


STATISTICS OF 

DIRECTIONAL DATA 



This is a volume in 
PROBABILITY AND MATHEMATICAL STATISTICS 

A Series of Monographs and Textbooks 

Editors: Z. W. Birnbaum and E. Lukacs 

A complete list of titles in this series appears at the end of this volume. 



STATISTICS OF 
DIRECTIONAL DATA 
K. V. MARDIA 
Department of Mathematical Statistics 
The University, Hull, England 

A C A D E M I C P R E S S , I N C . 
(Harcourt Brace Jovanovich, Publishers) 

London Orlando San Diego New York 
Toronto Montreal Sydney Tokyo 



ACADEMIC PRESS INC. (LONDON) LTD. 
24/28 Oval Road, 

London NW1 

United States Edition published by 
ACADEMIC PRESS, INC. 
Orlando, Florida 32887 

Copyright © 1972 by 
ACADEMIC PRESS INC. (LONDON) LTD. 

All Rights Reserved 
No part of this book may be reproduced in any form by photostat, microfilm, or any other 

means, without written permission from the publishers 

Library of Congress Catalog Card Number: 72-77853 
ISBN: 0-12-471150-2 

PRINTED IN THE UNITED STATES OF AMERICA 

84 85 86 87 9 8 7 6 5 4 3 2 



To PAVAN 



This page intentionally left blank



PREFACE 

The aim of this book is to give a systematic account of statistical theory and 
methodology for observations which are directions. The directions are usually 
regarded as points on a circle in 2 dimensions or on a sphere in 3 dimensions. 
While unifying the work of many researchers, the presentation keeps the 
requirements of students of mathematical statistics and of scientific workers 
from various disciplines very much in the foreground. To this end, the book 
gives the underlying theory of each technique, and applications are illustrated 
by working through a number of real life examples. Some chapters are 
devoted exclusively to applications. This presentation is adopted because of 
the belief that students will appreciate the techniques fully only after grasping 
the motivation behind them, whereas scientific workers will need some know­
ledge of the underlying assumptions in order to apply the methods safely. 

Chapters 1-7 deal with the statistics of circular data while Chapters 8 
and 9 deal with the statistics of spherical data. Chapters 1 and 2 are primarily 
concerned with the diagrammatical representations of circular data and 
diagnostic tools, respectively. Chapter 1 contains examples of angular data 
from various scientific fields. Mathematical justifications of the results used 
in Chapter 2 are differed until Chapter 3. Chapters 3 and 4 are on probability 
theory on the circle; several probability models are discussed in Chapter 3 
including the von Mises distribution which has the same statistical role on 
the circle as the normal distribution on the line (see Section 3.4.10). Chapter 4 
includes certain sampling distributions for von Mises populations. Chapters 
5-7 are on inference on the circle and they deal with estimation, hypothesis 
testing for samples from von Mises distributions and non-parametric methods 
respectively. Chapter 8 deals with diagrammatical representations, diagnostic 
tools, probability models and certain sampling distributions on the sphere. 
The Fisher distribution is of central importance on the sphere and Chapter 9 
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deals with inference problems associated with samples from this distribution. 
Appendix 1 provides a list of formulae for Bessel functions which are 
collected together to facilitate the manipulation of the von Mises distribution. 
Appendices 2 and 3 give tables for fitting, estimation and testing problems 
on the circle and on the sphere respectively. The bibliography is fairly 
exhaustive as far as theoretical papers are concerned and also serves as an 
author index. In addition to a subject index, an index of the principal 
notation is also given with an indication of their meaning. 

The book assumes a basic knowledge of mathematical statistics at under­
graduate level. Calculus and matrix algebra are used at a level similar to 
that required for undergraduate statistics courses. To understand only the 
statistical applications, elementary training in mathematics and statistics is 
sufficient. 

The material of this book can be used as (i) a graduate text (ii) a research 
monograph (iii) a user's manual or (iv) an elementary methods text. We now 
suggest how to use this book for each of these four purposes and note some 
points which may prove helpful. 

(i) As a graduate text 
A course of two hours per week for two terms should cover Chapters 3-9 
(excluding Sections 4.6, 8.2, 8.3, 8.6.3b), but if a shorter course is preferred 
so as to supplement an existing course, there are several possibilities 
available. For examples, a course on distribution theory may include 
Chapter 3 (Sections 3.1-3.3, Sections 3.4.2-3.4.5, 3.4.8d-e, 3.4.9, 3.5, 3.6), 
Chapter 4 and Chapter 8 (Sections 8.5-8.8), while a course on statistical 
inference may include Chapter 3 (Sections 3.3, 3.4.4, 3.4.9), Chapters 5-7, 
Chapter 8 (Sections 8.4, 8.5) and Chapter 9. The results from the excluded 
sections may be quoted where relevant. I have found in giving the latter 
course to M.Sc. students that a minimum of two hours per week for one 
term is required. 

While treating the circular case, we have alluded to the corresponding 
methods on the line and it may be useful to elaborate these points. In a 
similar way, when dealing with the spherical case, the corresponding results 
for the circular case are referred to for details and illumination. No mathe­
matical examples are spelled out formally but at various places we have 
left out detailed derivations and the filling in of these details using the 
hints provided, constitutes good example material. The von Mises and the 
Fisher distributions are particular cases of a distribution on a/7-dimensional 
hypersphere (see Section 8.8). As a consequence, various results for the two 
distributions can be unified but this is not done here partly because it has 
no known application for higher dimensions. Nevertheless, this unification 
also provides material for good examples. 
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(ii) As a research monograph 
Specialists will find a good coverage of existing results as well as various 
new results. A serious attempt is made to unify the results and many proofs 
have been simplified. Several new results are included, primarily to fill gaps 
in the subject. [In particular, the following results are new. Sections 2.5.1, 
2.6.1-3, 2.7.2, 3.3.3-4, 3.4.9f (entropy), 3.4.9h, 3.5.2, 3.7; Eqns (4.2.6), 
(4.2.28); Section 4.3.3 (formulation), Eqns (4.5.7), (4.5.12); Sections 4.5.5, 
4.6.2, 4.7.1; Eqns (4.7.11), (4.8.8); Sections 4.9.4, 5.1, 5.6, 6.2.2a, 6.2.2b(l), 
6.3.1c, 6.3.2b-2c (cases I, II); optimum properties in Sections 6.2.2b(2), 
6.2.3a, b; tests defined by (6.3.37), (6.3.38), (6.4.6), (6.4.11), (6.4.12); Eqns 
(7.4.15), (7.4.17), (8.5.21), (8.6.8), (8.6.17), (8.6.39), (9.3.7), (9.3.16); 
Section 9.4.2a (cases I, II), tests defined by (9.4.20), (9.4.21), (9.5.3), (9.5.8)-
(9.5.10).]. Almost all theoretical contributions are reviewed. 

