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TO 

PAVAN AND STEPHANIE 



.Ah, but my Corrrpatution.v, People my,  
Have squared the Yeor to human wtrapass, eh? 

If 80, by striking f.0.a the Calendar 
Unborn To-moirow and dead Yesterday. 

Edward FitaGerald, Ruhdiydt of Orriur. Khayyhm, 2nd edition: Quatraiii 49 



The theory of emrs uus developed by  Gauss primarily in relation to the needs 
of ustrrmmw-u urbd uufueyors, rrrukiny nither uccurute urryulur rrreu:cruurzrrsents. 
Because of this accuracy at was appropriate to develop the thww in relation 
to an infinite Pnear continuum, or, as multivariate errors mme into V ~ ~ U J ,  

to a Euclideun ~ p c e  01 the required diniensionalitp. The uctuul topologacd 
framework of such measurements, the surface of a sphere, is ignowd in the 
theory a.9 developed, eutth u certain yuin in airrrplicity. 

It is, therefore, of some little mathenaatical interest to consider how the 
theom uwdd have had to he developed if the observations under discussion 
hud in fact ivswolved errors YO large thut the actual topologg lbud had to be 
taken into account. The question is not, however, entirely auadenaic, for there 
a= in nutwe iiectors with such la y e  riuturul disper.uioria. 

ll. A.  Fisher 
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Preface 

The aim of this book 
Directional statistics is concerned mainly with observations which are unit 
vectors (possitdy with sign uxiluitm~i) in the plane or in thrtx+dimensiond 
space. Thus the sample space is typically a circle or a sphere, so that 
standard methods for analysing univariate or multivariate measurement data 
carmot be used. Spm:id dirm:tioml metho& are required whidi take into 
account the structure of' these sample spaces. The aim of this book is to 
give i5 comprehensive, systematic and unified trcwtment of the theory md 
methodology of directional statistics. We give the theory underlying each 
technique, and illustrate applications by working through real-life examples. 
Tl~et: basic approaclies (the e~nbetiding, wrapping mid iutriiisic approdies) 
to directional statistics are highlighted throughout. Our original intention 
WM to product! il minor revision of Stntbtics of Directional Data (Mardia, 
1972a). which has been out of print. However, it sooii became clear that the 
considerable advances in the subject in the last quarter century (some of 
which were stmixnarisd in our review paper, .Jupp 9c Mardin, 1989) rrienrit 
that drastic revision and major extension were requircd. This book is the 
result. 

Relationship with other books 
The relationship between this book anti M d i a  (1972a) is firstly that the 
material of the latter has been updated to reflect the advances in t.he area 
sincc 1972, and secondly that we hilvc added the following material: 

(i) sphcres of arbitrary dimension are considered (Chapter 9): 
(ii) a full chapter on correlation aid regressiou analysis is given (Chapter 

(iii) modern topics such as rolmst techiques, bootstrap methotis a id  

(iv) Stiekl manifolds, Grassmann mimifolds md other more general 

(v) shape analysis is described in detail (Chapter 14) and its relationship 

11); 

density estimation have bcen added (Chapter 12): 

rnaiifolds are corisiderecl (Chapter 13); 

to directional statistics is disctisued. 
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Excellent accounts of some of the developments in directional stat.istir:s 
in the last 25 years are gisiveii in the followiug importwt books, iione of 
which was intended to bc comprehensive, in contrast to this book. Vi7atson's 
(19834 Stutiutics on Spheres is conrenied ~rinirily with the theory of inference 
for distributions on spheres of arbitrary dimension. Statistical A d y s i s  of 
Circudar. Data by Fisher (1993) and Stati~tacnl Andyysis of Spherical Data 
by Fishier, Lewia & Embletori (1987) coritzritrate 011 rrioderri methods of 
data analysis on the unit circle and on the unit sphere in t.hree-dimensional 
spare, respectively. A wide variety of I,iologi;icd applications rmi I,e foiixitf in 
Batschelet's (1981) Ci,.culer Statistics in Baolugy. Theory aid applications of 
circular and spherical statistics me considered also in Chapters 9 and 10 of 
Sputiul Duta Analysis by Exaniple by Uptori & Fingletoii (1989). 

Survey of contents 
The book has three parts. The first part (Chapters 1--8) is concerned with 
statistics on the circle. Following a general discussion of circular data in 
Chapter 1, w i o w  summary statistics are introduc:etf in Chapter 2. Chapter 3 
presents the basic concepts and models for circular data. Chapter 4 gives t.he 
fiindmental t.hciorems and dist.ribiit.ion theory for t.he uniform and von Miws 
distributions. Chapter 5 treats point estimation, iuainly for the von hiises 
and wrapped Cauchy distributions. The uniform distribution plays a central 
role in circiiliu statistics, a i d  so Chapter 6 is devoted to tests of wiiformity 
and to related tests of' goodness-of-fit. Chapter 7 gives a detailed account of 
t.est.5 on von Miws distributions. Non-parametric methods for circular data 
are considered in Chapter 8. 

The second part (Chapters 9-12) considers statistics on spheres of arbitrary 
dirneIisio11. The basic models mid distribution theory for distributions on 
spheres are prcsent.ed in Chapter 9. A detailed account of inference on the main 
dist.ribiit.ions on spheres is given in Chapter 10. Correlat.ion, regression and 
tirile series are considered in Chapter 11. Chapter 12 describes some modern 
methodology, in pmicular robust techniques, bootstrap methods, Bayesian 
methods, density esstimation, arid curve fitting mid srrioothing. 

The third part (Chapters 13- 14) considers extensions to statistics on more 
general sample spaces. Chapter 13 treats extensions t.o general manifolds. in 
particular to rotation groups, Stiefel rnaiifolds mid Grasurnain manifolds. 
Chapter 14 treats the latest advances in the fast-growing field of shape 
arialysis from the perspective of directional statistics. In past.iciilar, statistics 
on complex projective spaces is considered. 

Since Bessel funct.ions imd Kummer funct.ions play i5 major role in 
(lirectiod statistics, soriie relevmit formulae have been p1zu:ml in Appendix 
I. Tables for use in the analysis of circular and spherical data are given in 
Appendices 2 mid 3, respec%ively. 

We lrave not given any general historical account of directional statistics, 
since the history of t.he siibjcct has been covered well by Fisher, Lewis 
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& Embleton (1987) imd Fisher (1993). Although t.hc? package On'ana for. 
Wink~ws (Kovach Computing Services) performs soinie analyses of circular 
data, as far as we are aware there are not yet any commercial computer 
pwkages for hmdlhg gexieraJ ciirtx.%ional data. Hmwer, there is a forthcoming 
package DDSTAP A Statistical Package for the Anulysis of Darectdonal Data 
by Professor Ashis SenGupta, Indian Statist id Institiitc, Calcutta. 
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Circular Data 

1.1 INTRODUCTION 

Circular data arise in various ways. The two main ways correspond to the two 
principal circiilar rrieasiiririg irwtnirnents, the co~ryrryu arid the clock. Typicd 
observations measured by the compass include wind directions and ducctions 
of migating birds. Data of a similiu typci arise from measurements by spirit, 
level or protractor. Typical observations meaxurml by the clock inclutb tJe 
arrival times (on a 24-hour clock) of patients at a casualty unit in a hospital 
Data of a sirnilw type arise as times of year (or times of month) of appropriate 
events. 

A circular ohsenation can bc regarded as H point on a circle of unit. radius, 
or a uiiit vector (i.e. a diwction) in the plmie. 011m mi initial t1irm:tiotl a i d  
an orientation of the circle have been chosen, each circular observation cram 
be specified I)y the arigle from the initial direction to the point on the circle 
corresponding to the observation. 

Circular dat.a iuf? usuidly meaviired in degrws. Howe\7er, it. is sometimes 
useful to Iiiemure in radians. Recall that angular IIieasureuieiits are coxivertml 
from degrees to radians by multiplying by ~ / 1 8 0 .  

Closely related to circular data are a i d  (fats, i.e. observations o f  WCY. 

They are usually given as observations on the circle for which each direction 
is considered as equivalent to the opposite direction, so that the angles 8 and 
0 + 180’ are equivalent,. The standard way of hmidlitlg axial data is to coiivert 
them to circular data by ‘doubling the angles’, i.c. transforming e to 28 and 
so rttmovirig the ambiguity in direction. 

1.2 DIAGRAMMATICAL REPRESENTATION 

I .  2.1 Ungrouped Data 

The simplest representation of circular data is a circular mtu data plot, in 
which each observation is plot,ted as a point or1 the unit circle. Figure 1.1 
illustrates this iuethod for the followiug example. 

Directional Statistics 
Kanti V. Mardia,Peter E. Jupp 

Copyright 0 2000 John Wiley & Sons, Inc 
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Figure 1.1 Circular plot. of the roulette data of Example 1.1. 

Example 1.1 
A roulette whcvl w'ay spun and t.hc? positions at which it stopped were 
measureti. The stopping positions in 9 trials were 43O, 45O, 5 2 O ,  61°, 75'. 
88", 88", 279", 3.57". The circular raw data plot in Fig. 1.1 suggests that there 
is a preferred dirtx%ion. 

1.8.2 Grouped Data 

Circular Histograms 
Groiiptut rircixlar data mi he represented by circular liistograuis, which are 
analogous to histogranis on the real l i e .  Each bar in a circular histogram is 
ccntrcd at. the midpoint of the corrcsponding group of angles, and the area of 
the bar is proportional to the frequency in that group. As with Iiisto~gams on 
t.hc lie, the visual impression given by a circular histograni may be sensitive 
to the grouping used. 

Table 1.1 shows the frequencies of the vanishing angles of 714 non-migratory 
British mallards. The birds were displaced from Slimbridge, Gloucestershire, 
to various sites betweexi 30 lux1 arid 250 krri away. When the birds were 
released from a site, t.hcy flew off, vanishing from sight in a direction with 
hewing known as the oaniuhing u r i g l .  A circular histogarn o f  this data set 
is given in Fig. 1.2. Sote that, because these vanishing angles have been 
measured clockwise from north, the circular histogram in Fig. 1.2 follows this 
coiiventioii, whereas the usual conveiltion for circular liistogrmuns ixieaSures 
angles ant.iclockwise and takes the x-axis as the zero direction. 

Linear Histograms 
Because statisticians have acquired expertise in interpreting histograms on the 
line, it cai be useful to trarisforixi a circular histogram into a liriear histograrn. 
This is done by cutting the circular histogram at a suitably chosen point. on 
the circle and then 'iinrolling' the circ:ular histogram to a linear histogram on 
an interval of width 360'. 
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Table 1.1 Vanishing angles of 714 British mallards (adapted from hfatthews, 
1961, reproduced by peruiissioii of British Oniithologists' Urtioii). Directions cue 

measured clockwise from north. 

0- 19 40 
20-39 212 
40 -59 20 
60 79 9 
80- 99 6 

100- 1 19 3 
120-139 3 
140-139 1 
160-179 6 
180-199 3 
2O(F219 11 
220-239 22 
240 -259 21 
260 -279 58 
280- 299 136 
300 319 138 
320-339 143 
340-339 69 

Total 714 

Direction (in degrees) Kuniber of bids 

Figure 1.2 Circular histogram of the mallard data of "able 1.1. 
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The visuid impression given by a linear histogram can be sensit.ive to the 
point, at  which ttie circle is ctit. If the data have a single mode (preferred 
direction) t.hcn it is wise to use a cut almost opposite this mode. Then the 
centre of the liriear histogriun will be xiex the Inode. -4 ctit near the mode 
would give the misleading impression that the data are biiodal. For data 
sets which do not haw i5 single pronounced mode, it is useful to modify the 
circular histogram by repeating a complete cycle of the data, to give a linear 
histogram on an interval of width 720". 

Figure 1.3 shows a linear histograw of the data in Table 1.1. 

140" 180' 270' 0" 90" 140° 

Figure 1.3 Linear histogram of the mallard data of Table 1.1. 

Rose Diagrams 
-4 useful variant of ttie ciwiilm histogram is the r0.w cliuqrurrs, in which the 
bars of the circular histogram are replaced by sectors. The area of each sector 
is proportionid t.a the frequency in thc c:orrespondiig group. To achievca t.his 
when the groups are of equal width, the radius of each sector should be 
proportional to the squaw root of the relevant frequency. The reader is warned 
that riot all authors follow this corivention. 

Figure 1.4 shows a rose diagram of the data in Table 1.1. 
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Figure 1.4 Rose diagmn of the  riall lard data of Table 1.1. 

1.2.3 Axial Data 

Axial data can be represented diagrammatically by first transforming them 
to circ:ular data by 'tioubling the tuigles' arid then constnic-ting circxiar 
histograms or rose diagrams of the circular data. 

Table 1.2 shows t.hc? oritmtat.ions of the shortest projtxtion elongations of 
said grairis froin Recent Gulf Coast t)eadi. Note that these obuervittiwis liave 
been recorded as angles in the range (OO,  180'). Since elongations are axes, 
the data are axial. 

1.3 FORMS OF FREQUENCY DISTRIBUTIONS 

The general forms of the circular distributions appearing in practice can be 
identified roixgldy from the linear histograms, just, its in the case of linear data. 

