than about five
or six samples will yield nominal 95% confidence intervals that are too
small.

The bootstrapped eigenvalues for each margin must indicate a distinct
(either prolate or triaxial, as shown in Chapter 5).

The bootstrapped v13 components (Figure 6.21) provide 95% confi-
dence bounds on the inclination of V1. If these exceed 30°, the data do
not provide useful flow information.

The mean V1s should be within 45° of the dike orientation in
dike coordinates should not exceed 0.707). If the principal directions are
more than about 45° away from the plane of the dike, as in Figure 6.22a,
the fabric is “inverse” and probably has nothing to do with the flow
direction.

Principal directions that differ in inclination by more than 30° from
each other are termed “scissored” (Figure 6.22b). Scissoring can be
caused by tectonism or can reflect a genuinely complicated flow pat-
tern. Such data provide poor constraints for average flow directions in
dikes.
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The dike trace itself must be reasonably well constrained. If the dike
is not quasi-planar, it is difficult to determine the relationship of the
AMS data to the dike.

The V1 directions that pass the above criteria fall into three possible
categories based on the behavior of the bootstrapped components
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(Figure 6.21). If the principal directions fall on opposite sides of the
dike and are distinct from the dike plane (i.e., the confidence bounds
of do not overlap the trace of the dike plane as in the example),
the data are classified 2D-A. If the confidence bounds from one margin
overlap the dike plane, then the data fall in class 2D-B. If the data from
neither margin are distinct from the dike plane, then the data fall in 2L.
If only one margin yielded usable data, it is “1D” if the bootstrapped

components are distinct from the dike plane, otherwise it is “1L”.
Also, directions can be interpreted from “D” type classifications, while
only lineations can be obtained from “L” type dikes.

6.4.4. FLOW DIRECTIONS IN LAVA FLOWS

Buoyed by the success of using AMS for determining flow directions in
dikes, several investigators have tried a similar method for determining flow
directions in lava flows (see e.g., Cañon-Tapia et al. [1994]). Application to
lava flows is much more difficult than for dikes. First, the flow direction is
less well constrained. Lava flows tend to spill out with poorly controlled
flow vectors. Examination of any one spot would yield a poor estimate of
the average flow direction. Moreover, there are not two imbricated margins
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to provide directional information, hence only a flow axis can be readily
interpreted.

6.4.5. MAGNETIC FABRIC IN METAMORPHIC ROCKS

To illustrate applications of AMS in metamorphic rocks, we choose the data
set of Housen et al. [1995] for Grenville metamorphic rocks (Figure 6.23).
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These data come from three metamorphic grades: the relatively unde-
formed so-called “protolith”, the “mylonite” and the highly strained “ultra-
mylonite”. The eigenvectors of the protolith facies are poorly grouped and
the eigenvalues indicate an oblate shape. With increasing mylonitization,
the eigenvectors become more tightly clustered, with V1 parallel to the re-
gional lineation: the eigenvalue histograms indicate higher degrees of aniso-
tropy and a more prolate shape (although the eigenvalues are still triaxial).

The histogram plots, when placed on the same horizontal scale, do give
a sense of degree of anisotropy and overall shape. Nonetheless, there are
other popular ways of depicting these characteristics, such as the Flinn,
Ramsay, and Jelinek diagrams and the Ternary diagram (see Chapter 5).

In Figures 6.24 and 6.25 we show the data of Figure 6.23 replotted on
Flinn, Ramsay, Jelinek, and Ternary diagrams. The results of progressive
deformation are evident in each plot and there is no reason to choose one
over the other. Thus, depending on the application, in contrast to the opin-
ion expressed by Tar ling and Hrouda [1993], it is a matter of taste as to
which diagram is used.

6.5. Summary

In this book, we have reviewed the nuts and bolts of paleomagnetism. We
have discussed the tools of the trade: how to get samples, measure, and
analyze them. We have briefly considered some of the more popular appli-
cations. It is now up to the reader to use them. When thoughtfully applied,
the tools provided here can unleash the power of paleomagnetism.

Paleomagnetic Applications
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6.6. Examples

Example 6.1
Plot the magnetostratigraphic data (stratigraphic height, VGP latitude)
contained in file ex6.1 using plotxy. Use the program jackstrat to inves-
tigate the robustness of the polarity pattern and to calculate J.
Solution
Type the following to put the plotting commands into a file ex6.1.com:
% cat > ex6.1.com
frame

puts an attractive frame around the plot
file ex6.1

sets the file name
ylabel VGP lat.

defines the y axis label
ylimit 2 0 0

sets the y axis to 2 inches and uses default plot limits
xlimit 6 0 0

sets the x axis to 6 inches and uses default plot limits
xlabel Stratigraphic Height

defines the x axis label
read

reads the data
symbol 19

sets the symbol to a filled circle
read

reads the data again
plot 1 2

plots the data
stop

quits gracefully and writes the mypost file
Now type:
% plotxy < ex6.1.com
and see Figure 6.26.
The program jackstrat expects polarity information (positive or negative
numbers) in stratigraphic order. For this, you can use either the inclinations,
if they are steep enough to uniquely determine polarity, or, preferably, VGP
latitudes. In order to extract the polarity zonation from the file, we need
to select the second column (the VGP latitudes) from the file ex6.1 using
the awk command. These can then be piped directly to jackstrat, whose
output in turn can be piped directly to plotxy:
% awk ’{print $2}’ ex6.1 | jackstrat | plotxy

CHAPTER 6
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The output of the magnetostratigraphic jackknife is shown in Figure 6.27.
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Example 6.2
1) Sometimes samples are so weak that it is advantageous to measure them
several times and take some sort of average. A Fisher mean (see Chapter 3)
ignores the intensity information, so a full vector average (instead of unit
vector) is more appropriate. Use the program vspec to calculate vector
averages of multiple measurements at a single treatment step for the data
in file ex6.mag.
Solution
The data in file ex6.mag are in the Scripps .mag format, i.e.:
Sample_name treatment_step CSD Intensity Declination Inclination

where CSD could be the circular standard deviation of the measurement,
but can also be any dummy variable.
Now type:
% vspec < ex6.mag > ex6.vmag
to get the averaged data in ex6.vmag.
Unique sample/treatment steps are simply copied over and the vector aver-
age of multiple measurement replaces those data. The CSD field is replaced
with a parameter similar to Fisher’s R parameter, but takes into account
the intensity. It is the resultant divided by the sum of all the intensities and
ranges from zero to one, one resulting from perfect alignment of multiple
measurements.