(iii) As a user's manual 
It is assumed that the reader has a familiarity with statistical terms on the 
line such as probability distributions (normal, χ2 and F distributions in 
particular), confidence intervals and statistical tests to the extent that he will 
be able to formulate his problem in a statistical framework. For example, 
whether he needs a one-sample or a two-sample test, whether he is interested 
in comparing two means or two variances etc. etc. In addition to the usual 
mathematical knowledge required for elementary statistics, his familiarity 
with the trigonometric functions is assumed. 

Analogues of almost every univariate method are available for the circular 
and the spherical cases. There are also techniques which arise only for the 
circular and the spherical cases such as testing for uniformity. The intro­
ductory remarks to Chapters 6-9 contain comments on such situations. 
All techniques given in the book are illustrated fully with the help of real 
data, drawn from many fields of application. Appropriate tables are provided 
in Appendices 2 and 3. Although these examples deal with data obtained from 
biology, geology, meteorology, medicine, crystallography, astronomy ect., 
workers in other fields should have no difficulty in translating them into terms 
which are more familiar to their own disciplines. Section 1.5 may be useful 
for this purpose since it summarizes applications from various fields. 

The von Mises distribution is as important on the circle as the normal 
distribution is on the line (Section 3.4.9) while the Fisher distribution is 
important on the sphere (Section 8.5). Examples of fitting these distributions 
are provided (Sections 5.4, 9.2). There are various one-sample non-parametric 
tests and the comparisons given in Section 7.2.6 will be useful for deciding 
which one to use for any given problem. There exist various co-ordinate 
systems on the sphere and Section 8.2 relates some of them to the standard 
polar co-ordinates. 
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As yet there are no standard statistical packages available on computers 
for directional data techniques but programming them is not too difficult. 
For large data, as well as for techniques involving eigen values and vectors, 
such programming is desirable but for small samples, the use of a desk 
calculator is adequate. The amount of labour involved will be minimized by 
using the tabular methods illustrated in the examples. 

(iv) As an elementary methods text 
A course which assumes a basic knowledge of statistical methods on the line 
can be developed. Chapters 1 and 2, Section 3.4.9 (explaining the von Mises 
distribution with the help of the figures), the solved examples in Chapters 5-7, 
Sections 8.1, 8.4, the figures of Section 8.5 and the solved examples in 
Chapter 9 should provide good material. The course must give emphasis to 
geometrical pictures. Some prior knowledge of the trigonometric functions 
is needed. Various points mentioned under (iii) are also relevant. 

The author will be most grateful to readers who draw his attention to 
any errors, or obscurities in the book or suggest any other improvements. 

February, 1972 K. V. Mardia 



ACKNOWLEDGEMENTS 

I am deeply indebted to all those statisticians who developed techniques 
for analysing directional data and to all those scientific workers who drew 
attention to the need for such techniques; in particular, I should mention 
E. Batschelet, R. A. Fisher, E. J. Gumbel, E. Irving, M. A. Stephens, 
G. S. Watson and E. J. Williams. 

I am also grateful to those authors and editors who generously granted me 
permission to reproduce certain charts, figures and tables which add greatly 
to the value of the book and, likewise, it is a pleasure to thank those authors 
who sent me copies of their unpublished work* Where such material appears 
in the book, credit is given to the original source. 

My greatest debt is to Professor T. Lewis for his valuable help and 
encouragement throughout this project. Thanks are also due to my other 
colleagues Dr. M. S. Bingham, Dr. E. A. Evans and Dr. J. W. Thompson for 
their support, and to Professor E. Batschelet, Dr. C. Bingham and 
Dr. J. S. Rao for their help. I am also grateful to Professor E. S. Pearson for 
his helpful advice. Parts of the draft were read by Dr. M. S. Bingham and 
Mr. B. D. Spurr and their comments led to substantial improvements. 
Finally, my thanks go to Miss T. Blackmore and Miss L. Robinson for 
typing the difficult manuscript with great skill. 

K. V. M. 



This page intentionally left blank



CONTENTS 

Preface 

Introduction 

Chapter 1—Angular data and frequency distributions 
1. Introduction 
2. Diagrammatical representation 
3. Interrelations between different units of angular measurement 
4. Forms of frequency distributions 
5. Further examples of angular data 

Chapter 2—Descriptive measures 
1. Introduction 
2. A measure of location . . . . . . 
3. The circular variance 
4. Calculation of the mean direction and the circular variance 
5. Some other measures of location . . 
6. Some other measures of dispersion 
7. Trigonometric moments 
8. Corrections for grouping 

Chapter 3—Basic concepts and theoretical models 
1. The distribution function 
2. The characteristic function 
3. Moments and measures of location and dispersion 
4. Circular models 
5. Angular distributions on the range (0, Injl) . . 
6. Mixtures and multi-modal distributions 
7. Circular standard deviation, skewness and kurtosis 
8. Corrections for grouping 

Chapter 4—Fundamental theorems and distribution theory 
1. Introduction 
2. Theorems on the characteristic function 
3. Limit theorems 

Page 
vii 

xvii 

1 
6 
9 

12 

19 
21 
25 
28 
30 
35 
37 

39 
41 
44 
48 
69 
71 
74 
77 

80 
80 
87 

Xlll 



XIV CONTENTS 
4. The isotropie random walk on the circle 
5. Distributions of C, S and R for a von Mises population 
6. Distributions related to the multi-sample problem for von Mises 

populations 
7. Moments of R 
8. The moments of C and S 
9. Limiting distributions of angular statistics 