1.3.1 Unimodd Distributions 

The data given in Tables 1.1 and 1.2 are unimodal. The frequencies t.ail off 
steadily, giving rise to a rniriirriurn in the corresporiding circular histograw. 
This poiiit of minimum is called the utito'nade (and the point of iuaxiriium 
is called the mode). The data in Tables 1.1 and 1.2 are fairly symmetrical. 
The distribution of the tfirectioiis of birds in Table 1.1 has a high peak a i d  
the frequencies tail off steadily to zero. The birds have a preferred direction 
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Table 1.2 Orientations of sand grains tiom Recent Gulf Coast beach (Curray, 
1956) 

llirection (in dcmeesl Niirnhcr of arains 
0-9 244 

10- 19 262 
20 29 246 
30-39 200 
40-49 284 
50-59 314 
60-69 326 
70 79 340 
80-89 371 
90-99 401 

100-109 382 
110-1 19 332 
120-129 322 
130-1 30 205 
140 149 230 
150- 159 256 
160-169 263 
170- 179 28 1 

Total 5439 

betwemi 280' axid 340"' i.e. there is a tendency for the birds to select a northi- 
westerly course. 

Not. all data aAs on the circle arc) symirietrid. Tahle 1.3 gives ai exxnrnple 
of an asynmietrical distribution which is 'negatively skewed'. The data give 
azimuths (angles measured clockwise from north) of croesbeds in the upper 
Karnthi river, India. 

Table 1.4 shows the m0nt.h of onset of lymphatic leukaemia in the UK during 
1946-1060. The tiistribution is unirnodal. 

1.S.d Multimodal Riatidbutiorrs 

hi Section 1.3.1 we have discussed unimodal distributions. Miltimodal 
distributions also owur. An c~xamplt. of these is given in Tahlc 1.5, which 
shows the directions in which 76 female turtles moved after laying their eggs 
on a beach. 

The circular raw data plot of this data set gisivtw in Fig. 1.5 shows that 
t.hc distribution is bimodal and the two modes are roughly 180" apart. The 
dominant mode is in the interval 60"-W0 imd the subsidiary mode is in 
the interval 240"-270". The data indicate that the turtles have a preferred 
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Spherir:al ohsenations on i5 smaller scale inelide directions of remnant 
iriagrietisiri in rocks. These are used to infer t1irm:this of palwinagietic fields 
and hence to infer the wander path of the north magnetic pole. The study of 
palaeomagiietisn wm a major st,iniulus in the development of the analysis of 
spherical data. 

Direct.ionitl data iirix? in investigat.ions of various geological processes, since 
these involve transporting matter from oiie place to miother. hi particular, 
orientations of cross-bedding structures and of the long axes of particles 
in undefornid axhiexits are used in inference about t.he ciirtx.%ions of 
palaeocurrents. See Curray (1956) and Pincus (1953, p. 584). Tables 1.2 and 
1.3 give examples from this area. 

A widerarighig m:ount of directiorial statistics in the earth sciences was 
given by U'atson (1970), who gave an excellent description of geological t.erms 

Further examples of spherical data arking in the earth sciences are used hi 
arltf cox1c:epts. 

Chapters 9 and 10. 

Table 1.4 Month of onset of ewes of lyrriyhatic leukaerrtia in the UK, 
1946-1960 (Lee, 1963, reproduced by permission of the BM.1) 

Month Number of cases 
January 4 0 
Fcbuary 34 

March 30 
April 44 
May 39 
Jiine 58 
July 51 

Augllst 55 
Sep teinber 36 

October 48 
Ntrverribw 33 
December 38 

Total 506 

1.42 Meteorology 

Wind directions provide H natural .wiirce of circular data. A dist.ribut.ion of 
wind directioiis may arise eit,lier as a marginal distribution of the wind spwl 
and direction, or as a conditional distribution for a given speed. Other circular 
data arising in 1rietwrolog-y iriclude the t h e s  of day at which thiinderstorms 
occur and the t.imes of year at  which hcavy rain occurs. 
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Table 1.5 Orientations of 76 turtles after laying eggs (Gould's data cited by 
Stephens, 1969e) 

llirection (in degrws) clockwisc from north 
8 9 13 13 14 18 22 27 30 34 
38 
50 
64 
83 
98 
204 
257 

38 
53 
63 
88 
100 
215 
268 

40 
56 
65 
88 
103 
223 
285 

44 
57 
68 
88 
106 
228 
319 

45 
58 
70 
90 
113 
237 
343 

47 48 48 48 48 
58 61 63 84 84 
73 78 78 78 83 
92 92 93 95 96 
118 138 153 153 155 
238 243 244 250 251 
350 

+ 

. 
.r 

' a  

. 
Figure 1.5 Circular plot of the turtle data of Table 1.5. 
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1.4.3 Biology 

St1idic.s of animal navigation lead t.a circ*ular dnt.n. Typir:al quwtions of interest 
are (i) whether the directions of the animals are uniformly distributed on the 
circle and (ii) whether the animals tend to head in a specified direction. The 
answer to the latter qriesstion is usefill in atterripts to determine whether or 
not the animals use navigational clues such as the direction of the sun or the 
earth's magnetic fic~ld. 

Discussions of various investigations in the field of bird navigation are given 
in Schmidt-Koenig (1965) and Batschelet (1981). 

The mallard data in Table 1.1 a id  the turtle data in Table 1.5 provide 
examples from the area of animal movement. Further examples will be given 
in Chapt.ers 6. 7 and 8. 

Table 1.6 Angles Betwen the swimming direct.ion.. of Duphrrin aud the plane 
of polarisation d light (data of Waterman & Jauder, cited in Waterman, 1963, 

reproduced t y  permission of Spriuger-Verlag) 

Direction (in degrees) Frequency 
0-9 65 

10 -19 17 
20-29 12 
3-99 16 
40- 49 22 
50-59 51 
60-69 58 
70-79 67 
80-89 105 
90- 99 208 

101t109 81 
110-1 19 73 
120-129 43 
130- 139 50 
140- 149 35 
150-159 24 
16i- 169 29 
170- 179 44 

Total 1000 

An cxmple of axial data in animd navigation is given in Table 1.6: which 
coimists of angles between the swimmiIig tlirectioris of Duphrriu and the plane 
of polarisation of the surrounding light. The distribution is bimodal and the 
modes are roixghly 90' apart - as happens for rriariy sets of bimodal axial 
data. 
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Circ:ular di5tta arise dso in t.he study of circadian rhythms, t.ypir:ally t.imes 
of day at which peak activity occum. 

1.4.4 Physics 

A set of circular dnt.n which led t.a the introduct.ion of one of the b;tuir: 
tfistributions in circular statistics consists of the fractiorial parts of atomic 
weights. Before the discovery of isotopes, it was hypothesised that measured 
atomic weighits are iIitegeru siibjec% to error. Von Misw (1918) proposed testing 
this by testing whether or not the corresponding distribution on the circle has 
a mode at 0'. (See Example 6.4.) 

Axial data occur as directions of o3pticaJ. axes of crystals. 
Thc distribution of the resultant of a random sample of unit vectors 

arises in representations of sourid waves (Rayieigli, 1919), interference among 
oscillations with random phases (Beckmann, 1959) and in niolecillar links 
(Rayleigh, 1919: Kuhn & Grun, 1942). 

The tlistributiori 0 x 1  the celmtial sphere of sources of high-energy cosmic rays 
ccan bc investigated using distributions on rotating spherical caps (Mardia 6i: 
Edwards, 1982). 

1.4.5 Psycholoyy 

Directional data appear in the perception of' direction under various 
conditions, such ils simiilatcd zero gravity (Ross et al., 1969). Circuliu data 
occur also in studies of the mental maps which people use to represeiit their 
surroundings (Gordon, Jupp & Byrne, 1989). 

1.4.6 Irrruye Arrulysiu 

Circular data occur in machine vision, as transformed versions of cross-ratios 
of sets of four collinear points (Mardia, Goodall & Walder, 1996). Axial data 
occur in the orientation of textares (Blake & Maririw, 1990). In particulitr, 
they occur as planar orientation fields reprcsent.ing the orientation of ridges 
on fingerprints (Evlardia et af., 1997). 

1.4.7 Medicine 

The incidence of onsets of'a particular disease (or of deaths due to the disease) 
at. various timw of yosr provides cireuliu di5tta. The data in Table 1.4 are such 

Spherical data occur in vector cardiology. In vector cardiograms, 
informat.ion about the electrical activity in a heart. during a heartbeat is 
described in t e r m  of a near-planar orbit in three-dimensiond space. See 
Downs & Licbmsn (1969) imd Gould (1969). 

an exasnple. 
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1.4.8 Astronomy 

Since informst.ion on distance is often not readily available for ;tutronomir:al 
objects, many astronomical observations ase of points on the celestial sphere, 
and so provide spherical data. 

It is mi iIiterevtirig tiistoritd point that Gauss developed the theory of 
crrors primarily for the analysis of astronomical measurements. Since the 
mcwurements involved were cwncentrat.d in a smdl region of t.he c:eleHt.id 
sphere: it was reasonable to approximate the sphere locally by a tangent 
plane. This led to the development of the theory of statistics on Euclidean 
spaces, rather thnri 0x1 the sphere. 

Several hypobhcses have been considered about the dist.ribut.ion on the 
ce1esti;rl sphere of various astronomicd objects. For example, Pdya (1919) 
aiyuired whet.her or not the stars me distributed uriiforrrily over the celestial 
sphere, and uniformity of visual binary stars has been considered by Jupp 
(1995). 

Orbits of p1anet.s (with known sense of rotation) can be regarded as points 
on the sphere (sce Example 10.5). Bcrrnoiilli (1735) enqiiired whether or not 
the close coin(:ide~m of the orbital plaies of the six planets then kriowri coiild 
have arisen by chance. His hypothesis can be interpreted as the statement that 
the corresporiding points co111e from the uniform ciistxibiition on the sphere. 
Similar questions have beexi asked about the orbits of cornets aid asteroids. 

1.5 Wrapping and Projecting 

Looking back at the exmnplc~ in Sections 1.2-1.4, we see that. they Fall into 
two groups. Data in the first group me obtained by taking data on the line 
and umpping the line round the circle, c’.g. by rediicing timw to times of 
day. Examples of this are given in Exasriple 1.1 a i d  Table 1.4. Such data are 
obtained typically from measurements with a clock. Data in t.hc second group 
are obtained I)y taking data in the plnrie a id  projecting the plane radially onto 
the unit circle. Examples of this are given hi Tables 1.1 1.3 aid 1.5, and by 
wind directions. Such data are obtained typically from measurements with a 
co1npaYs. 



Summary Stat is t ics 

2.1 INTRODUCTION 

After data tiave 1xm plotted (as tiescritxxl in Section 1.2), it is usefill to 
s u m i a r l e  them by appropriate descriptive statistics. At first sight: it is 
tempting to cut. the circle at a suitable point and to use conventional summary 
statistics on the resulting observations 0x1 the line. The c irawldc  of this 
approach is that the resulting summary statistics depend strongly on the point. 
at. which the circle is cut. To see this? consider il sitmple of sizc 2 on t.hc? circle 
consisting of the angles 1' and %go. Cutting the circle at 0" would give the 
sample mean as 180" and the sample standard deviation (using the 'biased? 
version of the sample variarice with divisor n) as 1 7 9 O ,  whereas cut8tiiig the 
circle at  180" = (-180") would give the sample mean as 0" and the sample 
standard deviation as 1". 

It turns out that the appropriate way of constructing sumiary statistics for 
circular data is to regard points on the circle as unit vectors in the plane. and 
then to take polnr coordixiatw of the sample Inem of t h e e  vectors. Measiirttv 
of location and of dispersion obtained in this way are considered in Sections 2.2 
and 2.3, respect.ive1y. The idea, of 'multiplying angles by p' (for p = 1,2?.  . .) 
lea& to the more general trigonometric moiiieiits, which are introduced in 
Section 2.4. 

2.1.1 Prdirninuries urrd Notetion 

Directioiis in the plaie mi be regarded as uiiit vectors x, or qt~h~alently as 
points on the unit circle (i.e. the circle of unit radius centred at the origin). 
There are two other useful ways of rt+prciixig s1ic.h direr:tions - as arigles a id  as 
unit complex numbers. Choose an initial direction and an orientation for the 
unit circle. (This is equivalent t.a choosing ;zn orthogonil1 co0rdinat.e system 
0x1 the plaie.) Tlieii ewh poht x 0x1 the circle car1 be reprt?yentt?d by a11 arigle 
8 or equivalently by a unit complex number z. These are related to x bv 

x = ( c o s ~ , s i n ~ ) ~  and z=ee' '  =cosO+isinB 

(see Fig. 2.1). 

Directional Statistics 
Kanti V. Mardia,Peter E. Jupp 

Copyright 0 2000 John Wiley & Sons, Inc 
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i 

f 
Figure 2.1 Reprexitation of the direction x by the angle 8 and by the 

complex number z = cos t9 + i sin 8. 

From note' 0 x 1 ,  all migles will be measiired in rcliiuis: iirilesv shted otherwise. 
Xotc t.hat the angles 8 and B + 2n (radians) give the same point on t.hc circle. 
Thus d l  withmetic that we s h d l  do on t.hc? circle will bc modulo 27r, so 
that we sball write without further co~iimeiit e.g. :I9 = + 02’ iiistead of 
‘8 = 81 + 82 mod 2n’- 

The representation o f  tiiiections hy migles cari be regarded as an intrirkvic 
upprauch to directional statistics, since the directions are considered as points 
on t.hc? circle itself? wherctw the rc.prwcntat.ion by unit. complex numbers can 
be regarded as an ernbeddiny upproud. since the directioris are considered as 
special points in the plane. In the embedding approach, distributions on the 
unit circle will be considered as singular distril)iitions on the pliuie whidi have 
their mass conceutrated on the unit circle. 