Example 6.3
It is handy to have a program to help enter orientation data. In Chapter 3,
we discussed three methods of orienting samples, using the “hand sample”
(or “cube” in the following) method, the azimuth and plunge of the direc-
tion of drill (or “drill direction”) method and the “sun compass” method.
There are many more. What is required by programs such as di_geo is the
orientation of the X1 direction of the coordinate system that the measure-
ment directions are in. It is assumed that X is horizontal and X follows
the “right-hand rule ” discussed in Chapter 3.
1) Use the program mk_nfo to enter the orientation data for the samples
in the previous example. These are:

Put the orientation data calculated by mk_nfo into a file called ex6_c.nfo
These samples were taken with the “cube” method, so notebook (NB) val-
ues for “azimuth” and “plunge” are actually the strikes and dips of a per-
pendicular face (see Figure 3.2). The sediments are consistently oriented
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with a strike of 240 and a dip of 20 (dip to the right of strike), but strati-
graphic position is of interest, so these data should also be entered. The
samples were collected from the East African Rift valley at 1° N, 35° East
in 1985 and according to the results of the igrf program, the magnetic
declination was negligible (less than 1°).
2) Use the program mk_nfo to make an .nfo file for samples drilled from
a lava flow (listed below). The orientation device measures the azimuth of
the direction of drilling and the angle that the drill direction made with
the vertical down direction. Also available is sun compass information for
the azimuth of the drill direction. These data came from the Island of La
Palma in the Canary Islands at 29° N and 18° W on December 31, 1994.
The reference field for these data (from igrf) has a declination of 351°.
3) Although the program has built-in options for converting notebook az-
imuth and plunge data to the lab arrow, every paleomagnetist seems to
develop his or her own system. For this program, the “user defined” option
is to enter the following orientation data assuming that the notebook values
refer to the “up drill direction” as opposed to the “down drill direction”
(the direction of the drill arrow on Figure 3.1d would point in the opposite
direction).

Solution
mk_nfo is a large and complicated program, so let us start with the help
message generated by the mk_nfo -h command:
Usage mk_nfo [-HbBDstfk] [strike dip][magdec][lat. long. delta T][cpsdu]
[az_add az_mult pl_add pl_mult][basename] [keyboard input]

makes information file(s) for conversion of data into
geographic, tectonic and stratigraphic references

Options:
H stratigraphic position data
b [strike dip] of bedding for each sample
B [strike dip] of bedding for entire suite
D add [magdec] to all declination/strike info
s sun compass data using [lat. long. dT]

lat/long of study area
and dT is time difference from GMT
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-t type of conversion from
notebook azimuth (= NBaz)/ notebook plunge (= NBpl) to
lab azimuth (= LABaz)/ lab plunge (= LABpl)
[c]ube:

NBaz/NBpl are strike and dip on face perpendicular
to face with lab arrow

LABaz=NBaz-90, LABpl=NBpl-90
[p]omeroy orientation device:

NBaz/NBpl are direction of drill and angle from vertical
LABaz=NBaz, LABpl=-NBpl

[s]trike/dip:
NBaz/NBpl are strike and dip on face with lab arrow
LABaz=NBaz+90, LABpl=NBpl

[d]rill direction/dip:
NBaz/NBpl are direction of drill (az/pl) in plane perpendicular

to face with lab arrow
LABaz=NBaz, LABpl=NBpl-90

[u]ser defined conversion
input [az_add az_mult pl_add pl_mult] to
specify affine for NBaz/NBpl to LABaz/LABpl
e.g. for [p] above, az_add=0, az_mult=1

pl_add=-90, az_mult=-1
-f output file specified as [basename]

ouput file will be appended to basename.nfo and if
sun compass data calculated, basename.snfo too

-k input from keyboard with prompts
< cntl-D. to quit.

Input:
sample,NBaz,NBpl [pos] [strike dip] [yyyymmdd hhmm shadow]

Output:
sample, pos, type, NBaz,NBpl,LABaz,LABpl,NBstr,strike,dip

Defaults:
read/write from Standard I/O
input only: sample, NBaz,NBpl

no declination adjustment
1) In order to carry out the first part of the program, we can enter the data
into a file with the fields:
sample NBaz NBpl height
and put in the orientation type (c), bedding orientation (240 20) as com-
mand line arguments:
% mk_nfo -HtBf c 240 20 ex6_c < ex6.mk_nfo.c
This creates a file named ex6_c.nfo that looks like this:
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tn07a 15.6 c 250. 22. 160. -68. 240. 240. 20.
tn07c 15.6 c 275. 51. 185. -39. 240. 240. 20.
tn07d 15.6 c 245. 42. 155. -48. 240. 240. 20.

Look at the “output” format in the help message for the key to what these
fields mean.
2) To make a .nfo file for the La Palma samples, we need to specify the
notebook Plunge: [ 0.0] that the type is ‘p’, that the magnetic declination
is -9° and that there are sun compass data from the correct latitude and
longitude (29, -18) and the difference between the measurement time and
Greenwich mean time, which in this case is 0. We can either put the data in
a datafile, or enter the data in an interactive way (keyboard input). For the
purposes of illustration, we will do it the interactive way. Data in brackets
will be retained by pressing return.
% mk_nfo -ktDs p -9 29 -18 0
Sample name: [AB123a ]

Control-D to quit
lp01a

Notebook Azimuth: [ 0.0]
12

Notebook Plunge: [ 0.0]
88

yyyymmdd: [ 19560126]
19941231

hhmm: [ 0300]
1314

Shadow angle: [ 0.0]
359

lp01a 0.0 c 12. 88. 3. -88. 0. -9. 0. [magnetic declination]
lp01a 0.0 c 12. 88. 359. -88. 0. -9. 0. [sun compass dec.]
Sample name: [lp01a ]

Control-D to quit
lp01b

Notebook Azimuth: [ 12]
41

Notebook Plunge: [ 88]
84

yyyymmdd: [ 19941231]
just hit return to keep this value!

hhmm: [ 0300]
1318

Shadow angle: [ 0.0]
28
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lp01b 0.0 c 41. 84. 32. -84. 0. -9. 0.
lp01b 0.0 c 41. 84. 29. -84. 0. -9. 0.

Sample name: [lp01b ]
Control-D to quit

and so on.
If we had specified an output file basename (e.g. lp), the program would
have created two files, lp.nfo and lp.snfo. The magnetic compass informa-
tion goes into the .nfo file, while the sun compass data go into the .snfo
file. These are not always the same as you can see by comparing the LABaz
fields in the two examples shown above. The user must choose between the
two. One way to do this is to concatenate the two files using cat and then
sort them:
% cat lp.nfo lp.snfo | sort > lp_all.nfo
Then you must go through line by line and choose which method gives the
most reliable azimuth.
3) Finally, we must do the third part of the problem which is to supply
user defined affines for the NBaz and NBpl variables. With a little thought,
we find that, if NBpl is negative (we were drilling downwards), then we
must add 180 to the NBaz to get the LAB_az correctly, so az_add = 180
and az_mult = 1. The LABpl = -90 - NBpl = -1 (NBpl + 90), so pl_add =
90 and pl_mult = -1. If the drill direction was up, it is another whole ball
game. In this excercise, all the drill directions were down (NBpl < 0), so
we will use az_add = 180, pl_add = 90 and both multipliers = 1. Having
put the orientation data into a file ex6.mk_nfo.u, we type:
%mk_nfo -t u 180 1 90 -1 < ex6.mk_nfo.u
and get:
lp01a 0.0 u 192. -2. 12. -88. 0. 0. 0.
lp01b 0.0 u 221. -6. 41. -84. 0. 0. 0.
lp01c 0.0 u 296. -36. 116. -54. 0. 0. 0.
lp01d 0.0 u 160. -2. 340. -88. 0. 0. 0.
lp01e 0.0 u 135. -58. 315. -32. 0. 0. 0.