Chapter 5—Point estimation 
1. A Cramér-Rao type bound 
2. The method of moments 
3. Sufficiency 
4. The von Mises distribution 
5. A regression model 
6. Mixtures of von Mises distributions 

93 
96 

99 
105 
108 
110 

118 
120 
121 
122 
127 
128 

Chapter 6—Tests for samples from von Mises populations 
1. Introduction 
2. Single sample tests 
3. Two-sample tests 
4. Multi-sample tests 
5. A regression model 
6. Tests for multi-modal and axial data 

131 
132 
152 
162 
167 
167 

Chapter 7—Non-parametric tests 
1. Introduction and basic results 
2. Tests of goodness of fit and tests of uniformity 
3. Tests of symmetry 
4. Two-sample tests 
5. Multi-sample tests 
6. Tests for multimodal and axial data 

171 
173 
195 
196 
206 
208 

Chapter 8—Distributions on spheres 
1. Spherical data 
2. Other spherical co-ordinate systems 
3. Azimuthal projections 
4. Descriptive measures 
5. Models 
6. Distribution theory 
7. Moments and limiting distributions 
8. A distribution on a hypersphere 

Chapter 9—Inference problems on the sphere 
1. Introduction 
2. Point estimation 
3. Single sample tests 
4. Two-sample tests 
5. Multi-sample tests 
6. A test for coplanarity 
7. Tests for axial data 
8. A review of some other tests and topics 

212 
214 
215 
218 
226 
236 
244 
247 

249 
249 
256 
262 
267 
271 
275 
281 



CONTENTS xv 
Appendix 1—Bessel functions 287 

Appendix 2—Tables and charts for the circular case (abridged titles) 
1. The von Mises distribution function 
2. The population resultant length for the von Mises case 
3. Maximum likelihood estimates for the von Mises case 
4. A test of uniformity when the mean direction is known 
5. Critical values for the Rayleigh test (circular case) . . 
6. Percentage points of the von Mises distribution 
7. Confidence interval for the mean direction 
8. Confidence interval for the concentration parameter 
9. Critical values for Watson-Williams' two-sample test 

10. Critical values for Kuiper's test . 
11. Critical values for Hodges-Ajne's test 
12. Critical values of the circular range 
13. Critical values for the equal spacings test 
14. Critical values for the uniform scores test .. 
15. Critical values for Watson's two-sample tests 
16. Critical values for the run test 
17. Critical values for the multi-sample uniform scores test 
18. Critical values for the bimodal scores test 

290 
297 
298 
299 
300 
301 
302 
304 
306 
308 
309 
310 
311 
312 
314 
315 
316 
317 

Appendix 3—Tables and charts for the spherical case (abridged titles) 
1. Percentage points of the Fisher distribution 320 
2. Maximum likelihood estimates for the Fisher case 322 
3. Maximum likelihood estimates for the Girdle case 323 
4. Maximum likelihood estimates for the bipolar case 324 
5. Critical values for the Rayleigh test (spherical case) 325 
6. Critical values for testing a prescribed direction 326 
7. Critical values for testing a prescribed concentration parameter .. 328 
8. Critical values for Watson-Williams' two-sample test .. .. 329 

Bibliography and Author Index 

Subject Index 

331 

340 

Index of Notation 356 



This page intentionally left blank



INTRODUCTION 

1. THE BACKGROUND 

The interest in developing techniques to analyse directional data is as old 
as the subject of mathematical statistics itself. Indeed, the theory of errors 
was developed by Gauss primarily to analyse certain directional measure­
ments in astronomy. It is a historical accident that the observational errors 
involved were sufficiently small to allow Gauss to make a linear approxima­
tion and, as a result, he developed a linear rather than a directional theory of 
errors. In many applications, however, we meet directional data which cannot 
be treated in this manner, e.g. orientation data in biology, dip and declination 
data in geology, seasonal fluctuation data in medicine and wind direction data 
in meteorology. The temptation to employ conventional linear techniques 
can lead to paradoxes; for example, the arithmetic mean of the angles 1° and 
359° is 180° whereas by geometrical intuition the mean ought to be 0°. 

2. DIRECTIONS 

Directions may be visualized in a space of any number of dimensions but 
practical situations almost invariably give rise to directions in two or three 
dimensional space where they may be represented by points on the circum­
ference of a circle or on the surface of a sphere respectively. In general, 
directions can be regarded as points on the surface of a hypersphere. Some­
times, the orientation of an undirected line is of interest, e.g. in determining a 
crystal axis, or in dealing with hinge lines. Such observations can be described 
as axes rather than directions. In representing axial data on the surface of a 
hypersphere, the undirected lines are extended to cut the hypersphere and no 
distinction is made between the two diametrically opposite points which 

xvii 
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correspond to any given undirected line. Alternatively, axial data can be 
represented as a set of points on the surface of a semi-hypersphere. 

3. LINEAR VERSUS DIRECTIONAL STATISTICS 

Since the circle is a closed curve but the line is not, we anticipate differences 
between the theories of statistics on the line and on the circle. For example, 
it is necessary to define distribution functions, characteristic functions 
and moments in a way that takes account of the natural periodicity of the 
circle. The compactness of the circle leads to a simpler treatment of the 
convergence in law of random variables. The different algebraic structures 
of the circle and the line, the circle having only one operation (viz., addition 
modulo 2π) and the line having two operations (viz., addition and multipli­
cation), produce different forms of central limit theorems and stability. 
On the circle, there are difficulties in ordering observations and this necessi­
tates the use of special tools in non-parametric methods. Similar remarks 
apply to the hyperspherical case when it is compared with the usual multi-
variate analysis for Euclidean spaces. 