Notr t.hat. the rcq-msentations of directions by angles and by unit complex 
numbers depend on the choice of initial t1irm:tiou aid  orientation. In rnwt 
contexts there are no preferred choices and so it is essent.ia1 that statisticians 
who have ma& different rhoices (hut observed the same data) make the same 
infereiices. This requireiueut of coordinateindependent inference (which goes 
almost unnoticcd in infcmmce about ordinary real-viihicri random variables) 
dominates the theory and practice of inference in directioiial statistics. 
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2.2 MEASURES OF LOCATION 

2.2.1 The Mean Dimtion 

Suppose that we are giiven unit vectors XI, . . . , x, with corresporiding an&! 
Bi: i = 1:. . . , IL.  The rrtearr diiwtion 8 of @ I , .  . . $8, is the direction of the 
resultant XI + . . . + x,, of XI,. . . , xn. it is dso t.hc? dirw%ion of the centrc. of 
IUWY f of XI, . . . . x,~. Since the Cartesian coordinates of xJ are (cm 6,, sin 6j) 
for j = 1,. . . , n. the Cartesian coordinates of the centre of mass are (C, s), 
where 

(2.2.1) 

Therefore 8 is the soliitiori of the equations 

C = Rcos8, S = Rsin8 (2.2.2) 

(provided that R > 0), where the memi rcuzsltunt le7rgth R is giivcn I)y 

fi = (p + SZ)t/2. (2.2.3) 

Note that 8 i.1 not defined when R = 0.  Wheri R > 0, 8 is givexi explicitly by 

8 = { tan-'(S/C) i f C 2 0 ,  
t.m-' ( S I C )  + A if c c 0, 

(2.2.4) 

where the inverse tangexit fwiction 'tan-' ' (or 'arctan') takes t.dlua9 in 
[-n/2,7r/2]. Xotc that in the cont.ext of circular st.atist.ics 8 does not mean 
(6, + . . . -t 6, , ) /71 (which is not well defined, as it tieperids on where the circle 
is cut). 

Example 2.1 
For the roulette data in Example 1.1, C = 0.447 and S = 0.553, so the mean 
direction 8 mnd mean resultant Icngth R we 

8 =  51' and R = 0.711. 

Figurc 2.2 ~hows 8 and R for this dnt.n set and indicat.es the preferred direction 
of 51". 

It follows From (2.2.1) and (2.2.2) that 

(2.2.5) 

and (for R > 0) 
n 

c s i i i ( ~ ,  - 0) = 0. (2.2.6) 
j=1 
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Figure 2.2 The meark direction 6 and the mean resultant length R for the 
roaletk data in Exiurrple 1.1. 

Equat.ion (2.2.6) is andogous to 

n 

C(.j - 3) = 0, (2.2.7) 

for observations x1 , . . . , z,, 011 the line with sample 111mx1 3. Equations (2.2.6) 
and (2.2.7) state that the sums of deviations about the mean are zero. We shall 
show in Section 2.3.2 tlii%t the mean direction minimises H suitable measure 
of dispersion. 

We now consider the clfect of rotations on the sample mean direction. 
Suppose that a new initid tiirer:tion is chosexi, Inakiug aigle u with the origiiIial 
initial direction. Then the data points correspond to angles 

6'. 3 =6y -a, j = 1 ,  ..., 71, (2.2.8) 

Then 

If the polar coordixiatw of (C?, 3') arc! (rZ',P) then 

C' = Rcos(8 - a), S' = Rsin(B - a). (2.2.9) 

(2.2.10) 
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Comparison of (2.2.9) and (2.2.10) gives 

Thus the mean diectiou. of 81 - a,. . . ,8,, - a is 8 - a, i.e. the sample mean 
direct.ion is equiwariant under rotation. This equivariance is analogous to the 
equivarimice iiritier txnrislatiori of the sample xnenri of obsctrvations on the 
line, i.e. if q, . . . , zn are data points on the lime with samplc mean Z then the 
sample mean of -a, . . . , x , ~  -a  is 3 - a. The importance of such tquivariance 
on the circle (or the l i e )  is that statisticians using different coordinate system 
will agree on where the sample mean is, even though they may use different 
Iiiirnbers to describe its position. 

For axial dat.a, the mean a x i s  can be defined as follows. Let 81,. . . , dn be 
angles representing axes, and let. 3 be the mean direction of thc? doubled angles 
201, . . . 28,. Thexi the 711tN78 uxis is the axis given by $/2 ad 2/2 + 180'. 

2.2.2 The Median Dimction 

For t.hc? purpose of robust estimation (sw Section 12.4) it is useful to hii,v(a 

a versiou for ciwiilm data of the ,wnple median. A ~urriple 7nediurr direction 
6 of angles 01,. . . .8,, is any angle 9 such that (i) half of the data points lie 
in the axc [4,& + R), arid (ii) the r1iajorit.y of the data points arc) iiearer to & 
than to d + 7 ~ .  Wiexi the sample size rz is odd, the sample median is one of 
t.hc? data points. When n is even, it is  convenient to take the sample median 
as the midpoint of two appropriate adjacent data points. Population iriediaris 
are considered in Section 3.4.2. 

Example 2.2 
For the rou1ett.e dnt.n in Example 1.1, the ohscrvations (in degrc?es) are 43, 45! 
52, 61, 75. 88. 88, 279, 357. Fkorn Fig. 1.1, we see that; the ruedial direction 
is 52". This is close to the mean direction of 51' given in Example 2.1. 

2.3 

2.9.1 

The 111ean redtaut length R was introduced in (2.2.3) w the length of the 
centre of mass vector f, and is given by 

MEASURES OF CONCENTRATION AND DISPERSION 

The Meart ~ e s d t u r t t  Length urad the (%cdur vui%mce 

R = ((72 + S2)' /2.  

Since XI,. . . , x,, are unit vet:tc3rs, 

0 5 R 5 1 .  (2.3.1) 

If the directions 81,. . . ,On are tightly clustered then R will he almost 1. 
On the other hand, if el,  . . . ) 8,' arc) widely dispersed then R will be zlirriost 
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0. Thus R is a mcwure of concentration of a di5tta yet. Note that any data set 

does not imply that the directions are spread almost evenly round the circle. 
Equation (2.2.1 1) shows that. R is hvarimit uridar rot.ation. 

The re~~l l tun t  length R is the leiigtli of the vector resultant XI + . . . + x,~. 
Thus 

d tilt: form el,. . . , e,,, 8, + K, . . . ,en + R R = 0. It foii()ws that R 2: o 

R = nfi. (2.3.2) 

For xnost tiecriptive a id  inferential piirpows, the xriemi rwiiltmit length R 
is more important than any measure of dispersion. However, for purposes of 
comparison with data on the line, it is sometimes useful to consider mewurcs 
of dispersion of circular data. The simplest of these is the sample ciicdur 
variance defined as 

1,‘ = 1 - 8. (2.3.3) 

Xotc that. so~~it! authors, e.g. Batschelet (1981) iise ‘circular t”dTia.11ce’ to refer 
to 2(1 - 2) (compare (2.4.9) with p = 1). It follows hm (2.3.1) that 

O < V < 1 .  (2.3.4) 

2.3.2 Decomposition of Dispersion 

A useful measure of the distance between two angles 9 and < is 

1 - cos(l - <). 

Thus one way of measuring the dispersion of angles 81, 
iuigle 0 is by 

- n  
1 

D ( a )  = - C{1 - COY(#i -0)). 

la i-1 

It follows frorii (2.2.5) that 
D(6)  = V. 

... 

(2.3.5) 

,en about a given 

(2.3.6) 

(2.3.7) 
From the dccomposit.ion 

?I n 

( i=l 

n - xcos(9j  - a) = (n - I&) 3- nR - x c o s ( 8 i  - a) 
i=l 

together with (2.3.7) aid  (2.2.5), we have 

This is analogous to the identity 

(2.3.9) 

(23.10) 
1 ”  

la i-1 

- C(Zi - ?.)Z = - z)Z + (2 - ?#, 
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for observations XI,. . . , x , ~  on t.he line wit.h sitmple mcian 3. Equat.ions (2.3.9) 
and (23.10) provide tfecompositioriu of the total variation about, (x or ‘u into 
the sum of (i) the deviat.ion of the sample about. the sample mean (direction) 
anti (ii) the deviation of the saxnple mean (dirtx.%ion) from (1 or u. We shall see 
in Sections 4.8.2 and 7.4.1 that the decomposit.ian (2.3.8) plays an important 
role in the analysis of variance of circular data. 

It follows froin (2.3.9) that the diupersioii D has a iiiinirmmi of I.’ at e. This 
is analogous to the familiar result. that for observations q!. . . , zn on the line, 

is minirnistd when ti = Z mid that the iriiriirrial value is the (biased version of 
the) sample variance (with divisor t a ) .  

2.9.3 The Cdtculw Stundurrl Deviutivrr 

It is .winetimes useful t,o have mi analogue for circular data of the staudard 
deviation of data on the line. One way of obtaining such a summary statistic 
is by t,rrisformat.ion o f  the sarnple variance 1,‘. We shall show later (in Stxtion 
3.4.2) that an appropriate transformed statistic is the sample carcdur standad 
deviation given by 

(2.3.11) 

Note that ZI takes values in [0, cc], whereas i.’- takes values in [0, 11. 
For srriall V ,  (2.3.11) reduces t,o 

.l, N (2V)’/” = {2(1 - W)} ’ / ” .  (2.3.12) 

where R 2  denotes the mean resultant length of the doubled angles 281. . . . ,Zen 
(see (2.4.4)). 

An alternative to (2.3.5) for measuring the distance bctween two angles 8 
anti < is 

min(6r - < , 2 ~  - (e -<)) = T - IT - 16 - <ll. (2.3.13) 

The corresponding measure of the dispersion of angles 81, . . . .en about a given 
angle a is 

(2.3.14) 
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The fiinct.ion do has a minimum at t.he sample mtdinn 8. The circular meun 
deviution is do(&). 

The carcular mean deflcre?ace is 

i.c. the mean distance bet.ween pairs of di5tta points. it follows from (6.3.46) and 
(6.3.48) that 6,) 5 n/2. The arialoglie of (2.3.15) which uses (2.3.5) instead 
of (2.3.13) to measure distance is 

which reduces to 1 - R2. 
The ctwular mngc is the length of' the smallest arc which contains all the 

observatiorlu. 01ie way of calculating the circular range is to (:lit the circle at 
the hiit.ial diectiou. and consider 81,. . . ,8,, in the range 0 5 di 5 2 ~ .  Let 
8(1) 5 . . . 5 8(,,) be the linear order statistics of 81,. . . ,dn.  The arc lengths 
betwemi adjacent obsewatious are 

Ti = 8(i+I) - qr.), i = 1:. . . , ' I &  - 1; Tn = 27r - + O(1). 

The circular range ,u? is 

~ = 2 a - m a x ( T ~ ,  ..., T,,). (2.3.16) 

The circular range is iisd in a non-pitramet.ric t.est. prwentcd in Section 6.3.4. 

Example 2.3 
For the roulette data in Example 1.1, 

6ri) : 43,45,52,61,75,88,88! 279,357 
' T i :  2,7,9,14,13,0,191,78,46 

so w = 360" - 192" = 169". This is clear from Fig. 1.1, since the longest arc 
which does riot, contain tuiy observation is (M0, 279"). 

2.4 TRIGONOMETRIC MOMENTS 

2.4.1 Definitions 

We have seen in Sections 2.2-2.3 that 

1 "  C = - C case,, 
i=1 

the moments 

1 "  

la i - I  

s = - ~ Y i I I B i  
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play keg roles in defining the sample mean direct.ion and the sample circular 
vwiiite. It is useful to combine them into the first triyorrorrietric rrio7nerrt 
about the zem damtion 

m; = c + is. 

(2.4.1) 

Extcnding this notion, we define the pth trigonometric moment about the 
m u  darectdora for p = 1,2, . . . as 

r n b  = up + ibp,  (2.4.2) 

where 

(2.4.3) 

(2.4.4) 

where 8, arid Rp denote the sample rnaari dirm%ion mid sample xxieim resiiltmt 
length of @ I , .  . . , p&. 

The pth trigonometric moment ahout the meun diwxtaon is 
- 

in ,  = ii, + ib,, (2.4.5) 

where 

In particular, it follows From (2.2.3) and (2.2.6) that 

mI = R. (2.4.7) 

The population versions of the trigonometric moments (introduced in 
Section 3.4.1) play an important role in the theory of distributions on the 
circle. 

In order to relate t.hc pth trigonometric mon1ent.s for concent.rated data on 
t.hci circle t.a moments on the linci, consider points XI ? .  . . , x,, on the line with 
sample mean f. The line can be wrapped onto the circle to give angles 

Bi 3= 11 + mi mod 2n, i = 1,. . . , n. 

It follows from the expansions 

1 1 1 
2! 4! sine = e - 3!e3 + o(e5), = 1 - ,e2 + _e4 + o(es) 
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t.hat., for c small, 

ep = p p + q X Z + O ( c 3 )  (2.4.8) 

(2.4.9) 

(2.4.10) 

2.4.2 Measures of Skewness and Kartosds 

The interpretations (2.4.8)-(2.4.10) of trigonometric moments of concentrated 
distributioris 0x1 the circle motivate the itsf! of 

Rz  sin(& - 28) 
(1 - @3/2 

i =  (2.4.12) 

;ty il meawre of skeumt.ss of cirwlar data. Similarly, (2.4.11) and the fact t.hat. 
82 = P for samples from wrapped riorrrial tlistribiitions (see the sentence 
after (3.5.65)) motivate the use of 

* R,cos(82 - 2e) - P 
(1 - R ) 2  

k =  (2.4.13) 

as a measure of kurtosis of circular data. For symmetric unimodd data sets, 
i is rienriy zero. For iiriirnodal data sets with a peak which is fitted well by a 
wrapped normal distribution, k is nearly zero. 

Example 2.4 
For the mallard data in Table 1.1, the first and second trigonometric moments 
are 

?n; = 0.500 - 0.5135 

e = 314": 

n ~ 2  = 0.383 + 0.491i, 

mi = -0.040 - 0.382.i. 