Example 6.4
Use the program mag_dat to convert the file created in Example 6.2
(ex6.vmag) into what we will call a .dat format. Use the .nfo file cre-
ated in Example 6.3 ex6_c.nfo to rotate the vectors into geographic and
tilt adjusted coordinates.
The syntax of mag_dat is simple; it reads from standard input, writes to
standard output and the .nfo format file is specified as a command line
argument, following the switch -n:
% mag_dat -n ex6_c.nfo < ex6.vmag
to which the response is:
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tn07a 15.6 0.00 2.3 0.8420E-04 54.7 -0.7 55.3 -2.4
tn07a 15.6 150.00 2.4 0.6500E-04 46.4 -2.6 48.1 -7.1
tn07a 15.6 300.00 2.3 0.2930E-04 31.4 -7.5 35.3 -16.6
tn07a 15.6 400.00 1.7 0.1260E-04 19.5 -8.1 23.6 -20.6
tn07a 15.6 450.00 0.7 0.4140E-05 344.1 4.7 344.5 -14.7
tn07a 15.6 500.00 1.2 0.4190E-05 73.5 1.2 72.3 5.7
tn07a 15.6 550.00 1.1 0.3650E-05 353.5 -14.6 357.3 -32.7
tn07a 15.6 600.00 0.8 0.2230E-05 350.7 11.2 350.5 -7.6

The help message will inform you that these fields are:
sample, position, treatment, CSD, intensity, geographic D and I, tilt ad-
justed D, and I.

Example 6.5
Suppose you have collected the AMS of a set of samples from two margins
of a dike (nominally the east and west margins) shown in Table 6.1. These
samples were measured and you calculated the data using the techniques
discussed in Chapter 5 and are listed in the table below. Several dike ori-
entation measurements were made and the dip directions and dips were:
(102/70; 98/67; 108/82). Also, some outcrop flow lineations were noted
as declination inclination pairs: (20/38; 20/36; 24/30). Finally, there are
two tectonic rotations necessary to restore the dike to its original position
(strike # 1 = 270, dip # 1 = 10; strike # 2 = 205, dip # 2 = 20).
Use the program plotdike to analyze these data. Plot the bootstrapped
eigenvectors instead of ellipses and use a site parametric bootstrap.
Solution
Place the eastern and western margin data in files called e.s and w.s, re-
spectively. Put the dike orientations (dip direction, dip) in a file called
dike.dd and the lineation data (azimuth, plunge) in lin.di. Put the struc-
tural corrections (strike, dip, strike, dip) in a file called struct.dat. It
is best if each dike has its own directory (in this example, it is called
dike_example) in order to avoid confusion and overwriting of files.
Now type:
% plotdike -Pv | plotxy
The resulting mypost file is shown in Figure 6.28.
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1.1. Getting started

After each chapter in the book, there are a number of practical examples
for paleomagnetic problems using real data. The programs referred to in
the examples are part of the PMAG package of programs. The distribution
described here is pmag1.7. The most current version of the PMAG package
is available by anonymous ftp at:

ftp://sorcerer.ucsd.edu/pub/pmag.
These programs were designed to operate in a UNIX type environment

and we include the source code (in Fortran 77) as well as compiled ver-
sions for Linux, Solaris, and Mac OS X operating systems. There are also
executables (available for pmag1.4 only) provided for running under the
MSDOS prompt on a PC. There are many advantages to working in a
UNIX environment so we will start with a brief discussion of how to get
along in UNIX in general. There are many excellent books on UNIX and
the reader is referred to them for a detailed discussion. What follows are
the barest essentials for being able to use the programs in this book.

1.1.1. SURVIVAL UNIX

This book assumes that you have an account on a UNIX type machine and
know how to log in. If you are using a Macintosh with Mac OS X, just use
the terminal window. In this book, what you type is printed in boldface.
At the end of every line, you must also type a carriage return (“Return” or
“Enter” on most computer keyboards). To end input into a program, press
the control key and “d” < control – D > simulaneously.

After a login message specific to your computer, you will get a command
line prompt which varies widely. In this book, we use the symbol “%” as
the command line prompt.

1.1.2. THE UNIX FILE STRUCTURE

Fundamental to the UNIX operating system is the concept of directories
and files. On windows-based operating systems, directories are depicted as
“folders” and moving about is accomplished by clicking on the different
icons. In UNIX, the directories have names and are arranged in a hierar-
chical sequence with the top directory being the “root” directory, known as
“/” (see Figure A.1. Within the “/” directory, there are subdirectories (e.g.
usr and home). In any directory, there can also be “files” (e.g. ex1.1, ex1.2
in the figure). Files can be “readable”, “writable” and/or “executable”.
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When you log in you enter the computer in your “home” directory. To
refer to directories, UNIX relies on what is called a “pathname”. Every
object has an “absolute” pathname which is valid from anywhere on the
computer. The absolute pathname always begins from the root directory
/. So the absolute pathname to the home directory lisa in Figure A.1 is
/home/lisa. Similarly, the absolute pathname to the directory containing
pmag1.7 executables is /usr/local/pmag1.7/bin. There is also a “rela-
tive” pathname, which is in reference to the current directory. If user “lisa”
is sitting in her home directory, the relative pathname for the file notes in
the directory bookstuff would be bookstuff/notes. When using relative
pathnames, it is useful to remember that ./ refers to the current directory
and ../. refers to the directory “above”.

Commands typed at the command line prompt are handled by a pro-
gram called the “shell”. There are many different sorts of shells (e.g. sh,
csh, jsh, ksh, bash, tsh) that have a different look and feel but they all
perform the task of interpreting between the user and the “kernel” which
is the actual UNIX operating system. In order to execute a command, the
shell needs to know where the command is. There are several “built-in”
commands, but most are programs that are either part of the operating
system, or something someone wrote (like the ones referred to here). There
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are any number of places where programs are kept, so the shell looks in
particular places determined by your “path” environment variable. To in-
struct the shell to look in directories other than the default directories (for
example in /usr/local/pmag1.7/bin), ask your system administrator to
add this directory to your “path”. Otherwise, you can always type the abso-
lute pathname for any program (e.g. /usr/local/pmag1.7/bin/fishrot
to execute the program fishrot.

1.1.3. REDIRECTING INPUT AND OUTPUT

Most UNIX programs print output to the screen and read input from the
keyboard. This is known as “standard input and output” or “standard
I/O” in the following. One of the nicest things about UNIX is the ability
to redirect input and output. For example, instead of typing input to a
program with the keyboard, it can be read from a file using the symbol <.
Output can either be put into a file using the symbol >, appended to the
end of a file with or used as input to another program with the UNIX
pipe facility (|).