4. HISTORICAL NOTES 

Early developments in the subject were mainly for uniformly distributed 
random vectors. As early as 1734, Daniel Bernoulli discussed a solution to the 
problem of whether the close coincidence of the orbital planes of the six 
planets then known could have arisen by chance. Each orbital plane can be 
identified by its normal which in turn corresponds to a point on the surface of 
a sphere. Bernoulli's assertion then amounts to the hypothesis that these 
points are uniformly distributed on the surface of the unit sphere. A natural 
test-statistic is the resultant length of the normal vectors to the orbital 
planes. Rayleigh (1880) was the first to study the distribution of the resultant 
length of such vectors (in two dimensions) for a problem in sound although 
statisticians were not generally aware of his solution until 1905 when he 
responded to a letter of K. Pearson in Nature which posed the problem of the 
isotropie random walk on a circle. Rayleigh's solution was approximate but 
an exact solution was produced promptly by Kluyver (1905). K. Pearson 
(1906) provided another approximate solution. Rayleigh (1919) gave an 
exact solution to the problem of the uniform random walk on the sphere 
together with an approximation for large samples. 

The underlying population distributions in the above work were of course 
uniform. Non-uniform distributions started appearing only after 1900. 
Interest in Brownian motion on the circle and the sphere led to wrapped 
normal distributions (cf. Perrin, 1928). Von Mises (1918) in investigating 
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whether the atomic weights were integers subject to errors introduced a 
distribution on the circle by using a characterization analogous to the Gauss 
characterization of the normal distribution on the line. Lange vin (1905) in the 
study of magnetism introduced a distribution on the sphere which was shown 
by Arnold (1941) to possess a Gauss-type characterization on the sphere. 
Meanwhile, the need for techniques of analysing directional data was strongly 
felt especially by the earth scientists (see Steinmetz, 1962 for references). 
However, real progress was made neither in statistical inference for this 
distribution on the sphere, nor in the subject of orientation analysis as a 
whole, until an epoch making paper of R. A. Fisher appeared in 1953. He 
was attracted to this field by a problem of Hospers(1955)in paleomagnetism. 
At the same time, E. J. Gumbel, D. Durand and J. A. Greenwood were 
producing results for the von Mises distribution and Fisher's method helped 
Greenwood and Durand (1955) to make progress towards a distribution 
theory for the circular case. 

A remarkable paper by Watson and Williams (1956) not only unified the 
inference problems for the von Mises and the Fisher distributions but also 
brought a wealth of new results and ideas. Since then, thanks mostly to 
G. S. Watson and his co-workers, the growth and dissemination of 
the subject have been rapid; Watson introducing analysis of variance 
type techniques, various parametric and non-parametric tests, M. A. 
Stephens making various other major contributions to the small sample 
theory and applications, and J. Beran unifying the treatment of non-
parametric tests. E. Irving, who had attracted the attention of G. S. Watson 
in 1956 to the subject, illuminated various techniques on the sphere in his 
book of 1964 which was written especially for geologists. E. Batschelet unified 
and simplified methodology for the circular case in his 1965 monograph 
primarily for biologists. There are other notable contributions to this field 
in the last two decades including those of B. Ajne, T. W. Anderson, C. 
Bingham, E. Breitenberger, E. J. Burr, E. Dimroth, T. D. Downs, 
A. L. Gould, J. L. Hodges, Jr., N. L. Johnson, N. H. Kuiper, U. R. Maag, 
E. S. Pearson, C. R. Rao, J. S. Rao, S. Schach, B. Selby and G. J. G. Upton. 



The theory of errors was developed by Gauss primarily in relation to the needs 
of astronomers and surveyors, making rather accurate angular measurements. 
Because of this accuracy it was appropriate to develop the theory in relation to 
an infinite linear continuum, or, as multivariate errors came into view, to a 
Euclidean space of the required dimensionality. The actual topological frame­
work of such measurements, the surface of a sphere, is ignored in the theory as 
developed, with a certain gain in simplicity. 

It is, therefore, of some little mathematical interest to consider how the 
theory would have had to be developed if the observations under discussion had 
in fact involved errors so large that the actual topology had had to be taken 
into account. The question is not, however, entirely academic, for there are in 
nature vectors with such large natural dispersions. 

R. A. Fisher 

XX 



1 

ANGULAR DATA 
AND FREQUENCY DISTRIBUTIONS 

1.1 INTRODUCTION 

Angular observations arise from random experiments in various different 
ways. They may be direct measurements such as wind directions or vanishing 
angles of migrating birds. They may arise indirectly from the measurement 
of times reduced modulo some period and converted into angles, e.g. the 
incidence rate of a particular disease in each calendar month over a number 
of years. Rounding errors in numerical calculations converted into angles 
also form such observations. 

We may regard the angular observations as observations on a circle of 
unit radius. A single observation 0° (0° < 0° < 360°) measured in degrees 
is then a unit vector and the data can be described as circular data. Further, 
0° represents the angle made by the vector with the positive x-axis in the anti­
clockwise direction. The cartesian co-ordinates of the vector are (cos0°, 
sin0°) while the polar co-ordinates are (1,0°). If the vector is not directed, 
i.e. if the angles 0° (0 < 0° < 180°) and 180° + 0° are not distinguished, the 
data can be described as axial data. 

1.2. DIAGRAMMATICAL REPRESENTATION 

1.2.1. Ungrouped Data 

The angular observations can be represented in two ways. They can be 
represented by points on the circumference of a unit circle, the same mass 

i 



2 ANGULAR DATA AND FREQUENCY DISTRIBUTIONS 1.2 

being assigned to each observation. Figure 1.1 illustrates this method for the 
following example. 

Example 1.1. A roulette wheel was allowed to revolve and its stopping 
positions were measured in angles with a fixed direction. The measurements 
in 9 trials were 43", 45", 52", 61", 75", 88", 88", 279", 357". Its representation in 
Fig. 1.1 shows that the wheel seems to have a preferred direction. 

FIG. 1.1.  Circular plot of the roulette data of Example 1 .1 .  

Alternatively, we can represent the data by drawing the radii of a unit 
circle, obtained by joining the origin to the observed points on the circum- 
ference. Figure 1.2 shows this representation of Example 1.1. Its relation 
with the rose diagram (see Section 1.2.2) can be noted; the vectors are of 
unit length in our case. The first method is analogous to that which is com- 
monly used for data on a line and is preferred. 

FIG. 1.2. Rose diagram of the roulette data of Example 1 . l .  