R = 0.716, 
This 

and 
R a  = 0.384. 

and so the measures of skewness imd kurtosis are 

i = 0.322 and k = 1.488, 

indicating some skewness and moderate kurtosis (compared with a wrapped 
riorrrial tiiiytribution) . The valne of indicates moderate concentration al)out 
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t.hc mean direction. &ich conccmtrat.ion about 314' is in agrwment with the 
histogram in Fig. 1.2. The inetfiau direction and the x~ieaxi tfeviatiori of this 
data set are 314.3" and 48.3", respectively, 

2.5 CORRECTIONS FOR GROUPING 

When grouped data are sunimarired, the cal(:ulatious proceed as if all data 
points in an intend were at the midpoint of'that interval. This cCm affect the 
values of WIIW st,atist,ics. If all the class iritervals have the saxrie length, then 
it follows hm calculations siniilar to those hi Stuart 8i Ord (1987. pp. 93- 94) 
that 8 and inp do not require correction for grouping: whereas Rp does need 
such a correction. The corrected value of R, is 

R; = a@h.)R,,, (2.5.1) 

where 
h / 2  

u(f1) = - 
sin(h/2) 

and h is the length in radians of each class intcrtd. In piwticiiliw, 

I? = a(h)R. (2.5.2) 

Sixice u ( h )  5 1.03 for h 5 45", the t:orrm%ions (2.5.1) arid (2.5.2) are irnportarit 
ouly when the grouping is coarse. 
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Basic Concepts and Models 

3.1 INTRODUCTION 

This chapter gives some basic theoretical concepts and various models 
for circular data. Distribution fii1ic:tions anti c.harirc%eristic functions of 
distributions on the circle are introduced in Scctions 3.2 3.3. 7Iigonomet.ric 
momcnts md various measures of location and dispersic.)n considered 
in Section 3.4. The key rriodel for circular data coiisists of the v011 Miues 
distributions, which are described fully in Section 3.5.4. The von Mises 
distributions can be obtairied by contfitioning I)ivariate rionnal ciistributiorlu. 
Various other distributions on the circle asise by radial projection of 
dist.ribut.ions in the plane, or by wrapping dist.ribiit.ions from the line to the 
circle. Some of these tliutril~utioiis are cc~iisideretf in Secbioiis 3.5.6- 3.5.7. Some 
models on the torus and on the cylinder are given in Section 3.7. 

We shall use the following notation: 

N means 'is appr(>ximi$ttcly equal to'; - usually xueans 'is distributed as' (sometimes it indicates an asymptotic 
expcusion but. the usage should he clear from the context); 

+ xxieais 'is approximately ciistributed as'. 

3.2 THE DISTRIBUTION FUNCTION 

One way of specif2.ing a distribution on the unit circle is by means of its 
distribution fiiwtion. Suppose that mi initid dirw-tion arid ai orieritatiori of 
the unit circle have been chosen. Then the distribution can be regarded as 
t.hat. of a random angle 8, and its di&n'b?stion finction F is defined a.3 the 
functiou 011 the whole real hie gisiveii by 

F ( r )  = Pr(0 < B 5 x), 0 5 x 5 27r, 

and 
(3.2.1) 

Equation (3.2.1) just states that m y  arc of length 27i on the unit circle has 
probability 1 (since s1ic.h ai arc is the wtiole of the circ:iimference of the rircie). 

F ( x  + 27r) - F ( Z )  = 1, --3o < x < cc. 

Directional Statistics 
Kanti V. Mardia,Peter E. Jupp 

Copyright 0 2000 John Wiley & Sons, Inc 
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For (2: 5 ;? 5 a + 2n, 

Pr(a < 6 5 3) = F(,$) - F ( a )  = ~ F ( z ) ,  (3.2.2) l8 
where the integral is a LebeugueStieltjt?s integral. The distribution fulic:tioii 
F is a right-continuous function. In contrast to dist.ribut.ion functions on the 
real line, 

l h  F ( z )  = 30, l h  F ( z )  = -00. 
z-+m .c+--'Jo 

By tiefinition, 

Xotc that, dthough t.hc function F depends on the choice of the zero direction, 
(3.2.2) shows that F(3) - F(n)  is independent of this choice. Thus changing 
the zero direction simply adds a coimtant to F. 

If the distribution function F is absolutely continuous then it has a 
pntbabi1it.y density func%ion f siic:h that 

F(0)  = 0, F(2x)  = 1. 

A function f is the probability density function of an absolutely continuous 
dist.ribut.ion if md only if 

(i) f($) 2 0 h i o s t  everywhere on (-E, DC): 

(ii) f ( O  + 27r) = f(0) almost everywhere on (--00, m), 
(iii) f,'" f(~)dd = 1. 

3.3 THE CHARACTERISTIC FUNCTION 
3.5.1 Definition 

Analogy with distributions on the lime suggests that a useful tool €or handling 
the distribution of ;t random angle 4 would bc. the fiinct.ion t e E[e"']. Since 0 
and # + 2 x  represent the same direction, it is necessary to restrict t to integer 
values. The characteristic function of a random angle B is the doubly-infinite 
sequence of complex riuriibem {cbp : 1) = 0. f l . .  . .} gisiveii I)y 

In , 

= ~ [ e ' p e ]  = /' e*p"riF(O), p = 0. f i ,  f 2 , .  . . . (3.3.1) 
0 

(3.3.2) 

(3.3.3) 

Then 

where JP cienotes the rox~iplex conjugate of o,,. We shall write 

40 = 1, 4,) = 4--p' l&l 5 1, 

9 ,  = u p  + ifip, 
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where 

(3.3.4) 

and 

~3,~  = E[sinpB] = sinpOcdF(0). (3.3.5) I'" 
Then 

L L p  = (Yp,  9-p = -$p, lupl 5 1, 5 1. (3.3.6) 

are population versions of t.hc pth sample Note that cbp, a p  and 
t.rigonomet.ric moments rnb, a p  imd bp defined in (2.4.2)-(2.4.3). 

3.3.2 Fourier Series 

The complex numbers {sp : p = 0: stl, . . .) ase the Fourier coefficieiits of F 
(we Feller, 1966, p. ,595; or Zygmund, 1959, p. 11). When the oiiJ are reliltd 
to F by forrriuln (3.3.1), it is usual to write 

(3.3.7) 

The relationship (3.3.7) does not cany any irnplication that the wries is 
convergent, still less that it converges to F. However, as we shall see in Section 
4.2, if CE (0; + j?;) is convergent then the random variable 6 has H density 
f which is defined alrnost everywhere by 

(3.3.8) 

(whcw conwrgence of the sum is in the L' scnse). This result is ;zn ilnalogug: 
on the unit circle of the inversion theoreiu for continuous random variabIes 
on the real line. Equation (3.3.8) can be written as 

3.3.3 Irrdependerict: arid Convolution 

Let nnd 82 be two angular rtuidorn w i a b l a ~  (so that the variable ( B , ,  02) 
takes values on the unit. torus). The characteristic function of (81, 6 2 )  is defined 
as t.hc doiihle squence {&., : p ,  q = 0, stl, st2,. . .} given by 

1. ip81 +t@z 
Op,g = El. 
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The variables 81. md 82 independent if and only if 

4,* = 4 p 4 ; ,  (3.3.10) 

where d and 4' denote the marginal characteristic functions of 81 and Bz. 
Let 01,. . . , B,, he random variables on t.he circle. The sum 

= 6, + . . . + 6, 

is the analogue of the sum of random variables on the l i e .  If 81, . . . ,8n are 
distributed independently then the characteristic function of S, is the product 
of the characteristic functioiis of 01, . . . !en.. Furt.lier, if 61, . . . , 0, are identically 
dist.ribut.ed with the common characteristic function {@p}O,fl,f?,., .  then the 
characteristic fimction of S,, is p H 4;. If the series C,"=-, lqip12 is convergent. 
then Sn has probability deilsity function 

Let 6 arid < I,e two iIdqwndent raridorn variables with rorrespomiing 
distribution functions FI and Fz. -4 calculation siniilar to that used for 
convolution of random variables on the lint? show that the distribution 
function F of 6 + < is given by 

d F ( 0  = I'" dFZ(C - ~>dFI(d>,  (3.3,ll) 

where C = B + [. if one of the random variables hiL5 il density t.hc?n so does the 
coiivolutioii. If 0 arid < liave tiamities f1 mid fi t h n  (3.3.11) shows that the 
density f of B -t < is r 2 x  

(3.3.12) 

It is shown in Section 3.5.3 that if one of the two random variables is uniformly 
distributed then so i.1 their cornwhition. 

Various other properties of the characterltic function are considered hi 
Sections 4.2.1 and 4.2.3. 

3.4 MOMENTS AND MEASURES OF LOCATION AND 
DISPERSION 

In this scction we consider population vcrsions of various sample qiiantities 
gi~i'en in Chapter 2. 

Y.4. I Trigonometric Moments 

The trigononaetric monaents 

(3.4.1) 
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have idrcady been defined in (3.3.4)-(3.3.5). Not.(! thi%t the scquence 
{ (ap, ap) : p = Ot f l! . . .} of trigoiiornietric momeiits of a random angle B is 
equivalent to the characteristic function of 8. It follows from t.hc uniqueness 
property (key prctperty (i) of Stwtion 4.2.1) that, in contrast. t,o tiistribiitior~ 
on the l i e ,  any distribution 0x1 the circle is determined by it.s nioments. 

For p 2 0: we write 
4,) = ppeiY Pp 2 0 (3.4.2) 

0 1  = Q, 01 = ,3, pt = p, p1 = p .  (3.4.3) 

6, + iJP, (3.4.4) 

(3.4.5) 

as the population version of (2.4.4). As the case p = 1 is used frequently, we 
shall write 

The pth tragonontetric ntoment about the mean direction is defined by analogy 
with (2.4.5) iL5 

where 
6, = E[cosp(8 - p)] ,  ,Jp 3= E[s~I~IJ(~ - p ) ] .  

3 .42  Mccayuw~ of Locution u7id Dispersion 

Recall from (3.43) that 
4, = pe? (3.4.6) 

The direct.ion p is dlecl the Y I M U ~  direction arid p is called the nimn resultunt 
length. Yote that p and p are the population versions of 6 and R, respectively. 
The effect o f  a rctt.ation by --$ is to map 6 to 8*, where 

0" = 0 - q. (3.4.7) 

The mean direction of 8' is 
p' = p - vj, (3.4.8) 

i.e. mean direction is equivariant under rotation. Further, 

4,: = e-ilq'+p. (3.4.9) 

The mean resiiltmt length p is invariant itrider rotation (arid reflection). -4 
straightforward calculation shows that 

E[sin(B - p ) ]  = 0, (3.4.10) 

which is the population mialoguue of (2.2.6). 
There are various useful illeasures of dispersion of a distribution 0x1 the 

circle, analogous t.a t.hc sample meaSureS of dispersion c:onsider,rc.d in Sections 
2.3.2 -2.3.8. The circulur wuriunce v of a raridom angle 8 is defined as 

v 1 - /> = 1 - E[cos(8 - p)] (3.4.11) 
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and is the populi5tion mitlogue of I' ils defincd in (2.3.3). Then 

O S v 5 1 .  

Using 1 - cos(8 - 5 )  to measure the distance between angles B and 5 as hi 

\'(a) = 1 - E[cos(~, - a)] (3.4.12) 

as a mxwure of the variability of B about a ~ i y  tfirectioii CY. Then calculatioiis 
similar to those in Section 2.3.2 give 

(2.3.5) lec7ds to the use of 

(3.4.13) 

Thus V has a nlinimum of Y at p. 
Since 

v = l R { l  - cos(8 - ")}dF(8)  

and the integrand is continuous and non-negativc.c, v = 0 if and only if the 
distribution is concentrated at t.fie point p. In this respect v is midogous to 
t.hc variance of a random variable on the line. If v = 1 t.hcn the distribution 
can be regarded ils so scattered t.hat. there is no c:oncc!ntrat.ion around any 
particular dirw t iou. 

The circular standad deviation c is defined as 

(7 = {-21og(l- Y)}':z = {-2logp}'!~ (3.4.14) 

a id  is the population arialogie of the sample circular st2aridard tltrviatiou 
defined in (2.3.11). 

The xnotivation for this definition is that wrapping the Iiorrrial tiistribution 
N ( p ,  o*) round the circle gives the wrapped normal distribution W N ( p ,  p)  
with p = exp{ -a2/2) as in (3.5.63), so that 

1 - Y = p 2 / 2 .  (3.4.15) 

For small v, (3.4.14) reduces to 

(7 Y ( 2 v y .  (3.4.16) 

The population version of the sample circular dispersion 8 is the circular 
disperuio.rr b defined by 

(3.4.17) 

The popiilat.ion version of t.hc sitmple median direction 8 is t.he median 
diwctton fi ,  defined as a diiectiou. 4 which minimises 

E [ r  - - 16 - &,Ill. (3.4.18) 
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Notc tlii%t (3.4.18) is the population i~nalogu~: of (2.3.14). A mcidian direction 
satisfie3 

(3.4.19) Pr(@ E b . , f i + x ) )  1 &, Pr(@ E ( f i - ~ , f i ] )  1 4 
A uniruodal distribution has a unique median direction. 

Asymmetry of a circular distribution can be measured by the skewness 

(3.4.20) 

which is the population version of t.hc? sitmple skewness d. Peaktdnws can be 
iueasured by the kurtosis 

6 2  - 1'4 

(1 - p)Z ' 
k =  - 

which is t.hc population version of' the sample kurtosis I. 