1.1.4. WILDCARDS

UNIX has the ability to refer to a number of files and/or directories using
“wildcards”. The wildcard for a single character is “?” and for any number
of characters is For example, to refer to all the files beginning with
“ex” in the directory:

/usr/local/pmag1.7/datafiles,
we use:

To refer only to those from Chapter 1, we use:

1.1.5. UNIX COMMANDS

Now we briefly describe essential UNIX commands.
awk

Usage: awk [options] [file(s)] [Standard I/O]
Description: There are whole books on this program. We will use awk in
a very primitive way to select specific columns from standard input for use
as input into another program. For example, if the third and fourth column
of file myfile is desired as input to program myprog type:
% awk ’{print $3, $4 }’ myfile | myprog

cat
Usage: cat [options][file(s)] [Standard I/O]
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Description: Concatinates and displays files. It reads from standard input
or from the specified file(s) and displays them to standard output.

cd
Usage: cd [directory]
Description: Changes directory from current directory to the one specified.

cp
Usage: cp [file1] [file2]
Description: Copies files or directories.

grep
Usage: grep [options] [expression] [file(s)]
Description: grep, like awk, is a very versatile (and complicated) program
about which one could read an entire book. However, we will use grep
simply to pick out particular key strings from a file. For example, if a file
myfile contains lines of data for many samples, and we wish to consider
the data for a single sample mysamp, lines containing the word mysamp
can be “grepped” out by:
% grep “mysamp” myfile
and listed to the screen, redirected to a file, or piped to a program.

join
Usage: join [options] file1 file2
Description: file1 and file2 share a common “join” field, by default the first
column. This could for example be a sample name. The output file prints
the join field, followed by the rest of the line from file1, then the rest of the
line in file2. Say file1 has magnetometer output data, with lines of data
containing: sample, treatment, D, I, M and file2 has pertinent information
such as sample orientation, with lines: sample, azimuth, plunge. We may
wish to attach the sample orientation data to the magnetometer output for
further processing. join allows us to do this by the following:
% join file1 file2

ls
Usage: ls [options] [directory name]
Description: Lists the contents of the specified directory. If none specified,
lists the current directory.

man
Usage: man [command name]
Description: Prints the on-line documentation for the specified command.

mkdir
Usage: mkdir [directory name]
Description: Makes a directory with the specified name.

Usage: more [file name]
more

Usage: more [file name]
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1.2. Getting the programs used in this book

The PMAG software distribution contains the fortran 77 source code, com-
piled programs for the Solaris, Linux and Mac OS X operating systems as
well as executables for MSDOS (only the pmag1.4 distribution for MSDOS).

1.1.6. TEXT EDITORS

Text editing is a blessing and a curse in most UNIX systems. You either
love it or hate it and in the beginning, you will certainly hate it. There are
many ways of editing text and the subject is beyond the scope of this book.
Almost all UNIX systems have some flavor of vi so try reading the man
pages for that.

Description: Displays the contents of a text file on the terminal, one screen-
ful at a time. To view line by line, type RETURN. To view page by page,
use the space bar.

mv
Usage: mv [file1 file2]
Description: Renames file1 to file2. This also works for directory names.

paste
Usage: paste [options] [file1 file2]
Description: “Pastes” lines from file2 onto the corresponding line in file1.

pwd
Usage: pwd
Description: Prints the absolute pathname of the working (or current) di-
rectory.

rm
Usage: rm [options] [file(s)]
Description: Deletes the specified file or files.

rmdir
Usage: rmdir [options] [file(s)]
Description: Deletes the specified directories. Note: the directory has to be
empty.

tee
Usage: tee [file name]
Description: Makes a copy of the standard input to the specified file, then
passes it to standard output.
More detailed descriptions are usually available on-line with the man com-
mand. For example, to find out more about cat, type:
% man cat
and read all about it.
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To run the compiled programs, simply “untar” them using for example the
command
%tar xvf macosx.tar
Put the resulting macosx directory in your path or move the files in that
directory to a directory that is in your path already.
We recommend that you “untar” the file pmag1.7.tar. This contains the
source code and miscellaneous files for use with the the exercises in this
book. Follow these instructions:
1) Place pmag1.7.tar in any directory (PARENTDIR) that you have write
permission for.
Your fortran compiler must be known as “f77” or change the make.all
file for the name of your compiler (eg., fort77).
2) Execute the following commands:
%tar xf pmag1.7.tar
%cd pmag1.7/src
3) Type:
%source make.all
Make sure PARENTDIR/pmag1.7/bin is in your path (or copy them
to a directory that is in your path) and try out the programs as described
in the book. The data files mentioned in the excercises can be found in
PARENTDIR/pmag1.7/datafiles with names is given in the book.

1.3. Other necessary software

Included in this package of programs is a program called plotxy, written
by Robert L. Parker and Loren Shure. This is freeware and is supplied as
is. For a detailed description on how to use it, print out the file:
pmag1.7/src/Plotxy/plotxy.doc.
The program plotxy reads commands from standard input and creates
a postscript file named by default mypost. Finally, you will need to have
some sort of Postcript viewer, e.g. pageview, ghostscript, ghostview
or commercial illustration product OR just convert the postscript files to
pdf format and view them with Acrobat Reader available for free at this
website:

http://www.adobe.com

1.4. Description of programs in excercises

The software described here is updated occasionally. For the description of
the program you have, type:
% program_name -h
for a help message.
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Here follows are hints for the use of all the programs referred to in the
excercises in this book as well as some supplemental programs that are
helpful.
The programs described here are part of the package pmag1.7. They are
designed to take advantage of the power of UNIX in that they all take
command line arguments. The common features are:
1) All programs respond with a help message if the [-h] switch is used:
% program_name -h
2) Programs that produce pictures use the freeware program plotxy (see
section on getting and installing plotxy. PMAG programs output plotxy
commands which can be piped directly to plotxy:
% program_name | plotxy
This causes plotxy to create a postscript file, by default mypost which
can be viewed with a postscript viewer such as pageview, ghostscript or
ghostview, or it can be printed to a postscript compatible printer. It can
also be converted to pdf format. The plotxy commands generated by the
PMAG programs can also be saved to a file and modified as needed:
%  program_name > myfile.com
A text editor can be used to modify the commands to taste (see plotxy
documentation plotxy.doc in the Plotxy directory:
/usr/local/pmag1.7/Plotxy),
or online at:
http://sorcerer.ucsd.edu/pmag/plotxy.html.
3) Programs read from standard input and write to standard output unless
otherwise noted. All input files are expected to be space delimited - not tab
or comma delimited. The typical syntax will be:
%  program_name < input_file > output_file
The output from one program can be piped as input to another program.
Here follows a brief manual for using the programs in the PMAG package.
Refer to the examples at the end of each Chapter for further hints about
how to use them.