1.2.2. Grouped Data 
Circular Histograms. Angular data can be grouped by adopting the same 
procedure as on the real line. The range (Oo,3600) can be divided into a 
certain number of class-intervals and the frequency corresponding to each 
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class can be counted. Choice of class-limits and length of class-intervals 
require the same consideration as for linear data. However, in the circular 
case there can be an interval such as 330°-30° which contains simultaneously 
the angles 359° and 0°. 

TABLE 1.1 Vanishing angles of 714 British mallards 
(adapted from Matthews, 1961) 

Direction 

0 ° -
20°-
40°-
60°-
80°-

100°-
120°-
140°-
160°-

Number of 
birds 

40 
22 
20 
9 
6 
3 
3 
1 
6 

Direction 

180°-
200°-
220°-
240°-
260°-
280°-
300°-
320°-
340°-

Total 

Number of 
birds 

3 
11 
22 
24 
58 

136 
138 
143 
69 

714 

Table 1.1 shows the frequencies of the vanishing angles of 714 non-
migratory British mallards with 0° as the north. The birds were displaced 
under sunny conditions from Slimbridge, Gloucestershire, by distances of 
between 30 km. and 250 km. in different directions over one year. We can 
represent this data on a histogram similar to that used on a line. We take a 
unit circle and, corresponding to each interval, construct a block on its 
circumference whose area is proportional to the frequency in that interval. 
Figure 1.3 gives a circular histogram of the data given in Table 1.1. The 
corresponding frequency polygon can be constructed by joining the mid­
points of the summits of the blocks. The latter presentation on a circle is 
complicated and does not elicit additional information. 

Linear Histograms, Another useful representation is to unroll the circular 
histogram so that it sits on a segment of width 360°. The point of cut 
used in unrolling the circle should be selected carefully. If the data has 
a mode (a preferred direction) then it is wiser to use a cut such that the 
centre of the linear histogram approximately corresponds to this mode. A 
cut near the mode would give an erroneous impression of the data. Further, 
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FIG. 1.3. Circular histogram of the mallard data of Table 1.1. 

I50r 

lOOl· 

50H 

140° 180° 270° 90° 
Π » 

140° 

FIG. 1.4. Linear histogram of the mallard data of Table 1.1. 
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the ends of the axis exist only as a convenience and a linear histogram for 
circular data should be judged after imagining it to be wrapped around the 
circumference of a circle. To emphasize this fact, the first block can be 
repeated at the other end. Further, the linear histogram is preferred to the 
circular histogram partly because of our competence to interpret such histo­
grams. Figure 1.4 shows a linear histogram of the data in Table 1.1. 

FIG. 1.5. Rose diagram of the mallard data of Table 1.1. 

Rose Diagrams. Another natural representation is a rose diagram. Corres­
ponding to each interval, we construct a sector with apex at the origin, 
radius proportional to the class frequency and arc substending the class 
interval. Figure 1.5 gives a rose diagram of the data in Table 1.1. The angles 
are measured in the clockwise direction with the north as 0°. If the observa­
tions take values in the interval (0°, 180°) then linear histograms can be 
drawn as usual. To draw a rose diagram for such data, we can construct that 
half of the diagram corresponding to the range 0° to 180° and obtain the 
other half by reflection through the origin. Figure 1.6 gives a rose diagram 
for the data in Table 1.6. 

The area of each sector in the type of rose diagram described above varies 
as the square of the frequency. In order to make the areas proportional to 
the frequencies instead of the frequencies squared, the square roots of the 
frequencies should be taken as the radii. The resulting diagram can be 
described as an equi-areal rose diagram. The graphic comparisons between 
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observed and expected frequencies in such presentations is hardly satis­
factory, since a given arithmetic difference between the frequencies is 
represented by decreasing intervals on the polar radii as the frequency in­
creases. Of course, linear histograms conserve areas and are comparatively 
simple to construct. 

Rose diagrams and circular histograms are sometimes described as polar-
wedge diagrams. 

FIG. 1.6. Rose diagram of the pebbles data of Table 1.6. 

1.3 INTERRELATIONS BETWEEN DIFFERENT UNITS OF 
ANGULAR MEASUREMENT 

1.3.1. Radians 
For theoretical purposes, it is preferred that the angle 0° in degrees is con­
verted into the angle 0 in radians. We, of course, have 

0° = 180 0/π, 0 = π0°/18Ο. (1.3.1) 

The range of 0 is 0 < 0 < 2π corresponding to the range 0° < 0° < 360° of 
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0°. If an arc of a circle with unit radius substends an angle of 0 radians at 
the centre of the circle, then the length of the arc is 0. 

TABLE 1.2 Orientations of sand-grains of Recent Gulf Coast beach 
(Curray, 1956) 

Class 
interval 

0 ° -
10°-
20°-
30°-
40°-
50°-
60°-
70°-
80°-

Number of 
grains 

244 
262 
246 
290 
284 
314 
326 
340 
371 

Class 
interval 

90°-
100°-
110°-
120°-
130°-
140°-
150°-
160°-
170°-

Total 

Number of 
grains 

401 
382 
332 
322 
295 
230 
256 
263 
281 

5439 

The observations may be concentrated on (0°,90°) or (0°, 180°). For 
example, axial data are concentrated on (0°, 180°). Table 1.2 shows orienta­
tion of the least projection elongations of sand grains in thin sections, cut 
parallel to the laminations, of Recent Gulf Coast beach sand. This data with 
angles in (0°, 180°) can be converted to the range of (0°, 360°) by doubling 
each angle. Further, the range 0° to 360°// of 0° can be converted to the 
range (0,2π) by 

0=/πθ°/18Ο. (1.3.2) 

1.3.2. Time Period 

Now, we consider conversion of the measurements of times reduced modulo 
some period into angles. The length of the time period can be identified with 
360°. The usual time period is either a day or a year. We first consider data 
where the period is a day. Table 1.3 shows the number of occasions on which 
thunder was heard during each two hourly interval of the day at Kew (Eng­
land) during summer from 1910-1935. In this case, 15° corresponds to 1 
hour and 1° corresponds to 4 minutes, so that the conversion is straightfor­
ward. The conversion of the data in Table 1.3 is shown in the second column 
of the table. 
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TABLE 1.3 The number of occasions on which thunder was heard at Kew in the 
summers of 1910-1935 (adapted from Bishop, 1947) 