(3.4.21) 

3.4.9 A 

.4pplyhig 

The inequality (3.4.22) cannot be sharpened, as is shown by the symmetric 
discrete distribution with 

Y v 
Pr(@ = 0) = 1 - -, Pr(@ = *2sin-' E) = - 

2E2 2a2 * 

Vaxious other inequalities for distributions on the circle are givexi by Marshall 
& Olkin (1961). 

3.4.4 Symrnetvdoul DisYibutions 

The distribution of 8 is synmietrical about p if the distribution is invariant 
under the transformation 

8 H P - e 8 ,  (3.4.23) 
i.e. under reflec-tion in p. If 8 is syrrirnetrical about p a id  has ciwsity f ,  then 

f(@ - P) = A P  - 0 (3.4.24) 

If a tfistributiori is syriirrietrical about 8 = p then it is also syrnmetrical 
about 8 = p + n. Further, if the distribution is unimodal then the mean 
direction, the median tiirer:tion anti the ~riode are till tqual. Then the sine 
iuonients of 8 - p are zero, so that for p = 0 the Fourier expansiou (3.3.9) 
simplifies to 

} ( p=l 

X 

f(8) = 13- 2 ~ a , c o s p e  (3.4.25) 
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3.5 CIRCULAR MODELS 

51.5.1 Intduction 

In this ax-tion we describe .wine of the more import mit families of diytributions 
on the circle. The xllost basic distribution on the circle is the uniform 
distribution. The von Mises dist.ribut.ions stadicxi in Section 3.5.4 pli%y a key 
role in statist id inference 0x1 the circle, arialogous to that of the riorrrial 
dist.ribut.ions on t.hc line. Other useful distributions are the cardioid, wrapped 
normal, wrapped Cmichy, arid projeded iiorrnal ciistri1)utiorq considered in 
Sections 3.5.5--3.5.7. Some discrete models are considered in Sections 3.5.2 
and 3.5.7. 

Most 111odels for directioiial data 1,eloiig to the two ruairi claques of 
parametric models: exponential models and transformation models. Because 
the major infereriti;rl properties o f  the models for directional data coine f r o ~ r t  
their structure as exponential models or transformation models, it seems worth 
summarising here the main properties of these two classes of models. 

An aponerrtid rrrodel has probability tlerisity fuiictious of the form 

f ( G 4  = W3') e x p ( # w T t ( 4  - $(w))  (3.5.1) 

with respect to some dominating rrieasiire A, wtiere t anti 4 are IR."'-wlued 
functions on the sample space .Y and the parameter space 12, respectively. The 
function t is cdled the canonical statistic md &(w) is  called the mnonicd 
yaru7rseter. If d is the tlimeiisioii of cj(St) arid the representation (3.5.1) is 
minimal then the model is called an (m,d) eqnential  model. If d < 'in then 
the model is called a curvrA expwential rrrudcl. If d =Z 'rrt then (3.5.1) mi be 
written as 

f(s; e) = a ( ~ )  exp{oTt(z) - ti@)}, (3.5.2) 

where 6 runs through a subset 8 of IR."'. If 0 is open in IR"' arid 

then the model (3.5.2) is called a reyukw aponerrtid rriodel. The key properties 
of regular exponential models are as follows: 

(i) the fimt two rno111ent~s of the cario~iicd statistic me given by 

(3.5.3) 

(3.5.4) 

(ii) the Fisher inforrriation matrix is \=re( t) ; 
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(iii) if z1, . . . , z,~ are independently distributed with prohahi1it.y density 
furictiori (3.5.2) then the ,wnple rnean t has probability deiisity 
function proportional to 

exp { n  (6Tf - @(6,)}, 

aJld 
i, is sufficieiit for B; 

(3.5.5) 

(3.5.6) 

(iv) the Inaxirriiirn likelihood estimator 8 of 6 is unique and is giivexi I)y 

Eb[t] = t, (3.5.7) 

where E deriotes the sa~riple rnean of t. 

Further details about exponential models can be found in Chapter 2 of 
Barndorff-Nielseri (1978a). 

A (composite) tiunsfonnatdon model is a model in which a group G acts on 
both the sample spme X and the parameter space $2, such that if the random 
variable z has probability tierisity function f ( x ;  u) then the ra1ido111 variable 
gx has probability density function f ( g z ;  gu).  Then 

f(!W WJ) = f(G *9X(YY X I ,  ( 3 . 5 3 )  

for some Function ‘L. on G x X. A transformation model is a composite 
transformation motiel in which the group G acts txrdtively 011 the parameter 
space, i.c., for any r~ and 3’ in I], there is a g in G such that gd = u’. 
The standard examples of transformation models arc’ loration models on the 
line. Here the group is the additive group IR arid the underlying Iueaxure is 
Lebesgue measure, so that (3.5.8) becomes 

f ( z + g ; u + y )  = f ( z ; w ) .  

For our purposes, the key property of composite transformation models is that 
the maximum likelihtxd mtiniator 3 of w is eclui\wiant, i.e. 

LJ(g21 I .  . . 1  gzn) = gij(z, . . . , zn) .  (3.5.9) 

Further details about composite transformation models can be found 
in Chapter 2 of Barndorff-Melsen (1988) and Section 8 of Bandorff- 
Nielseri, Blifsild & Eriksen (1989). An ezponerrtxnl tru~~.~for7r~~tiorr rrwdcl 
is an exponential model which is also a composite transformation model. 
Exponential transformat.ion models hii,v(a a wry rich structure. Stit? Barndorff- 
Nielsen et ul. (1982) or Sectioii 2.5 of Bmndorff-Nielseri (1988). 

Many of the tests used in directional statistics are either likelihood ratio 
tests or score test,s. Sirice score tests are riot as well kriown as likelihood 
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rat.io tvsts, we recall their construction imd main property. For a parametric 
statistical rnodel wit.h parameter w = ( t l tT ,  x ~ ) ~ ,  denote by l (w;  21, . . . , x,) 
t.hc log-likelihood based on a random sample 21, . . . , 2, , and let. 

be the corresponding Fisher information matrix. If $,-, is a given value of 3 
then the score test of the null hypothesit H,-, : q5 = qb0 rejects Ho for large 
values of s = u  T Iq5+.xu, -1 

where 

aid  both U a i d  I$$.x are evaluated at the maxirnum likelihood estirnate of 
w under Ho. I'nder suitable regularity conditions, the large-sample asymptotic 
r i d 1  ciistri1)ution of S is 

where u is the dimension of the interest parmeter $ (see Cox k Hinkley, 
1974, Sm%ion 9.3.) 

. 2  s .yv, 

3.52 Lattice Distributions 

Consider a discrete distribution with 

and 

= I J ~ ~  I' = 0,1,. . . , r n  - 1, 
27rr 

Pr @ S = V + -  ( n1. 
(3.5.10) 

The points v+ fl?rr/rn are the vertices of an m-sided regular polygon irwcribed 
in the unit circle. If all the weights ase equal then 

1 
pr = -. 

in 
(3.5.1 1) 

This tfistributiori is &led a diucretc unaform distribution or1 rri poiIits. The 
case 11% = 37 gives the distribution of the stopping position of the hali on an 
uribiawd roulette wheel. 
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?=O 

(3.5.12) 

and so 

For the tiisrrete uniform distribution, (3.5.12) reduces to 

fpp = 1 for p = 0 (1nodm). (3.5.13) 

(3.5.14) 

A Poisson distribution on the circle will be presented hi Section 3.5.7. A 
model for the distribution of the first significant digits is given in Example 
4.1. 

3.5.3 Uniform Distribution 

The most basic distribution on the circle is the uniform distribution; this is 
often used as the null mod~l .  It is the unique distxibution on the circle which 
is invariant under rotation and reflection. It has probability density function 

1 
2n 

f($) = -. (3.5.15) 

d - a  
Pr(u < 6 5 3) = - 

2ir ' 
i.e. prot)ahiIit,y is proportional to arc length. Integration o f  exp(i@) shows 
that 

(3.5.16) 

Thus p = 0, so v = 1 arid there is 110 coxicentratiori about any particular 
direction. 

Let 61 , . . . , e,, be 'rr. independent iiriiforrri raridorn variables with ~ O I I I I I ~ O I ~  

characteristic function {4bp}~.*l,j--..... The characteristic function of the sum 
Sn = 81 + . . . + 0, is { # ; } O , * I , ~ ~  ,.... From (3.5.16), 

which is the ciiuat:teristic function of the iiriiforrii distribution. It follows fr(m 
the uniqueness property (key property (i) of Section 4.2.1) that S,, is uniformly 
distributed ON the circle. 1% shall see in Section 4.3.1 that, under a Iriild 
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condition, for iiny independent and identir:ally distributd random tari:rbles 
el..  . . , On, S,, teiids to the uiiiforrri clistributiou as 7i + cc. 

Furthermore, let 81 be distributed uniformly and let 82 have any distribution 
whatsoever. If 191 mid 8, are irideperitieritly distributed then the characteristic. 
function of 6)1 + #2 is given by (3.5.16). Hence, by the uniqueness property 
(key property (i) of Section 4.2.1), 81 + 02 is di&.rihut.d uniformly. 

3.5.4 Von Mhes Dastributdonu 

From the point of view of statistical inference, perhaps the most useful 
distributions on the circle are the von Mises distributions. 

Definition 

The von Mise.u diYtTbbUti078 M ( p ,  6) has probability density function 

(3.5.17) 

where 10 denotes the modified Bessel function of the first kind and order 0, 
which cram be defined by 

(3.5.18) 

(take p = 0 in (A.1) of Appendix 1). The function I0 has powcr serics 
ex yaisioii 

(3.5.19) 

(take p = 0 in (.4.2) of Appendix 1). The parameter p is the mean direction 
iuid the puaneter K is kriowii as the con~xrthntion ycrmnieter. The rntea.11 

resultant length p is A ( K ) ,  where A is the function defiled in (3.5.31) below. 
Note that M(p+.rr, ti) and M ( p ,  - K )  are the same distribution. To climinatc 

this indeterminmcy of the patameters p , ~ ,  it is usual to take K 2 0. 
This distribution was introduced by von Miscs (1918) in order to study the 

deviations of Irieitsurttd atomic weights from integral values. St% Example 6.4. 

The Shape of the Distribution 

The distribution is unimodal and is symmetrical about 6 = p. The mode is at 
t9 = p aritl the tuitimode is at 8 = p + 7r. The ratio of the tierlvity at the mode 
t.0 the density at the antimode is given by e2N, so t.hat the larger the value of 
K ,  t.hc? grwter is the clustering wound the mode. 

Figure 3.1 shows the tleiisity for p = 0 and K = 0.5,1.2,4. For K = 4, over 
99% of the probability lies in the arc (-90",W0). Figure 3.2 gives a polar 
reprweritation o f  the density for 11 = 0 mid K = 1.6. 
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0.8 
L 4  

Figure 3.1 Dcxixity of the von M i s e  distribution M ( O ,  n) for n = 0.5, I ,  2,4. 

Relationship with other distributions 

When K = 0, M ( p ,  n) is the uniform clistributiou. The approximation 
exp(s) N 1 + .r shows that for small K ,  

llf (11, n) N C(/A, tip), (3.5.20) 

where C(p,  ~ / 2 )  denotw a crtrdioid distxibution, as d~fintd in Section 3.5.5. 
Thus a von hiises distribution with sniall concentration parameter c w  be 
approximated by the cardioid distribution with the same mean direction 
and irieari rt?Yultarit length. As K + cc, the M ( p .  K) tliutriButit~ii becomes 
concentrated at the point (3 = p. If n is large, put < = K ' / ~ ( @  - p).  Then from 
(3.5.17) the  probithility density fiinction of ( is proportiond to 

exp{-lc.[l - ms(n-*/2c}]). (3.5.21) 
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Anti- 
mode 

Figure 3.2 Polar representation of thc deasity g(-;O, 1.6) of the von Mists 
distribution M(O,l.6) (Batxhelet, 1965, reproduced by permission, @) 1999 

-41nt~ic,m Institute of Biological Sciences). 

For large K ?  

so that,, from (3.5.21), < 
1 - cos(n-'/'[) = 3 K - y  -t o ( K - 2 ) ,  

N(0,I).  Hence for large K ,  

B + M ( / ! L , K )  j K C - ' / * ( 8  - p )  + X ( 0 ,  l), K, -# 30. (3.5.22) 

More generally, any von Mises distribution can be approximated by a wrapped 
normal distribution, as defined shortly before (3.3.64). It is appropriate to 
match the tlistxibutions by equating their first trigoxiomet.ric mornients. Thus, 
using (3.5.30), we have 

h f ( / d ,  K )  N WN(/6, A(K,)), K -# OC. (3.5.23) 

Although the approximation (3.5.23) was derived here as a first-order 
approxirnat.ioxi for large K, Kent (1978) hm shown that the approximation 
holds to a higher order in K. More precisely, 

f\.r,+f(B; p ,  K )  - fW"(e; p, .4(~)) = o ( K - ' / ~ )  K + 3cs, (3.5.24) 

where f v ~ ~ ( . ;  p, K )  and f b t p , ~ ( . ;  p, A(K) )  denotc the densities of the von Miscs 
dist.ribiit.ion M ( p ,  K )  imd t.hc? approximating wrapped normal distribution 
IV,V[p, A(K)) ,  respectively. Stephens (1963) has verified numerically that 
the approximation (3.3.23) is satisfact.ory for intermediate values of M. The 
worst match (in tenns of Inaxirrium d)soliite tiiierence o f  probal,ilit.y density 
functions) bctween a von Mises distribution and the a.pproximating wrapped 
normal dist.ribut.ion o(:curs for li N 1.4. Even in this caw the t.wo densit.ies are 
very close. The voii Miues distributhi M(p, t i )  is also close t,o the wrapped 
Cauchy distribution I.t'C(p, A(K) ) ,  as defined in Section 3.3.7, with the same 
mean direction a id  mean resultant length. This tneaiis that. the statisticimi 
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I I I 
-180° O0 180' 

Figure 3.3 Comparison of the probability density functions of the von Mises 
- -) and wrapped ( )! cardioid (- - - - - - -), wrapped xiorxtial (-- 

Caurhy (- - - - -) distributions with = 0 and p = 0.45. 

can work with whichever of these distributions is illost convenient for his 
purpose. For inferential purposes, the von Mses distributions me most usefiil, 
because of their structure as wyoiieiitial trariufort~iatio~~ models. 