arai
Usage: arai [-sfmd] [min max field] [Standard I/O]
Description: makes an Arai plot from input data.
Example 3.5
Options:

-s sets fit from [min] to [max]
-f sets lab field to [field] (in Tesla)
-m uses .mag file as input

Defaults:
finds “optimum” interval - beware! You may have to “tweak” the [min]

and [max] values using the [-s] switch
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default laboratory field is 40
Input options:
1em Default input:

Sample treatment intensity D I
.mag file [-m] option:

Sample treatment CSD intensity D I
treatment steps are coded as follows:

XXX.YY where XXX is the temperature and
YY is as follows:
NRM data: .00
pTRM: .11
pTRM check: .12

Output: plotxy commands.
bootams

Usage: bootams [-pP] [Standard I/O]
Description: calculates bootstrap eigenparameters from input file.
Example: 5.9
Options:

-p option specifies parametric (by sample) bootstrap
-P option specifies parametric (by site) bootstrap

Input:
Output: bootstrap error statistics:

bootdi
Usage: bootdi [-pPv] [Standard I/O]
Description: calculates bootstrap statistics for input file.
Example: 4.9
Options:

-p option selects parametric bootstrap
-P works on principal eigenvectors
-v spits out bootstrapped means

Defaults:
simple bootstrap
works on Fisher means

Input: D I
Output:

Fisher statistics if Fisherian, otherwise bootstrap ellipses for one or two
modes:

Mode
or if -v selected, bootstrapped eigenvectors DI
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bootstrap
Usage: bootstrap [-pb] [Nb] [Standard I/O]
Description: Calculates bootstrap statistics from input data.
Example: 4.8
Options:

-p plot a histogram
-b sets number of bootstraps [Nb](< 10000)

Input: single column of numbers
Output:

if no plot, then:
N Nb mean bounds_containing_95%_of_ means
if plot, then output is series of plotxy commands

Defaults:
no plot and nb=1000
cart_dir

Usage: cart_dir [Standard I/O]
Description: Converts cartesian data to geomagnetic elements
Example: 1.2
Input:
Output: D I magnitude
• cart_hist
Usage: cart_hist [-dcbpr][dec inc][file1 file2] [Standard I/O]
Description: Makes histograms of cartesian coordinates of input.
Example: 4.11
Options:

-d compares with direction [dec inc]
-c compares two files [file1 file2]
-b plots confidence bounds
-p specifies parametric bootstrap
-r flips second mode for reversals test

Input: D I
Output is plotxy command file
Defaults:

standard input of single file
no confidence bounds
simple bootstrap
no reversals test
curie

Usage: curie -[lspt] [smooth] [low hi step] [Tmin Tmax] [Standard I/O]
Description: Analyzes Curie temperature data.
Example: 2.2
Options:
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-l smooth over [smooth] data points
NB: [smooth] must be an odd number 3

-s scan range of smoothing intervals
[low] to [hi] using a spacing of [step]
[low],[hi] and [step] must be odd

-p plot option on to generate Plotxy command file
can be piped directly to plotxy and viewed:

curie -p < filename | plotxy; ghostview mypost
printed:

curie -p < filename | plotxy; lpr mypost
or saved to a file for modification:

curie -p < filename > eqarea.com
-t truncates to interval between [Tmin] and [Tmax]
input:

temperature,magnetization
Defaults:

no smoothing
plot option off
uses entire record
di_geo

Usage: di_geo [Standard I/O]
Description: Rotates directions from specimen to geographic coordinates.
Example: 3.2
Input: D I azimuth plunge
Output: D I (in geographic coordinates)
Notes: the azimuth and plunge are the declination and inclination of the
arrow used for reference during the measurements.

dir_cart
Usage: dir_cart [-m] [Standard I/O]
Description: Converts geomagnetic elements to cartesian coordinates.
Example: 1.1
Option: -m read magnitude field
Input: D I [magnitude]
Output:
Notes: VGP longitude, latitude can be substituted for D, I.

di_tilt
Usage: di_tilt [Standard I/O]
Description: rotates directions from geographic to tilt adjusted coordinates.
Example: 3.2
Input: D I strike dip
Output: D I (in adjusted coordinates)
Notes: convention is that dip is to the “right” of strike.
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di_vgp
Usage: di_vgp [Standard I/O]
Description: Transforms declination/inclination to VGP.
Example: 1.5
Input: D I lat.(° N) long.(° E)
Output: Pole_Longitude Pole_Latitude
Notes: convention is positive: North, negative: South and positive: East,
negative: West

eigs_s
Usage: eigs_s [Standard I/O]
Description: Converts eigenparameters to .s format.
Example: 5.2
Input:

Output:
Notes: is the largest eigenvalue and are the associated eigenvectors.

eqarea
Usage: eqarea [Standard I/O]
Description: Makes an equal area projection of input data.
Example: 1.3
Input: D I
Output: plotxy commands

fishdmag
Usage: fishdmag [-fdm] [beg end ta] [Standard I/O]
Description: Calculates Fisher mean from specified portion of demagneti-
zation data.
Example: 4.3
Options:

-f Fisher mean from [beg] to [end] steps
-d uses .dat file as input
if [ta] = 0 (default), uses geographic
if [ta] = 1 uses tilt adjusted
-m uses .mag file as input

where [beg] and [end] are the number of the treatment (i.e. 1st, 2nd, 3rd).
Input options:
Default input:

Sample treatment intensity D I
.mag file [-m] option:

Sample treatment CSD intensity D I
.dat file [-d] option

Sample position treatment CSD intensity
Output: Sample f n beg end
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fisher
Usage: fisher -kns [kappa] [N] [seed] [Standard I/O]
Description: generates set of Fisher distribed data from specified distribu-
tion.
Example: 4.1
Options:

-k    specifies as [kappa]
-n specifies number as [N]
-s specifies random seed (non-zero integer) as [seed]

Defaults:

N = 100
seed = 1200
fishqq

Usage: fishqq [Standard I/O]
Description: plots Q-Q diagram for input against Fisher distribution.
Example: 4.5
Input: DI
Output: plotxy commands

fishrot
Usage: fishrot -kndis [kappa] [N] [dec] [inc] [seed] [Standard I/O]
Description: draws a Fisher distribution with mean of [dec] [inc] and [kappa],
[N], using random seed [seed].
Example: 4.4
Options:

-k  specifies as [kappa]
-n specifies number as [N]
-d specifies D as [dec]
-i specifies I as [inc]
-s specifies [seed] for random number generator (non-zero)

Defaults:

N = 100
D = 0
I = 90
foldtest

Usage: foldtest [-p] [Standard I/O]
Description: Performs bootstrap fold test.
Example: 4.13
Options:

-p option selects parametric bootstrap
Input: D I strike dip
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Output: plotxy commands
Notes: unfolding curve of data is solid line, pseudo samples are dashed
histogram is fraction of maxima. Also, dip is to the “right” of strike.

gauss
Usage: gauss -msni [mean] [sigma] [N] [seed] [Standard I/O]
Description: draws a set of Gaussian distributed data from specified distri-
bution.
Example: 4.6
Options:

-m sets the mean to [mean]
-s sets the standard deviation to [sigma]
-n sets the number of points to [N]
-i sets integer random seed to [seed]

Defaults:
[mean] is 1
[sigma] is .5
[N] is 100
gofish

Usage: gofish [Standard I/O]
Description: calculates Fisher statistics from input file.
Example:  4.2
Input: D I
Output:

goprinc
Usage: goprinc [Standard I/O]
Description: calculates principal component from input data.
Example: 4.2
Input: D I
Output: D I N

gtcirc
Usage gtcirc [-gdm] [beg end ta] [Standard I/O]
Description: calculates best-fit plane through specified input data.
Example: 3.3
Options:
-g best-fit great circle (plane) from [beg] to [end] steps

[beg] and [end] are the numbers of the treatment step.
For example the kNRM step is [1], the second step is [2], etc.