G.M.T. Angle Frequency G.M.T. Angle Frequency 

0 0 -
0 2 -
0 4 -
0 6 -
0 8 -
1 0 -

0 ° -
3 0 ° -
6 0 ° -
9 0 ° -

120°-
150°-

26 
24 
14 
15 
14 
65 

1 2 -
1 4 -
1 6 -
1 8 -
2 0 -
2 2 -

180°-
210°-
240°-
270°-
300°-
330°-

Total 

133 
149 
122 
80 
61 
22 

725 

Next, we consider the case when the period is a year. Table 1.4 shows 
the number of occurrences of rainfall of 1" or more per hour in the U.S.A. 
during 1908-1937, classified according to the twelve months. For a non-leap 
year, the tih day can be related to the angles by 

0° = 360 x r/365. (1.3.3) 

A similar conversion can be done for a leap year. However, when the data 
is classified into months, the class-intervals and the mid-points obtained by 
using (1,3.3) are not easy to handle. For example, the class-interval for the 

TABLE 1.4 The number of occurrences of rainfall of 1 " or more per hour in the 
U.S.A., 1908-37 (Dyckand Mattice, 1941) 

Frequency Frequency 
Month Angle (Unadjusted) (Final adjusted) 

JAN. 
FEB. 
MARCH 
APRIL 
MAY 
JUNE 
JULY 
AUG. 
SEPT. 
OCT. 
NOV. 
DEC. 

0 ° -
3 0 ° -
6 0 ° -
9 0 ° -

120°-
150°-
180°-
210°-
240°-
270°-
300°-
330°-

Total 

101 
94 

232 
406 
685 

1225 
1478 
1384 
907 
383 
195 
145 

7235 

100 
103 
229 
414 
676 

1248 
1458 
1365 
924 
378 
199 
143 

7235 
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month of February is 30° 35'-58° 12'. In addition, the lengths of the months 
vary. To overcome these difficulties, we can adjust the frequencies such that 
they correspond to 360 days with each month of the same length. Then Γ 
will correspond to 1 day. The adjustment is as follows. Let the observed 
frequencies for January, March, May, July, August, October and December 
be multiplied by 

c = 30/31 =0-96774 

and let the frequency for February be multiplied by 
</= 30/28 =1-07143. 

Let ïii be the original frequencies and let n( be the frequencies so adjusted. 
We then have reduced the year to 360 days but N Φ Ν' where N = Σ«,· 
and N' = Σ«/. To preserve the sum JV, the final adjusted frequencies are 
obtained on multiplying n( by NjN'. 

For the data in Table 1.4, we have 

N = 7235, N' = 7099-5, N/N' = 1-01908. 
These corrections are essential when the differences between the frequencies 
are of the order 10 per cent or less, since the differences between the lengths 
of the months can themselves produce such irregularities. In particular, the 
month of February has 10 per cent fewer days than January. 

For the data in Table 1.4, the adjusted frequencies are shown in the fourth 
column and the corresponding class-intervals in terms of the angles are given 
in the second column. In the month of February, the adjusted frequency is 
103 compared with the unadjusted frequency of 94. For January, the adjusted 
frequency is now 100 and so the month with minimum frequency becomes 
January instead of February. 

The above cycles are the most frequent in practice but the same principle 
can be used to reduce any other periodic data into angles. 

1.4 FORMS OF FREQUENCY DISTRIBUTIONS 

The forms of the circular distributions appearing in practice can roughly 
be identified from the linear histograms just as in the case of linear data. 
As pointed out before, the linear histogram should be obtained from the 
circular histogram by cutting the circle at a suitable point such that the 
maximum concentration on the linear histogram appears around its centre. 
The data considered in this section will be visualized in this way. 

1.4.1. Unimodal Distributions 
Each of the frequency distributions given in Table 1.1 to Table 1.4 is unimodal. 
The frequencies tail off uniformly giving rise to a minimum in the correspond-
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ing circular histogram. This point of minimum is called the antimode in 
contrast to the mode which is, of course, the point of maximum. The fre­
quency distribution in Table 1.1 and Table 1.2 are somewhat symmetrical. 
The distribution of the directions of birds in Table 1.1 has a high peak and 
the frequencies tail off uniformly to zero. The birds have a preferred direction 
between 280°-340°, i.e. there is a tendency to select a N-W course. The dis­
tributions in Table 1.3 and Table 1.4 are slightly asymmetrical and are 
positively skew since the rise to the maximum is more rapid than the fall. 
In Table 1.3 the main period of thunderstorm activity is 2 p.m. to 4 p.m. 

TABLE 1.5 Azimuths of cross-beds in the upper Kamthi river 
(Sengupta and Rao, 1966) 

Azimuth 

0°-
20°-
40°-
60°-
80°-
100°-
120°-
140°-
160°-

Frequency 

75 
75 
15 
25 
7 
3 
3 
0 
0 

Azimuth 

180°-
200°-
220°-
240°-
260°-
280°-
300°-
320°-
340°-

Total 

Frequency 

0 
21 
8 
24 
16 
36 
75 
90 
107 
580 

Table 1.5 gives an example of an asymmetrical distribution which is nega­
tively skew. The data gives azimuths of cross-beds in the upper Kamthi 
river, India. As on the line, symmetrical distributions on the circle are com­
paratively rare. 

TABLE 1.6 Horizontal directions of 100 outwash Wisconsin pebbles 
(adapted from Krumbein, 1939) 

Mid-points 0° 20° 40° 60° 80° 100° 120° 140° 160° Total 
Frequency 16 13 9 14 9 14 12 6 7 100 

Table 1.6 gives horizontal directions of outwash pebbles from a late 
Wisconsin outwash terrace along Fox River, near Cary, Illinois. The direc­
tions are distributed almost uniformly over the range of (0°, 180°). (In fact, 
the observed value of χ2 under this hypothesis is 8-72. The 5% value of χ2 
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with 8 degrees of freedom is 15-5.) Table 1.7 shows the month of onset of 
lymphatic leukemia in the U.K. during 1946-1960. The distribution is uni­
modal but does not tail off to zero. 