Figure 3.3 gives a comparison of' the cardioid, wrapped normal, wrapped 
Caiirhy arid voxi Mises ciistribiitiorlv wit.h same values of p mid p .  

Characteristic function and moments 

Since the distribution is symmet.ricd about p? 

f l p  = E[shp(B - p}] = 0. (3.5.25) 

(3.5.26) 
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where I,, is t.hc? modified Bessol fiinct.ion of t.he first kind and order p .  The 
modified Bewe1 funct.iori I, can be tfefiried by 

(3.5.27) 

arid has pcmvr series expulsion 

(3.5.29) 

hi particular, 

a = A ( K ) c o s ~ ,  ,3 = A(n)sirip, y = A(&),  (3.5.30) 

where 
A(K) = I ,  ( K ) / I o ( & ) .  (3.5.31) 

(take p = 2 in (A.11) of Appendix 1). The fiinction A has t.hc? power series 
expansion 

1 1 11 
A(.) = 1 - -2 + -K - - 

I { 48 3072 
(3.5.32) 

which is uscful for small K (take. p = 2 in (A.12) of Appendix 1). This relation 
follows upoil iisirig the series definitions of I ~ ( K )  arid I t ( & )  given by (3.5.28). 
For large K, I, has the asymptotic expansion (see (A.4) of Appendix 1 with 
P = 2) 

tn - 1 (tn - l)(m - 9) 
8K + 2! (8K)2 

+ . . .} , (3.5.33) (a - l)(na - 9)(m. - 25) - 
3! ( 8 ~ )  

where na = 4p’. Using t.his expansion in (3.5.31) gives 

(3.5.34) 
1 1  1 
26 862 863 

a.l in (A.13) of .4ppendix 1. Differentiation of the series for 11 (K) given in 
(3.5.28) gives 

A @ )  - 1 - - - - - - + 0(.-3), 

(3.5.35) 
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Elimination of the derivative of 11 (K) yields 

and so 

(3.5.36) 

(3.3.37) 

The distribution function 

The distribution furiction of the voii k1i.w distribution M(O, K )  i.1 

(3.538) q e ;  o, = - J @  efi CUIj u (iu 
Io(K) a 

and is not particularly easy to evaluate numerically. A table of F(&T.K)  
for 0 < K 5 10 is given in Appendix 2.1. The result (3.5.23) means that 
the tfistribution function of n;(p, 6-l) provides an approximation to the 
distribution function of M ( ~ , K } .  For K > 10, t.his approximation is very 
accrurate. 

Improved approximations to the distribution functions of von Mises 
distributions are givcn by approximate normalising transformations which 
rt&e the trrisformat.ion 8 H n1f2(9 - 11) used in (3.5.21). I:pt.oIi (1974) gave 
the approximation 

K i  { (1 - &) B - & (1 + $) 08) + K(0: l), 

where 9 - itf(O,E), and showed t.hat this yields t.hc cumulative distribution 
fiinction of Af (0, K )  corrcct to 2 decimd places for li 2 6. A more rdined 
approxiriiation by Hill (1976) is that if B - M(0,  K )  then ,k N ( O ,  l ) ,  where 

... x = p - - - -  p 2y3 + 7y - 8y5 + 46y3 + 177y - 
8~ 128n2 3 0 7 2 ~ ~  

and 

Computcr algorithms for evaluating the von Mises distribution function hi%v(? 
been given by hfardia kL Zenlrodi (1975b) and Hill (1977). 

Selected quantiles of M(0, K) are given in Appendix 2.2. 

Genesis 

We now give five ways in which voxi h;Lises tfistributioris car1 arise. The first 
four of these me analogous to ways in which normal distributions arisc on the 
line. 
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Conditioning Normal Dzstvibution.~ 
Let x have a bivariate normal distribution with meal p = (ax p, sin p ) T  

and variance matrix K - I I ~ .  Put x = ~ ( c o s 8 , s i n e ) ~ .  Then the probability 
density func.tion of ( r ,  8) is proportional to 

(3.5.39) 

and so the condhiond distribution of 8 given T = 1 is M ( p ,  6). 

Mazivnum Likelaliod Chumcterisatton 

density functions of the fort11 
Convidcr a continuous location model on t.hc? circle, i.e. il sct of prohability 

f(& 4 = g v  - PI,  

where g is some given positive function on the circle. Suppose that g has 
writiuuous sworid derivative anti that (for 7h 3= 2,3) the maxirnum likelihood 
cstimatc of p based on observations (81, . . . ,On} is the sample mean direction 
e. Then 

= o  (3.5.40) 
g'(& - 9) #k 

C i= l  g(ei - e) 
and 

n 

(3.5.41) 
i= 1 

by (2.2.6). Taking PZ = 2 and firstly 612 = -81 and then 82 = 81 -t shows 
that g' (8) /g(8)  = h(sin 8) for some rontinuously (fierexitiable function h. 
Taking YZ = 3 shows that h satisfies h(z + g) = h ( z )  + h(y). It follows that 
h(z)  = lcz for wmci K, and so 9 is the prohability density funct.ion of a von 
Mist?% distribution. This dlarmteriratiori is due to voii h;LiYes (1918) mid is 
analogous t.0 t.he characterisation by Gauss of normal distributions as location 
models 0x1 the line for which the sample xnem 3 i.1 the rnaxixnurri likelihood 
estiiiiate of the population mean. 

Mun'rriurri Enbvpy  Approach 
Another way in which the \-on hfises dist.ribut.ions (3.5.17) arise is as 

maximum cntmpy dist.ribut.ions. The entropy of il distribution on t.hc circle 
with probability density function f is defined as 

(3.5.42) 

and is one way of mea5uring the closeness of a. distribution to the uniform 
distribution. Let t = (tl , . . . , t d I T  be a cl-tfinensional furiction on tlie circle arid 
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let. c he a given vector in R". Consider t.he problem of finding t.hc? distribution 
OII the circle for which the ent~-opy is maximal subject to E[t(z)J = c. It follows 
from Jcnsen's inequality and the c0nvexit.y of the function h(z )  = zlogz 
that this rnaxirnurri entropy tfistribution is a InerIiber of the ( d ,  d )  exponential 
model with canonical statistic t. (This result holds for any sample space. See 
Kagm, Linnik & Rao, 1973, p. 409. The choice of t.his mimimum cntropy 
tfistributiori as a distribution when E[t(s)] is specified is somet.iaies d l e d  
'the maximuni entropy principle'. See Jaynes, 1957; 1963.) In particular, the 
Inaxirriiirn entropy distribution 0x1 the circle with given xneim dirm%ion p a id  
givexi mean resultant length p is the von hfises distribution M ( p , & )  with 
.4(~.) = p. This characterisation is due to hlardia (1972a, pp. 65-66). 

Connection with a D i m i o n  Process on the Circle 
Consider a diffusion 011 the circle with irifinitesimd varia~ice o2 a id  

Cirit -Xsiu(ll - p).  Such a diffusion is called a won Mises process (Kent, 
1975) and is analogous to the Ornstein-Uhlenbeck process on the line. The 
equilibrium distribution of the von hfise?q process is the von Miseu distribution 
M (p, 2Xa -2). 

Cunnectdon with u Diflk9don Prwcess in  the P h e  
Consider particles which move: under a Brownian motion in the plane with 

iiifiriitesiriial variance 12 and drift ~(cotj p, sin P ) ~ .  Gordon 8t EIuctson (1977) 
showed that if the particles st.art at  t.he origin then the distribution of the 
points i5t which t.hey first hit the unit. circle is  t.he von Mises distribution 
M ( p ,  I€ ) .  

Simulation 

The von Mises dist.ribiit.ion A4 (p, li) can bc simiilattcd efficient.ly using the 
following algorithm of Best 8 . ~  Fisher (1979), which is available in the IMSL 
(1991) library. Put 

1 + b' 
t'=- 

a - (244  
26 * 

a = 1 + ( 1 + 4 / C ~ ) + ,  b =  
2K ' 

Let L:1, Uz, i73 be pseudo-random numbers in [0, l] (chosen afresh each time 
step (i), (ii) or (iv) is exwii:utc!d). 

(i) Put; z = co:oy(i~U~), f = (1 + I ' z ) / (T  + z ) , c  = n(,r - f). 
(ii) If c(2 - c) - Uz > O then go to st.ep (iv). 

(iii) If log(c/Uz) + 1 - c < 0 t.hc?n return to step (i). 
(iv) 8 = p + sign(U3 - 0.5) cos-l(f). 

The algorithm implements an mceptance-rejection method with envelope 
proport.ional to the wrapped Cauchy distribution WC( p, h)  . A different 



44 DIR ECTIOlVAL STATISTICS 

algorithm, which may bc faster t.han the above if lc changes from call to call, 
was givexi by Dagpunar (1991)). 

Convolutions of von Mises distributions 

Lct 01 and B:! he indepcindently distributed as M ( ~ I , K I )  and M ( p 2 , ~ ) ,  

respectively. It follows froin the coiivolution formula (3.3.12) that the 
pr0babilit.y density function of 8 = 81 + 0, is given by 

Since 

lC1 cw(< - /L1) + K2 cos(8 - - p2) 

= [nl cospl + n:! cos(0 - p3)] cm< + siiipl + r c p  sin(0 - p2)] sixic, 

ari application of (3.5.18) shows that (Mardia, 1972a, p. 67) 

Thus, the cc~iiv01nt;it~ii of two von h;Lises distributions is not a von Miws 
distribution. However, (3.5.43) can be approximated by a \-on Miscs 
dist.ribnt.ion, iL5 follows. From (3.5.23), the dist.ribut.ions iM(/h1 , ~ 1 )  and 
M(p2, ~ 2 )  can be approximated by the wrapped normal dit,ributions 
I.t'i%r(j61, A(.,)) and Ct'N(p2, A ( K ~ ) ) .  It follows from (3.5.67) that the 
wrivolution o f  these two tiii~tribiitions is the wrapped rionnal tiistribution 
WN(p1 f pz, . 4 ( ( / ~ 1 ) . 3 - ( ~ 2 ) ) ,  which in turn can be approximated by M ( p l  f 
142, A-' ( A ( K ~ ) A ( K ~ ) ) ) .  Thus 

81. + 82 M(p1 + /A:!, A- ' (A(K~)A(K: .L) ) ) .  (3.5.44) 

Sumerical studies (Stephens, 1963) have shown that this approximation is 
quite satisfactory. 

The probability density function of an ?a-fold convolution of von Miscs 
dist.ribiit.ions can he obtained by siibstit.ut.ing the charwterist.ic function of the 
SUIII into the Fourier series (3.3.9). In the case = 2, equating this expression 
to (3.5.43) gives 

LCc 

I o ( { K ;  +K.f  + 2 t Q K 2 C O S @ } l ' ~ )  = i0(/€1}Io(n2) + 2 ~ i p ( K 1 } I p ( K 2 ) c 0 s ~ .  

p= 1 

(3.5.45) 
This is the Neumann addition formula, which is valid for any complex 
riixmnhers K I  arid fi2 (see (.4.5) of Appendix 1). For n > 2, the Fourier 
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series for the probability density function of the c:onvolution of n von Mises 
tfistributioriv does iiot have a simplification a~ialogouv to that in the case 
ra = 2. However, the probability density function can be approxiniated by a 
von hlises distribution. 

Generalisations of yon Mises Distributions 
Useful gerieriilisatioris of VOII Mises tfistributioriv can be obtineti by 
extending the canonical st.atist.ic of t.he exponential model from (cosd, sin 8) 
to ( r ~ s  B? sin 8, cos 28, sin 28, . . . ? COY y8, sin y8). Taking y = 2 givw the (4,4) 
exponential model with probability density functions 

proposed by Cox (1975) and investigated by Yfantis & Borgman (1982). 
The dist.ributions can be unimoditl or bimodill, md they not. necesswily 
symmetrical. 

3.5.5 Cadaoid Ddstrrbutions 

Pt:rtarbat.ion of the uniform density by a cosine fiinct.ion produces the cnrdioid 
dauhibutiun C(p, p ) ,  which has probability density function 

(3.5.47) 

The nime comes from t.hc? fact tha t  the curvv given in polilr coordinates 
by I' = f(8) with f as in (3.5.47) is a cardioid curve. The distribution was 
introduced by Jetfreys (1948, p. 302). 

The rrieaxi resiiltmt length o f  C(p,  p)  i.1 p a id  (if p > 0) the mean ciirtx.%ion 
is p. The distribution is symietrical and uuimodal with mode at f i  (if p > 0). 
For p = 0, the cwdioid distribution rcvAm.s to thc uniform distribut.ion. For 
siriall p ,  Ctp,  p)  reprewnts a slight departure from uniformity. The rnairi UM? 
of the cardioid distributions is as small-concentration approximations (3.S.20) 
to the vori Y1i.m tfhtribtitions. 

If 8 - C(p2 p) and Ci, is any given angle then # - t;, - C ( p  - t), p) ,  so that 
t.hc? cardioid distributions form i5 composite transformation model under the 
group SO@) of rotatioiis of the circle. 