-d uses .dat file as input
if [ta] = 0 (default), uses geographic
if [ta] = 1 uses tilt adjusted

-m uses .mag file as input
Input options:
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Default input:
Sample treatment intensity D I

.mag file [-m] option:
Sample treatment CSD intensity D I

.dat file [-d] option
Sample position treatment CSD intensity Output:

Sample g N beg end MAD D I
where D and I are for the pole to the best-fit plane
and [beg] and [end] are the numbers of the treatment step.

histplot
Usage: histplot [-lb] [bin] [Standard I/O]
Description: creates a histogram of input data.
Example: 4.6
Options:
-l plots the distributions of logs
-b sets bin size to [bin]
Input: single column of data
Output: Plotxy commands
Defaults:

not logs
auto binning
hystcrunch

Usage: hystcrunch -[mpatl] [trunc_deg] [label] [Standard I/O]
Description: plots hysteresis loop data and massages them.
Example: 2.3
Options:

-m Micromag data file
-p do not plot
-a do not adjust slope
-t truncate to trunc_deg harmonics
-1 label plot with label

Defaults:
- xy data file
- retain 99 terms of FFT
- adjust for high field slope
- no plot label
- generate plotxy commands
igrf

Usage: igrf [Standard I/O]
Description: calculates reference field vector at specified location and time
uses appropriate IGRF or DGRF for date > 1945.
Example: 1.4
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Input: year altitude latitude longitude
where year is decimal year, altitude is in kilometers, latitude is in ° N and
longitude is in ° E.
Output: D I B (nT)

incfish
Usage: incfish [Standard I/O]
Description: calculates an estimated inclination, assuming a Fisher distri-
bution, for data with only inclinations. Uses the method of McFadden and
Reid [1982].
Example: 4.4
Input: inclinations
Output: < I >, upper and lower bounds, N, estimated and

jackstrat
Usage: jackstrat Standard I/O
Description: calculates magnetostratigraphic jackknife parameter J.
Example: 6.1
Input: VGP latitudes or inclinations in stratigraphic order
Output: plotxy commands

k15_hext
Usage: k15_hext [-tga] [Standard I/O]
Description: calculates Hext statistics from 15 measurements uses Jelinek’s
15 measurement scheme.
Examples: 5.5 & 5.6 .
Options:

-a  average whole file
-g geographic coordinates
-t geographic tilt coordinates

Default: average by sample
Input: 1 line with sample name, [azimuth, plunge, strike, dip] followed by
3 rows of 5 measurements for each specimen in the following order (see
Chapter 5):

Output: Hext statistics
[if individual samples, id and bulk chi]

k15_s
Usage: k15_s [-gt] [Standard I/O]
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Description: calculates from 15 measurements scheme (see Chapter
5).
Example: 5.4
Options:

-g geographic rotation
-t geographic AND tectonic rotation

Input: (see k15_hext)
Output:

lnp
Usage: lnp [-f] [infile] [Standard I/O]
Description: calculates Fisher mean from combined directed lines and great
circles using the method of McFadden and McElhinny [1988].
NB: this program has changed somewhat since the first distribution!
Example: 4.3
Options:

-f calculates mean from data in [infile], one site at a time
Input: output file from pca, gtcirc, fishdmag programs, i.e.

Sample [fpg] n beg end MAD D I
sample name convention: ABC123D[1]
where ABC is a study designator of letters (any length)
123 is the site number (any length)
D is a (single) letter for each separately oriented sample
[1] is an optional (single digit) specimen number

Default: assumes whole file is one site.
Output:

site NL D I
where NL is the number of directed lines
where NG is the number of great circles
mag_dat

Usage: mag_dat -n nfofile [Standard I/O]
Description: Converts magnetometer data file to format with geographic
and tilt adjusted coordinates. Also pastes in stratigraphic position data.
Uses .nfo files made by mk_nfo.
Example: 6.4
Input:

magnetometer data (.mag file format):
sample [optional specimen number] treatment CSD intensity D I
(.nfofile format):
Sample position [cpsdu] NBaz NBpl LABaz LABpl NBstr strike dip

Output:
(.dat file foramt)

Sample position treatment CSD intensity
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where and are D,I in geographic coordinates and and
are D, I in tilt adjusted coordinates.

mk_nfo
Usage: mk_nfo [-HbBDstfk] [strike dip][magdec][lat. long. delta T] [cpsdu] [az_add
az_mult pl_add pl_mult] [basename] [keyboard input]
Description: Makes an information file(s) for conversion of data into geo-
graphic, tectonic and stratigraphic references.
Example: 6.3
Options:

-H stratigraphic position data
-b structural strike/dip for each sample
-B structural for entire suite read as [strike dip]
-D add [magdec] to all declination/strike info
-s sun compass data using [lat. long. dT]

lat/long of study area
and dT is time difference from GMT

-t type of conversion from
notebook azimuth (= NBaz)/ notebook plunge (= NBpl) to
lab azimuth (= LABaz)/ lab plunge (= LABpl)
[c]ube:

NBaz/NBpl are strike and dip on face perpendicular
to face with lab arrow
LABaz=NBaz-90, LABpl=NBpl-90

[p]omeroy orientation device:
NBaz/NBpl are direction of drill and angle from vertical
LABaz=NBaz, LABpl=-NBpl

[s]trike/dip:
NBaz/NBpl are strike and dip on face with lab arrow
LABaz=NBaz+90, LABpl=NBpl

[d]rill direction/dip:
NBaz/NBpl are direction of drill (az/pl) in plane perpendicular
to face with lab arrow
LABaz=NBaz, LABpl=NBpl-90

[u]ser defined conversion
input [az_add az_mult pl_add pl_mult] to
specify affine for NBaz/NBpl to LABaz/LABpl
e.g. for [p] above, az_add=0, az_mult=l

pl_add=-90, az_mult=-l
-f output file specified as [basename]

ouput file will be appended to basename.nfo and if
sun compass data calculated, basename.snfo

-k input from keyboard with prompts
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<cntl-D>. to quit.
Input:

Sample NBaz NBpl [position] [strike dip] [yyyymmdd hhmm shadow]
Output:

Sample position type NBaz NBpl LABaz LABpl NBstr strike dip
Defaults:

read/write from Standard I/O
input only: sample, NBaz,NBpl
no declination adjustment
LABaz=NBaz; LABpl=NBpl

pca
Usage: pca [-pmd] [beg end] [ta] [Standard I/O]
Description: Calculates best-fit line through specified input data.
Example: 3.3
Options:

-p PCA from [beg] to [end] steps
[beg] and [end] are the numbers of the treatment step.
For example the NRM step is [1], the second step is [2], etc.