TABLE 1.7 Month of onset of lymphatic leukemia in the U.K., 1946-60 
(Lee, 1963) 

Month 

Jan. 
Feb. 
March 
April 
May 
June 

Number 
of cases 

40 
34 
30 
44 
39 
58 

Month 

July 
Aug. 
Sept. 
Oct. 
Nov. 
Dec. 
Total 

Number 
of cases 

51 
55 
36 
48 
33 
38 

506 

In the strict sense, there are no J or U shaped distributions on a circle if 
the observations are distributed on the complete range of (0,2π). However, 
a J-shaped or [/-shaped linear histogram will arise from a unimodal circular 
distribution if the cut point is selected near to the mode. 

1.4.2. Multi-modal Distributions 
So far we have discussed unimodal distributions. Multi-modal distributions 
also occur in practice. Table 1.8 and Table 1.9 give typical examples. Table 
1.8 shows orientations of 76 turtles after treatment. It can be observed that 

TABLE 1.8 Orientations of 76 turtles after treatment 
(Gould's data cited by Stephens, 1969f) 

Direction 

0 ° -
3 0 ° -
6 0 ° -
9 0 ° -

120°-
150°-

Number 
of turtles 

8 
18 
18 
12 

1 
3 

Direction 

180°-
210° -
240° -
270° -
300° -
330°-
Total 

Number 
of turtles 

1 
5 
6 
1 
1 
2 

76 
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the distribution is bimodal and the two modes are roughly 180° apart. The 
dominant mode is in the interval 60°-90° and the subsidiary mode is in the 
interval 240°-270°. The data indicates that the turtles have a preferred direc­
tion (the homeward direction) but a substantial minority seem to prefer 

TABLE 1.9 Geostrophic wind directions at Crawley for the 25 months, November-
March, 1957-61 (Findlateretfö/. 1966) 

Direction Frequency Direction Frequency 

0°-
20°-
40°-
60°-
80°-
100°-
120°-
140°-
160°-

27 
23 
44 
42 
25 
20 
20 
11 
19 

180°-
200°-
220°-
240°-
260°-
280°-
300°-
320°-
340°-
Total 

27 
43 
69 
69 
53 
38 
37 
39 
40 
646 

the direction exactly opposite this homeward direction. Table 1.9 shows 
wind directions at Crawley, England. The data is bimodal and the two modes 
are again 180° apart, implying two opposite regimes of wind direction. 

1.5 FURTHER EXAMPLES OF ANGULAR DATA 
Some actual examples giving rise to angular data are described in Sections 
1.2-1.4. We now give further examples involving angular data. Although these 
experiments belong to different scientific disciplines and therefore seem to be 
quite different, they all give rise to angular data and are abstractly equivalent 
from the statistical point of view. 

1.5.1. Geology 

Angular data appear in investigations of various geological processes since 
these involve transporting matter from one place to another in time. (The 
term fabrics, or vectorial fabrics, is sometimes used by geologists to describe 
geological orientation data.) Studies of the directions of remnant magnetism 
are used to interpret paleomagnetic current and possible magnetic pole 
wandering during geological times. Studies of the orientations of fractures 
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and fabric elements in deformed rocks are used to interpret tectonic forces. 
Orientations of cross-bedding and other structures, and particle long axes in 
undeformed sediments, are used to interpret the directions of depositing 
currents of wind or water. For further details, see Curray (1956) and Pincus 
(1953, p. 584). Tables 1.2, 1.5 and 1.6 give some examples in the above 
category. 

Data for the above situations are likely to consist of measurements of 
planar and linear features at given geographical points. Planar features may 
include foliation planes, bedding planes, planes of cross-stratification, cleav­
age planes, fold axial planes, joints and faults while linear features may 
include fold and other tectonic axes, cleavage-bedding intersections, mineral, 
fossile or pebble elongations, and other sedimentary and tectonic lineations 
(Loudon, 1964). Watson (1970) has given an excellent account of geological 
terms and concepts. 

The above measurements can be expressed in terms of azimuth and angle 
of dip so that circular distributions appear only as marginal distributions. 
The joint distribution will be discussed in Chapters 8 and 9 which also con­
tain various examples. 

1.5.2. Meteorology 

A natural source of angular data is, of course, wind directions and we have 
already considered such data in Table 1.9. A distribution of wind directions 
may arise either as a marginal distribution of the wind speed and direction 
as in Table 1.9, or as a conditional distribution for a given speed as in Table 
1.10. Wind directions are usually represented clockwise on the map from 
north (0°) to east (90°), south (180°), west (270°) and back to north (360°). 
The bearings Ν32Έ and S29°E are therefore 32° and 151° respectively. This 
representation is used in Table 1.9 and Table 1.10. 

TABLE 1.10 Wind directions at Larkhill with speeds between 27 and 41 knots, 
March-May, 1940-45 (Tucker, 1960) 

Direction 

Mid-points 
Frequency 

N 

0° 
20 

NE 

45° 
5 

E 

90° 
7 

SE 

135e 

4 

S 

180° 
16 

sw 
225° 
32 

W 

270° 
43 

NW 

315° 
26 

Total 

153 

The thunderstorms data of Table 1.3 and the rainfall data of Table 1.4 
are examples where ihe circular distribution also appear naturally. Similar 
data appears for the monthly run-off for a watershed, for the monthly evapo­
ration from a reservoir and in other hydrologie cycles. 
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1.5.3. Biology 
The study of bird orientation in homing or migration leads to angular data. 
The birds are released from a point and the bearings of their flights, called 
vanishing angles, are recorded just as they vanish in the distance. Table 1.1 
gives an example. There are various important experiments on birds to answer 
questions such as whether the sun-azimuth-compass hypothesis is obeyed, 
whether celestial cues are utilized for orientation, whether the flight direc­
tions are random under certain conditions etc. For an excellent discussion 
of various developments and investigations in this field, the reader is referred 
to Schmidt-Koenig (1965). Chapters 6 and 7 contain various examples from 
this area. 

There are similar investigations on orientation of surface animals. The 
turtle data in Table 1.8 is such an example. 