A simple calculation with characteristic functions shows that if 81 and 82 
are independent then 

Thus the set (3.5.47) of carciioid distributions is closed under convolution. 
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51.5.6 Projected Norman1 Di.stn'b?~tions 

Distributions on the circle can be obtain4 by radial projection of distributions 
on the plane. Let x be a random two-dimensional vector such that 
Pr(x = 0) = 0. Then I[xll-'x is a random point on the unit circle. (For 
more 011 this wrist,rwt,ioxi, see the discussion of proje&ed distributions in 
Section 9.3.3.) An important instance is t.hat in which x has a bivariate 
normal distribution .Vz(p? XI, in which C ~ Y C  ~ [ x ~ ~ - ' x  is sdd to hilvc a projected 
rrormul (or unydur Gau~siun or @'"yet troimal) distribution P&(p, X). A 
typical application occurs in meteorology: when wind velocity is modelfed by 
a biwiriate riorrrial tiii~tribution, the resulting marginal distribution for wind 
direction is a projected normal distribution. 

A t.diouu calculation shows tha t  the probability density function of the 
projected iiormal distribution F':V2(p? X) is (hludia, 1972a, p. 52) 

&(e; 0, X) + l~l-i'"o(e)ih(o(e))~((~:I-'/'(x~~-lx)-l~~~ A X) 

XTX--'X 
P(& CL, c> = ? 

(3.5.48) 
where @(a; 0, X] denot.es the probability density function of Xz(0, X), cb and 
CP denote the probability ciwsity func%ion arid ciirriiilative density furiction of 
N ( O ,  I) ,  = (cose,sid)T, 

and 1.1 A x  = pl sine - h cose with p = ( ~ ~ , h ) ~ .  hi particular, 

(3.5.49) 
1 

P(& b,O),I2) = -W +~cosB4(~sinB)$(~lcosB),  6 
where 12 denotes the 2 x 2  identity matrix. The distribution P.Iz(p,  X) reduces 
to the iiriiforrri distribution if mid rmly if p = 0 anti E 3= 0 ~ 1 2 .  Projected 
normal distributions can be bimodal and/or asymmetrical. 

Projwtrd normal distributions with p = 0 arc called angdur c e n t d  
Gauaviaii day hibi~ti07t.q. The probability daisity function of the aigilar ceiitral 
Gaussian distribution P.Wz(0: C) is 

(3.5.50) 
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Notc t.hat. p(19; cX) = p(B; C) for any non-zero c, .w we may assume without 
loss of gerierdity that 1x1 = 1. A coiinectioii betwemi angular central Gauvsitui 
distributions and wrapped Cauchy distributions is given in (3.5.72). Because 
1~(6; X) = p(B+x;  X), the iuigular ceritrd Gaussian distributions provide usc4id 
models for axial data. 

Each invertible linear transformation A of the plane gives riw to im 
invertible trarluformatit>ii PA of the iiriit circle by 

1 

(3.5.51) 

Then 
19 - PNZ(p,X)  + AX - PAcl(Ap,AEA'r). (3.5.52) 

Thus the set o f  projeded rionnal distributions is clostxi iiritier these 
transformations. Since PA = ~ 1 ~ 1 - 1 ~ ~  we may assume without loss of 
generality that IAl = I, i.e. that A is sunimodular matrix. Thus the projected 
riort~ial distributions form a composite transformation model with group 
SLz(IR}, the set of 2 x 2 unimodular matrices. This was exploited by Cairns 
(1975) anti Fraser (1979, pp. 219-231). By (3.5.72), Inaxirriiirn likelitiood 
estimation of the parameters in angular central Gaussian distributions (with 
1x1 = 1) is equivalent to maximum likelihood estimation in wrapped Cauchy 
tfistributions. This is cc>iisideretf in Section 5.4. 

It follows from (3.5.52) that 

6 - F'iYz(0, Z) + AX - PNz(O,ACAT), (3.5.53) 

so that. the angular central Gaussian distributions form a transformation 
model with group SLz(IR). In particular, each angular central Gaussian 
dist.ribut.ion can he obtained from the uniform distribution by a witable 
transformation ;FA. This is why the angular ceiitral Gaussian t1ist.ributions 
occur in image analysis, when 'textures' (fields of axes) are projected from 
one pliuit! to aiother (see Blake & MariIios, 1990). 

3.5.7 Wrappcd Distributions 

Definition 

Given a distribution on the line, we cram wrap it asound the circumference of 
the circle o f  unit rirtiiiis. That is, if z is a raidorxi variable on the line, the 
corresponding random variable zw of the wrapped distribution is given by 

Z," = x (IIl(>d 27r). (3.5.54) 

If t.hc? circle is identificd with the set of complex numbers with unit moduliis 
then the wrapping map 2 c) xu, can be written as 

x H P. (3.5.55) 
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If 2 has dist.ribut.ion function F then the dist.ribut.ion function F,, of xu, is 
giYell by 

x. 

F,(e) = { F ( e  + - F ( M ) ) ,  o 5 e 5 2s. (3.5.56) 

hi partictilar, if z has a probability ciwsity furic-tion f then the wrrespomiiIig 
probabiiity density function f w  of xw is 

kr=-m 

'x) 

f&a(e) = f ( e +  2~k). (3.5.57) 
k - W  

Properties 

(a) Perhaps the most important property of wrapping is that 

(. + y) ,u  3= X," + flu,. (3.5.58) 

(In algebraic language, wrapping is a lioriiomorphism from to the circle 

(b) If the characteristic functio~~ of x is 4 then the characteristic fwiction 
{dP : p = 0, f l ,  . . .) of xw is given by 

group S' .) 

Ojp = 4 ( P ) .  (3.5.59) 

To see this, note that 

Therefore the series xz, (a; + ;?:) is convergent and t.hc resnlt follows from 

(d) If r is infinitely divisible then z,, is infinitely divisible. (This follows From 
the hoInomorphiuIn property (3.5.58).) 

(3.5.57) arld (3.5.59). 
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(e )  There are (infinitely) many distributions on the line which can he wrapped 
onto any givexi distribution on the circle. To set! this, let. y be the probability 
density function of a dist.ribut.ion on thc circle and define a probability density 
furic%ion on the line by 

f(.) = p&), 2nr < z 5 2n(r + l), I' = 0. f l .  f2,. . . , 
where pr are airy non-negative numbers such that Cz-,p, = 1. Then 
fw = Ll. 
We iiow coimider soxiie importarit particular cases. 

Wrapped Poisson Distribution 

Just as reduction modulo 22~  wraps the line onto the circle, so (if m is a 
positive integer) reduction iriodulo 2mn wraps the integers onto the goup of 
mth roots of 1, regarded as a subgroup of' the circle. More precisely, if t is a 
random variable on t.hc? integers, then xu,, defined by 

I, = Znx (mod 2 ~ 1 1 1 )  (3.5.61) 

is a rtuidoin variable on the lattice { 2 r r / m  : r = 0.1,. . . , l i t  - 1) oil the circle. 
The probability function of xu, is given by 

where p is the probability function of z. 111 particular, if z hias the Poirsoii 
distribution with mean X t.hcn, from (3.5.62), sw has the wrapped Poisson 
d&?tn'b74tiun wit.h probability fiinction 

Ball & Blackwell (1992) showcd that these probabilit.ies can be written in the 
hiite form 

where w is a complex mth root of 1. 
J?rorn (3.5.59) the diaracteristic: fim:tion of B is 

It follows that the convolution of wrapped Poisson distributions with 
para.metcrs A1 and Xz is wrapped Poisson with paramettcr X I  + Xz. (This is 
also a cc>iisequence of the hoxno~xiorp~iisxu property (3.5.581.) This distribution 
appears in the study of distributions of triangular arrays on the circle (LCvy, 
1939). 
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Wrapped Normal Distribution 

The umpped norm06 d&?tn'bution W'X(p .p )  is obtained by wrapping the 
N ( p ,  u2) distribution onto the ckcle, where 

2 u = -2logp, 

i.e. 

From (3.5.57). the prcAmbility tieiisity fulic:tion of WN(pl p) is 

= c-"=/2 (3.5.63) 

Sincc the characteristic function of X ( p ,  u2 )  is given by ~ ( t )  = Exp(ipt - t202/2), 
(3.5.59) gives 

Q P -  - eiPP-P'u'/2, ctg = e-P 12 cospp, /j P -  - e-P'o' /2  sin pjh. (3.5.65) 

hi particwlitr, the mean direction is p (rnoti 25~): the mean resultant length is 
p, and zi;! = p'. Using (3.5.65) in (3.5.60) gives a useful representation of t.he 
dcnsity (3.5.63) as 

a 2  

For priccticd piirposes, the density qjW car1 be npproxirnated adtqtiat ely I)y 
the first three terms of (3.5.66) when o2 2 2a, while for u2 5 25~ the term 
with k = 0 of (3.5.64) gives a reasonable apprcmirriation. The dexaity 4, car1 
bc expressed in t.ernis of the theta function 93 as 

(see Abramowitz & Stegun, 1965, p. 576, 16.273.) 
The clistril~utioii WAr(p, p )  is unimodal arid symiuet.ric about; its mode p. 

As p -+ 0, W X ( p , p )  tends to the uniform distribution, while as p -+ 1 it 
tends t.o i5 point dist.ribut.ion i5t p. The dist.ribut.ion funct.ion can be obtained 
on integrating the series (3.5.66) term by term. 

If B - I . t 'N ( j r ,  p )  then 8 - 3 - W N ( p  - li:, p ) ,  so that the wrapped normal 
distributhis form a ccmpoyite t;r;uisformat~ioii model under the group SO( 2) 
of rotations of t.he circle. 

It follows from the homomorphism property (3.5.58) and from (3.5.63) 
(or from consideration of the diasacteristic function) that if 6)1 aid 82 are 
independent then 

ei - W N ( ~ ~ , ~ , ~ )  ( i  = i ,2)  r=$o, + ep - W N ( ~ ~  + Ii2,p,lb). (3.5.67) 
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The wrapped normal distribution i5ppciars in Brownian motion on the circle. 
More precisely, corisider a cc>iiti~iuouu-time Markov process mi the circle, 
regarded as a random walk in which (i) a particle starts at 8 = p at time 
t = 0, (ii) the particle xxioves iIifinitesimal distances in irifiriitcsiIria1 time 
periods, and (iii) at time t the infiuitesimal diiplaceiuent has mean zero and 
variance gZ = ct. Then the distribution of the position of the particle at 
tirxie t is W X ( p ,  exp( -c t /2 ) )  (.we de €las-Lorentz, 1913, pp. 24-25; Stephens, 
1963; h.Z. S. Bingham, 1971, Theorem 6.2). The entire process is obtained by 
wrapping Browiiiui motion (on the 1i1ie) onto the circle. 

Wrapped Cauchy Distribution 

Consider the Cauchy distribution on the real line with density 

-30 < p < 30, n > 0. 

Its chacterixtic function is ~ - ~ l ~ l + ~ ~ b .  Corisquently, from (3.5.60)) we 
hid that the corresponding wrapped distribution is the wrapped Cauchy 
distribution with density 

(3.5.68) 
where p = c - ~ .  We shall den0t.e this distribution by tVC(p,p). It follows from 
considering the red pitrt of the geoxnetric series 

that (3.5.68) reduces to 

1 1 - p1 
2x 1 + y 2  - 2p cos(8 - p )  . 

c(@;p ,p )  = - (3.3.69) 

Further, 

qp = pl~ie'pfi, ap = plpl cospp, ,ap = plpl sinpp. (3.5.70) 

In particular, the mean direction is p (mod 22~) and the mean resultant length 
is y. The WC(p, y )  distribution is unimodal aid  symmetric ahout p. -4s p + 0, 
it tends to t.hc uniform distribution and as p --+ 1 it becomes conccntrated at 
t.hc point p. its distribution function is giwn by 



52 DIR ECTIOlVAL STATISTICS 

It follows from the homomorphism property (3.5.58) that the c:onvolution of 
the wrapped Caudiy distributions W C ( p I ,  y1) arid W'C(p2, pz) is the wrapped 
Cauchy distribution WC(p1 + pz, P I & ) .  

There is a close connec%ion between the wrapped Catichy axid the projected 
normal distributions. Kent & Tyler (1988) and hlardia (1972a, p. 52) showed 
that 

e - P X ~ ( O ,  c)  + 28 - w c ( p ,  P) ,  (3.5.72) 

with 

The wrapped Caudiy distribution was introduced by L6vy (1939) and has 
heen s tadid by Wintner (1947). M.icCullagh (1996) showed thi%t wrapped 
Cauchy distributions cafi be obtained by mapping Cauchy tfistributioris onto 
t.hc circle by t.hc transformation 2 F-) 2t.an-'z, and that t.hcy form a 
t,rrisformat.ion model iiritier the rorrespontfixig wtion o f  the Mobins group 
S&(R) on the circle. He dso observed that the wrapped Cauchiy distributions 
have the following harmonic property: if 8 hiL5 dist.rihution given by (3.5.69) 
the11 

for ariy complex fiiIic.tion g which is tuidytic' on the open iiriit disc arid 
continuous on the closed disc. 

The wrapped Caiichiy distributions generalist: to wrapped stable distrihii- 
tions. The characteristic function of a general stable distribution on the line 
has the form 

Eb(e*")I = dP9' 

(see Lukacs, 1970, p. 136). It follows from (3.5.39) and (3.5.60) that the 
prctbnbi1it.y density furit%ion of the corresporiding wrapped distribution is 

hi the care 6 = 0, Whitner (1947) proved that the distribution liar a wiique 
mode at p. The wrapped stable distributions with b = 0 include the wrapped 
riorrrial (a = 2) arid the wrapped Cailchy (u  3= 1) distributions. 

3.6 MULTIPLY-WRAPPED DISTRIBUTIONS 

3.6.1 

In various contexts {some of which were considered in Chapter 1) it is 
appropriate t,o ronsitier distributions with Is-fold rotational syrrimetry, i.e. 