-d uses .dat file as input
if [ta ] = 0 (default), uses geographic
if [ta] = 1 uses tilt adjusted

-m uses .mag file as input
Input options:
Default input:

Sample treatment intensity D I
.mag file [-m] option:

Sample treatment CSD intensity D I
.dat file [-d] option

Sample position treatment CSD intensity
Output:

Sample p N beg end MAD D I
where D and I are for the principal component
plotams

Usage: plotams [-BpPvxjn] [name] [Standard I/O]
Description: Plots AMS data from data
Example: 5.10
Options:

-B do not plot simple bootstrap ellipses
-p plot parametric (sample) bootstrap ellipses
-P plot parametric (site) bootstrap ellipses
-v plot bootstrap eigenvectors - not ellipses
-x plot Hext [1963] ellipses
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-j plot Jelinek [1978] ellipses
-n use [name] as plot label

Default: plot only the simple bootstrap
Input:
Output: plotxy commands

plotdi
Usage: plotdi [-pPv] [Standard I/O]
Description: Makes equal area plot of input data, with uncertainties.
Example: 4.10
Options:

-p parametric bootstrap
-P works on principal eigenvector
-v plots bootstrapped eigenvectors

Defaults:
simple bootstrap
works on Fisher means
plots estimated 95% conf. ellipses

Input: D I
Output: plotxy commands

plotdike
Usage: plotdike [-BpPvn] [name] [Standard I/O]
Description: Makes a plot of ams data for dike margins. Designed for esti-
mating flow directions.
Example 6.5

-B DONT plot simple bootstrap ellipses
-p plot parametric (sample) ellipses
-P plot parametric (site) ellipses
-v plot bootstrap eigenvectors
-n use [name] as plot label

Input:
-one or both files called:

e.s and w.s containing:
for the nominal east and west margins

respectively
- a file called dike.dd containing one or more

measurements of the dip direction and dip of the dike
-optional files:

struct.dat: contains first and second
tectonic corrections as strike and dips

lin.di: contains dec,inc of lineation data
Output: plotxy commands and a file:

fort.20 is summary file
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Default: plot only the simple bootstrap confidence ellipses
plotdmag

Usage: plotdmag [-pgfrmd] [beg end] [D] [ta] [Standard I/O]
Description: Makes orthogonal and equal area projections of input demag-
netization data.
Example: 3.3
Options:

-p PCA from [beg] to [end] steps
-g gtcirc from [beg] to [end] steps
-f fisher mean from [beg] to [end] steps
-r plot horizontal axis =  [D] degrees
-m uses .mag file format
-d uses .dat file format

Defaults:
North on horizontal ([D] = 0)
no PCA, gtcircle, or fisher calculations

Input options:
Default input:

Sample treatment intensity D I
.mag file [-m] option:

Sample treatment CSD intensity D I
.dat file [-d] option

Sample position, treatment CSD intensity
Output: plotxy commands
Notes: select either p, f OR g

pseudot
Usage: pseudot [-sm] [min] [ta] [Standard I/O]
Description: Analyses pseudo-Thellier data
Example 3.6
Input options:

-s sets the minimum field to [min]
-m sets input file to .mag format

Input options:
Default input:

Sample tr int dec inc
.mag file option
Sample tr csd int dec inc

treatment steps are coded as follows:
XXX.XY where XXX.X is the AF level and
Y is as follows:
NRM data: 0
ARM: 1
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Output: plotxy command file
qqplot

Usage: qqplot [Standard I/O]
Description: Plots data against Normal Quantile
Example: 4.7
Input: single column of data
Output: plotxy commands
Notes: On the plot, there are these parameters:

N: the number of data points
mean: the Gaussian mean

the standard deviation
D: the Kolmogorov-Smirnov D-statistic

the critical value given N at 95% confidence
(if distribution is not Gaussian at 95% confidence)
s_eigs

Usage: s_eigs [Standard I/O]
Description: Converts format data to eigenparameters.
Example: 5.1
Input:
Output:

Notes: are the directions of the eigenvectors corresponding to the

s-flinn
Usage: s_flinn [-pl] [Standard I/O]
Description: Plots Flinn diagram of input data.
Example: 5.13
Options:

-p parametric bootstrap
-1 plots L' versus F'

Input:
Output: plotxy commands

s_geo
Usage: s_geo [Standard I/O]
Description: Rotates data to geographic coordinates
Example: 5.3
Input: azimuth plunge
Output: rotated to geograpphic coordinates

s_hext
Usage: s_hext [Standard I/O]
Description: Calculates Hext statistics from input data.
Example: 5.7

eigenvalues, and is the largest eigenvalue.
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Input:
Output: Hext statistics

s–hist
Usage: s_hist (-cbpP123t][file1 file2] [standard I/O]
Description: Plots histograms of bootstrapped eigenparameters of data.
Example: 5.11
Options:

-c compares [file1] and [file2]
-b plot 95% confidence bounds
-p sample parametric bootstrap
-P Site parametric bootstrap
-1 plots principal eigenvector
-2 plots major eigenvector

-3 plots minor eigenvector
-t plots eigenvalues
Defaults:

simple bootstrap
all eigenparameters
no confidence limits

Input:
Output: plotxy command for histograms of eigenvalues and eigenvectors of
bootstrap samples

s_jel78
Usage: s_jel78 [Standard I/O]
Description: Calculates Jelinek (1978) statistics from data.
Example: 5.8
Input:
Output: Jelinek statistics

s_pt
Usage: s_pt [-p] [Standard I/O]
Description: Makes a Jelinek plot of input data.
Example: 5.13
Options: -p parametric bootstrap
Input:
Output: plotxy commands for P’ versus T diagram
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s_tern
Usage: s_tern [-p] [Standard I/O]
Description: Makes a Ternary projection of input data.
Example: See Chapter 5
Options: -p parametric bootstrap
Input:
Output: plotxy command file of ternary diagram
Notes: triangles are data, dots are bootstrapped means

s_tilt
Usage: s_tilt [Standard I/O]
Description: Rotates data into tilt adjusted coordinates
Example: 5.3
Input: strike dip
Output: [in tilt adjusted coordinates]

splint
Usage: splint [-i] [interval] [Standard I/O]
Description: Calculates spline interpolation of input.
Option: -i uses interpolation interval [interval]
Default: [interval] = 1
Input: x y data with monotonic increasing x
Output: interpolated x,y