TABLE 1.11 Angles between the swimming directions of Daphnia and the plane of 
polarization of light (Waterman and Jander's data, cited in Waterman, 1963) 

Direction Frequency Direction Frequency 
0°-
10°-
20°-
30°-
40°-
50°-
60°-
70°-
80°-

65 
17 
12 
16 
22 
51 
58 
67 
105 

90°-
100°-
110°-
120°-
130°-
140°-
150°-
160°-
170°-
Total 

208 
81 
73 
43 
50 
35 
24 
29 
44 

1000 

The study of the effects of polarized light on the orientation of marine ani­
mals also gives rise to angular data. Table 1.11 gives data consisting of angles 
between the swimming directions of Daphnia and the plane of polarization, 
the degree of polarization being 27°. The distribution is bimodal and the 
modes are roughly 90° apart. This typical characteristic of bimodal data has 
already been noted in Section 1.4. For another type of investigation under 
polarized light, giving rise to angular data, see Jaffe (1956). 

1.5.4. Geography 
Orientation data appear naturally when readings consist of longitudes and 
latitudes. For example, in the study of the occurrence of earthquakes in a 
region, the longitude and latitude of each shock (its epicentre) are recorded. 
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On the other hand, the data may be cyclic as in studying the variation of the 
number of earthquakes from year to year or from day to day after a large 
main shock. Angular observations also arise in daily determinations of micro-
seismic directions at a particular location (Jensen, 1959). 

1.5.5. Economic Time-series 

If an economic time-series is a random perturbation of a periodic phenomenon 
with known period, the random times associated with it could be described 
by circular distributions. Table 1.12 gives a series of the production of buses 
in the U.S.A. which forms a genuine circular distribution consisting of dis­
crete, countable units. Although only few series of prices, production or trade 
may sensibly be viewed in this way, further examples have been given by 
Gumbel (1954). 

TABLE 1.12 The production of buses in the U.S.A. in 1948-50 
(from Automobile Facts and Figures, 1951, AMA, New York) 

Month 

Jan. 
Feb. 
March 
April 
May 
June 

Frequency 

1120 
985 

1223 
1200 
1197 
1527 

Month 

July 
Aug. 
Sept. 
Oct. 
Nov. 
Dec. 

Total 

Frequency 

1435 
1589 
1453 
1523 
1251 
1192 

15695 

1.5.6. Physics 

Von Mises (1918) proposed to test the hypothesis that atomic weights are 
integers subject to error. All weights can be reduced to angular deviations 
such as 8-25 to 90°, 8-75 to 270°, 9-00 to 0°, 9-25 to 90° and so on. The physical 
problem is not clear but statistically it reduces to testing whether the circu­
lar distribution has a mode at 0° (see Example 6.1). 

Angular data also appears in determining a preferred direction for optical 
axes of crystals in rock specimens. The distribution of the resultant of a 
random sample of unit vectors arises in representing sound waves or molecular 
links (Rayleigh, 1919). It also arises in various problems related to the inter­
ference among oscillations with random phases (Beckmann, 1959). Studies 
of rotary Brownian motion also involve problems in this area. 
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Angular data also arises in experiments with a bubble chamber, where 
points representing events are observed through a circular window. If each 
point is moved radially to the circumference of the circle, we have angular 
observations. 

1.5.7. Psychology 

The perception of direction under varying experimental conditions leads to 
angular data (Ross et ai, 1969). For example, to simulate zero-gravity in 
space travel, experiments on divers and swimmers are performed under 
water to assess their ability in perceiving the true horizontal and vertical in 
the absence of a visual cue. The data consists of their deviations from the 
true direction. Studies to compare relative performances in perceiving the 
true vertical under water and on land also give rise to angular data. 

1.5.8. Medicine 

The number of deaths due to a disease or the number of onsets of a disease 
in each month over years forms a circular distribution. The data in Table 
1.7 is such an example. 

Monthly death rates can be regarded as constituting a circular distribution 
under the assumption that the underlying population is stationary so that 
the rates are proportional to the numbers of deaths. Under a similar assump­
tion, mean percentages of deaths due to a particular disease constitutes a 
circular distribution. Gumbel (1954) has given various examples. 

Cardiology is a field in which angular variâtes are prominent especially 
in the vector cardiogram which is the three-dimensional analogue of the 
usual one-dimensional cardiogram (see Downs and Liebman, 1969; Gould, 
1969). Gould (1969) has given an excellent discussion of the problems in­
volved and Downs and Liebman (1969) contains various references dealing 
with vector cardiographie data. 

1.5.9. Astronomy 

The theory of errors as developed by Gauss was primarily for the analysis 
of astronomical measurements which consisted of points on the celestial 
sphere. The surface of the celestial sphere can be approximated locally by a 
tangent plane with the probability concentrated in the neighbourhood of the 
point of contact. Hence, the actual manifold, the surface of the sphere, was 
ignored in the theory and this lead to the development of the theory of 
Statistics on Euclidean spaces. 

Bernoulli (1734) enquired whether the close coincidence of the orbital 
planes of the six planets known at that time could have arisen by chance. 
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Each orbital plane can be regarded as a point on the sphere (see Example 
9.4) and his hypothesis is equivalent to the statement that the points are dis­
tributed uniformly on the sphere. Watson (1970) has discussed this problem 
for the nine planets. Pólya (1919) enquired whether the stars are distributed 
at random over the celestial sphere. 

1.5.10. Sampling 

A roulette wheel usually has 37 equally spaced positions on the circumference 
of a circle. In an unbiased wheel, each position is equally likely. In general, 
we can consider a wheel with scale graduated from 0 to In. The stopping 
position of the wheel gives rise to a random point on the circle. 

Consider a circular disc on which beads are dropped, while the tray is 
agitated in its plane. The chance of a bead coming off depends on the angle 
made by the disc with the horizontal plane. 

The generation of random numbers with a given base leads to a circular 
distribution in view of the periodicity of the remainders. We will see in 
Section 4.3.4 that the behaviour of the distribution of the first digit selected 
at random from a large compendium such as a census register can be explained 
by regarding it as a distribution on a circle. 