stats
Usage: stats [standard I/O]
Description: Salculates Gauss statistics for input data
Example: 4.6
Input: single column of numbers
Output: N mean sum (%) stderr 95%conf.
Notes:  is the standard deviation % is as percentage of the mean stderr
is the standard error and 95%

sundec
Usage: sundec [-u] [delta T] [Standard I/O]
Description: Calculates declination from sun compass measurements.
Example: 3.1
Options: -u sets the time difference [delta T] in hours from universal time
(e.g. -5 for EST)
Input: latitude longitude year month day hours minutes shadow_angle
Output: D
Notes: positive: North, East; negative: South, West

vgp_di
Usage: vgp_di [Standard I/O]
Description: Transforms VGP to equivalent D, I
Example: 1.6
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Input: pole_latitude longitude site_latitude longitude.
Output: D I
Notes: convention is positive: North, negative: South and positive: East,
negative: West

vspec
Usage: vspec [Standard I/O]
Description: Calculates a vector average for multiple measurements of a
single specimen at a single treatment step.
Example: 6.2
Input:

(.mag file format - see mag_dat)
Sample treatment CSD intensity D I

Output:
Sample treatment intensity
Unique specimen/treatment data are simply copied.

is the vector resultant (including intensity) over the
sum of all intensities and ranges from 0 to 1.
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Symbol Term and Definitions

Paleomagnetic acronyms and terms

Relaxation time: Section 2.6.1; equation 2.18
Magnetic co-latitude: Section 1.3.3; equation 1.14
Magnetic activity: Section 3.10.2
Apparent polar wander path: Section 6.3
Alternating field demagnetization: Section 3.5
Anhysteretic remanent magnetization: Section 2.6.4
Chemical remanent magnetization: Section 2.6.5
Declination: Section 1.3.1; equation 1.6
Definitive geomagnetic reference field: Section 1.3.3
Detrital remanent magnetization: Section 2.6.6
Geocentric axial dipole: Section 1.3
Geomagnetic polarity time scale: Section 1.4.2; Section 6.1
International geomagnetic reference field: Section 1.3.3
Isothermal remanent magnetization: Section 2.4.1
Equilibrium magnetization: Section 2.6.2
Multi-domain: Section 2.5
Natural remanent magnetization: Section 2.6.7
Partial anhysteretic remanence: Section 2.6.4
Post-depositional detrital remanent magnetization: Section 2.6.6
Pseudo-single domain: Section 2.5
Paleosecular variation of the geomagnetic field: Section 1.4.1
Partial thermal remanence: Section 2.6.3
Saturation IRM: See
Single domain: Section 2.5
Superparamagnetic: Section 2.6.1
Secular variation: Section 1.4.1
Thermal remanent magnetization: Section 2.6.3
Virtual axial dipole moment: Section 1.3.5
Virtual dipole moment: Section 1.3.5; equation 1.19
Vector difference sum: Section 3.7
Virtual geomagnetic pole: Section 1.3.4
Viscous remanent magnetization: Section 2.6.2

Miscellaneous terms

Greenwich hour angle: Section 3.1
Superconducting quantum interference device: Section 3.4
Universal time (Greenwich mean time): Section 3.1

APWP
AF
ARM
CRM
D
DGRF
DRM
GAD
GPTS
IGRF
IRM

MD
NRM
pARM
pDRM
PSD
PSV
pTRM
sIRM
SD
SP
sv
TRM
VADM
VDM
VDS
VGP
VRM

GHA
SQUID
UT

Meq
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Physical Parameters and Constants

Co-inclination: Section 4.5
Magnetic susceptibility: The slope relating induced

magnetization to an applied field: Section 1.1
Bulk magnetic susceptibility: Section 5.3; equation 5.23
Diamagnetic susceptibility: Section 2.1.1
Ferromagnetic susceptibility: Section 2.2; equation 2.11
Paramagnetic susceptibility: Section 2.1.2; equation 2.9
Curve defined by subtracting the ascending from the descending curves in a

hysteresis loop: Section 2.4.1
Latitude, Longitude
Permeability of free space: Section 1.1.3
Co-latitude: Section 1.3
Curie temperature. Section 2.2
Direction cosines: Section 3.2
The radius of the Earth Section 1.3.3
Anisotropy of magnetic susceptibility: Section 5.1
Magnetic induction: Section 1.1.2
Frequency factor Section 2.6.1
Declination: Section 1.3.1
Gauss coefficients: Section 1.3.3
Magnetic field: Section 1.1.1
Coercivity of remanence; field required to reduce saturation

IRM to zero: Section 2.4.1
Coercivity; the magnetic field required to change the magnetic

moment of a particle from one easy axis to another: Section 2.4
Saturating field; field required to impart Section 2.4.1
Inclination: Section 1.3.1; equation 1.6
Boltzmann’s constant Section 2.1.1
AMS measurement: Section 5.1
Constant of uniaxial anisotropy energy: Section 2.4
Magnetic moment: Section 1.1.3
Bohr magneton Section 2.0
Magnetization: Section 1.1.3
Saturation remanence (also sIRM): Section 2.4.1
Saturation magnetization; the magnetization measured in the

presence of a saturating field: Section 2.4.1
Schmidt polynomials: Section 1.3.3
Six elements of
Section 5.1; equation 5.4
Absolute temperature (in kelvin)
Blocking temperature: Section 2.6.3
Volume
Blocking volume: Section 2.6.5
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Statistical parameters

Circle of 95% confidence (Fisher): Section 4.1, equation 4.4
Residual errors for AMS measurements: Section 5.2,equation 5.20
Semi-angles of Hext uncertainty ellipses: Section 5.3; equation 5.21
Fisher precision parameter: Section 4.1
Semi-angles of bootstrap uncertainty ellipses:
Section 4.10; equation 4.16
Eigenvalues and eigenvectors of tensors
Estimate of Section 4.1
Circular standard deviation (Fisher): Section 4.1
Uncertainty in the meridian (longitude)
of a paleomagnetic pole: Section 4.1; equation 4.5
Uncertainty in the parallel (latitude)
of a paleomagnetic pole: Section 4.1; equation 4.5
Significance tests for anisotropy (Hext): Section 5.3; equation 5.22
Magnetostratigraphic jackknife parameter: Section 6.1.1
Linear Perturbation Analysis: Section 5.2
Maximum angular deviation of principal eigenvector (Kirschvink):
Section 3.8.2; equation 3.9
MAD of the pole to a best-fit plane (Kirschvink):
Section 3.8.2; Equation 3.10
Significance tests for uniform and exponential distributions: Section 4.6
Number of samples, specimens or sites
Number of degrees of freedom
Resultant vector length (Fisher): Section 4.2
Critical value of R for non-random distribution (Watson):
Section 4.2; equation 4.6
Residual sum of squares of errors (Hext): Section 5.2; equation 5.14
Orientation tensor: Section 3.8.1; equation 3.6

CSD

LPA
MAD

N

T

J
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