Wrapping the Circle onto Itself 
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dist.ribut.ions which are invariant tinder 

27r 
k @ i - , 8 + - .  

In particular, if Ic = 2 these are the distributions with antipodal symmetry. 
Aritipo(i&y symmetric distributions 0x1 the circle are appropriate for 
modelling axial data, i.e. data where each observation is a unit vector with 
unknown sign. (In tc?rms of unit. complex numbers, axial data iue unit. complex 
xiumbers z such that we cannot distinguish between t and -2.) 

For any positive integer k, any distribution on the circle gives rise to 
a correpontiixig distribution with k-fold rotational symmetry hy 'putting k 
copies of the original dist.ribut.ion end-to-end'. More precisely, if the original 
dist.ribut.ion has probability density function f then the new divt.ribut.ion has 
probability dexmity funct.iori f* given by 

f'W = f(W- 
411 tiistributions with k-fold rotational syrrirrietry car1 be obtained I)y this 
construction. The reverse const.ruction consists of k-fold wrapping of the c i t rk  
onto itself, i.c. the transformation 0 I+ 18. Then f can he reccnwml from f' 
by this t,rar~sformatioxi. More precisely, 

3.6.2 Mixhms 

Orie coiitext in which wrapping of the circle (alto itself is useful is that of 
distributions with pr0baliit.y density functions of the form 

g w  = Af(8) + (1 - + n), (3.6.1) 

for some probabiiity density function f and some X with 0 5 X 5 1. If f is 
unimodal then g is bimodal with (in general) modes IF radians apart. By double 
wrapping of the circle onto itself, i.e. by the tra~isforrriatiori 8 e 4 = 28, we 
obtain a dist.ribut.ion with pr0baliit.y density function 

(3.6.2) 

which does not depend on the nuisance parameter A. 

probability ck1isit.y furic%iori givexi by (3.6.11 rediicus to 
If f is the probability density function of M ( ~ , K , )  and X = 1/2 then the 

cash(/€ cos(8 - p}) .  
1 

g(e) = ZZJq (3.6.3) 
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In order to mi&: inferences about K and p,  it. is worth approximating t.his 
distributhi by a doubly-wrapped voii h;Lises distributhi with probability 
density function 

cK [ cos 2(8-p)  

2x10 b l )  7 

where q i s  (iefiIied by matching rrieari resilltarit lengths: i.e. by 

(3.6.4) 

To sect thilt this is a good approximation for lilrge K ,  note t.hat. the 
characteristic fuiictioiis +,, aid 4; of (3.6.3) arid (3.6.4) are given by 

Define o and 01 by 

Then using (3.5.23) to approximate von Misss distributions by wrapped 
riorrrial distribirtions yields 

I P ( K ) / & ( K )  2: e-v2!’A ‘y e-pv: ‘y I ~ J K , ) / I O ( f i ~ ) ,  (3.6.6) 

so that the distributions (3.6.3) anti (3.6.4) arc! close. 

3.7 DISTRIBUTIONS ON THE TORUS AND THE 
CYLINDER 

3.7.1 Divtribsite’ona on the Toms 

Smietimw it is necessary to consider the joint, distribution o f  two circtllar 
random variables 81 and 02. Then (8l,&) takes d u e s  on the unit torus. In 
the uniform distribution on the torus, 01 and 82 arc independent and uniformly 
distributed. One application of the uuiform distribution on the torus occurs 
in Buffon’s needle problem (see Feller, 1966, p. 61). In this problem a needle 
of unit length is thrown onto a plarie partitioxid into parallel strips of unit 
width and the quantity of interest is the probability that t.he needle docs not 
lie entirely within a strip. Let 8, and 4 denote respcic*tively the direction of 
the riwlle aid 2n times the fractional part of the position of the centre of the 
needle from the edge of any specified strip. A suitable model takes (el,&) to 
I,e iiriiforrrily distributed 011 the torus. 
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One useful sct of distributions on the torus is the himriate von Mises model 
[Mardia, 1975a; 1975~) with probability density furictioris proportional to 

e x p ( ~ 1  cos(el - pl)  + K ~ C O S ( ~ ~  - p2)  + (cQs81,sin81)"A(cose*,sine2)}, 
(3.7.1) 

where A is a 2 x 2 matrix. The marginal distributions of' 81 and 92 are von 
Mises if arid only if either A = 0 (so that dl mid 8, are independent) or 
6 1  = 6 2  = 0 and A is a niultiyle of an orthogonal matrix (so that 81 and 82 
are uniformly distributed). An important submodei of (3.7.1) is obtained by 
imposing the coxistraint that A is a multiple of a rotation matrix. A series 
expansion for the normalising constant in t.his case was given by Jupp fli. 
Mardia (1980). 

3.7.2 Riatidbutiorrs on the Cylinder 

There are various practical sit.uat.ions which involve both a linear random 
variable z and H circular random variable 8. Then ( x ,8 )  takes valiie~ in the 
cylinder R x S'. Examples in rliythmometry, medicine and demography can 
be found in Batschelet et ad. (1973) and Batschelet. (1981). A suit.able model 
for most of these sit.iiat.ions is that proposed I>y Marciia & Siltton (1978) in 
which 

8 - hj(M,4, 
ZIB - K(p(#) ,  cry1 - d) ) ,  

where 
p [ e )  = p + aJ;t/lc~)s(e - .). 

Here po and u are angles, p is a real number? rc 2 0, and 0 5 p < 1. The joint 
density of (z,e) is 

Maximum likelihood estimates of the parmeters and a practical example are 
given in Mardia & Sutton (1978). A related regrttysiori model is considerctd in 
Section 11.3.1. 



4 

Fundamental Theorems and 
Distribution Theory 

4.1 INTRODUCTION 

Characteristic functions of distributions on the circle were introduced in 
Scct.ion 3.3. In Sertion 4.2 we present key propcntiw of these char;ictrrist.ie 
functions. We also show how the usual characteristic function of a raid0111 

vector in the plane can be used to obtain the distributions of the polar 
coordiriatw of this vm%or. This provides a rriethoti o f  ra tdat ing the 
distributions of the sample mean direction and resultant length of a sample 
from a distribiition on the circle. Some limit theorems on the circle arc’ 
corisidered in Section 4.3. 111 the subsequelit swtiow, we use results froin 
Section 4.2 to obtain the distributions of the sample resultant length and 
rttlatd statistics for samples from the iiriiforrn tiistribution mid voxi Miws 
distributions. 

4.2 PROPERTIES OF CHARACTERISTIC FUNCTIONS 

4.2.1 Key P f r q ~ e r ~ k 9  

The key properties of chararteristic functions of distributions on the circle are 
as follows: 

(i) a probability tfistributiori 0 x 1  the circle is tleterrriiiial by its diaracteristic 
function; 

(ii) weak convergence of distributions is cquivdent to pointwise convc~gence 
of diaracteristic functions, i.e. a seyuence FI, Fz, . . . of distribution 
functions convcrges weakly t.o F if and only if 4:;) -+ ciy for p = 
0, fl, . . ., where d’’) arid C$ denote the characteristic fulic:tioIis of F,, 
and F. 

.4 proof of (i) can be foulid in Feller (1966, pp. 591-592). The coritiiiiiity 
property (ii) can be proved using Helly’s selection theorem as in the proof 
for rnridorri variables 0x1 the line given in Lukacs (1970, pp. 49-50). Xotc that 
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Kanti V. Mardia,Peter E. Jupp 

Copyright 0 2000 John Wiley & Sons, Inc 
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property (i) is in marked contrast to the h&ii,vivio11r of charactcriutic fiinct.ions 
oii the line. One intuitive explanation for this is that 011 the circle it is iiot 
possible for the probabiity mass to 'escape t.0 inhiity'. 

The neatest, connt?c.tion Iwtwexi probability tfhtributioris 011 the circle 
and their cliaracteristic functions occiws for the distributions with syuare- 
intogable density fiinct.ions. Consider H probability distribution on the circle 
with tlaisity function f arid with chiarac'terihtic furictiori (& : p = 0, fl, . . .}. 
Then 

(4.2.1) 

If (4.2.1) holds then 

almost everywhere, where 9,  = up + ifi,,. 
The connection (4.2.2) between square-integrable density functions and 

charwtrrist.ie fiinctions has the plowant property that it. 'prwerves length', 
in the following sexist?. Let f and g be two square-swx~rnable density functions 
with characteristic functions Qp and QL, respectively. Then Pl?.rsevd's formula 
(Titchmaruh, 1938, 11. 425) states that 

(4.2.3) 

hi particular, 

4.2.Z Polar Distributions and Chamcteristie Amction.9 

In various contexts it is neccssary to obtain the distribution of the polar 
coordinates (r, 0 )  of a coiitinuous two-tfimeiisional rtuidoin variable (z, y) from 
t.hc characteristic function of (2, g). The polar coordinates ( r , e )  are defined 
1)Y 

x = 'T cos e, = T sin e. (4.2.4) 

If the characteristic Function @ of (s,y) is integrable, it follows from the 
inversioii thimreiii that, the probability density fwictioii of (c, p) is given by 
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Using (4.2.4) md defining p, CP and 4 by 
59 

t l  = pcosc8, t 2  = psinc8, 

J(p, 'P) = E [ e x p { i p  cos(t) - @)I] = t;,(tl,  t z ) ,  (42.6) 

we find that the joint density of r and 0 is given by 

e-ipr m s (  0-9) pJ(p, @}dpd@. (4.2.7) 

On integrating over B aid  iriterc:hangi11g of the order of intjegation, it follows 
that the density of 9- is 

The iririer integral is 
Io(ipr> = Jo(P.1,  (4.2.8) 

where Jo is the Beswl fu~ic.tion of the first kirici arid order zero, which mi be 
defined by 

(4.2.9) 

{take p = 0 in (A.15) of Appendix 1). Hence 

= -h J= J'" ~ o ( p r ) ~ ( p , ~ ~ ~ .  (4.2.10) 

Formula (4.2.10) may be described as an inversion formula for the distribution 
o f  r .  We rmi rttwrite it as 

2n p=u 0-u 

(4.2.11) 

where 

We now invert [4.2.11) to express .&(p) in t e r m  of pl(u.). From (4.2.6), we 
have 

On subst.ituting for 1.5 in (4.2.12) and intejipting over 9 (in the same way t.hat. 
we integrated over B in (4.2.7)), we obtah 

(4.2.13) 
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i.c. 61 is the Hankctl t.ransform of PI. Applications of the Hankctl t.ransform to 
statistics are gi~i'eii in Lord (1954). 

On using the expansion (4.2.9) for JO in (4.2.13), we obtain 

where pi denotes the kth moment of r .  Thus the moments of r2 can be 
derived from ti,l. ~n view of this property, 41 is described as the pkar moment 
generating firnetion. 

The margi:inal density of 8 mi be obtained from (4.2.7) by integration over 
T .  The joint characteristic function of r and B cCm be expressed as 

i*' 2n 
qei t r+ ipO 1 = Ji=,, 1, e i t r + i p ~ ~ ~  ( f ,  e)dmdd, 

(u 
where 

d)2(?,,8) = 1'h 4&?9!&, %dP, 

and the Bcssel function I p  is defined by (3.5.27). It is interesting to note that 
the moment generating func%ion of UIS 8 is sirnply 

(4.2.14) 

where op is the real part of the component (bp  of the characteristic function 
of 8. This result follows ON iisirig the Fourier expansion for the probability 
density function of 6 together with the cliaracteristic function of the von 
Miss  distribution. it can bc iisd to obtain t.hc moments of C:=, (:osBar where 
01. . . . ,Bn are imlependeiit observittioiis 011 a VOII h;Lises distribution. 

The Distribution of R 

Suppose that 81 ? .  . . ,Of, are diutribiitcd independently on t.hc circle and t.hat. 
0, has probability tlerisity fulic:tion fj for j = 1,. . . , T L  We give a geiierd 
method of' obtaining the distribution of R, where 

R' = C2 + S', 

j=1 j = 1  

The joint characteristic Function of (C, S) is 
n 

(4.2.16) 
j = 1  
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where I$, (p, a) is the joint charwterist.ie function of (cus rS,, sin Oj) ,  i.t. 

61 
- 

&(/I,@) = E[exp{ipms(rS, -a))]. (4 2.17) 

Hence, from the invcrsion formula (4.2.10) the probability density fiinction of 
R is 

This met.hod will bc used in Sect.ions 4.4-4.6 to obtain the dist.ribiit.ion of R 
in various particular cases. 

4.2.3 Further Properties of the Chamcteristie Function 

(a) .4 distribution 0x1 the circle witli distribution functio~~ F is called stable if 
for all angles cl and q there is a c such that the convolution Fc, * F,, of F,, 
anti Fc2 satisfies 

where 

Fc, *Fc, = Fc, 

F,(z) = F(z - c), 

etc. Lct {@,}~.fl,fa.... bc the characteristic function of F and put v = 
c - CI - ~ 2 .  T h ~ l  

ipW 4; = $hpe , 

and so 
c3, = 0 or c3, = elp". 

Hence we deduce from Sections 3.5.2 and 3.5.3 t.hat the stable circular distrib- 
utions are precisely (i) the uniform distribution on the circle, md (ii) the dis- 
crete uniform distributions concentrated on {v  + 27rr/m : I' = 0,1 , .  . . , nh - 1) 
for some v and i n .  

(b) It follows from t.hc Riemann Lcbesgue theorem (Titchniarsh, 1958, p. 403) 
t.hat for absoliitcly continuous distributions, 

lim @) = 0. 
p--f.33 

From L u k ~  (1970, pp. 17-18), we dediice t.hat. {@,}o,~I:~z,. .. is the 
characteristic furictiori of a lattice tlistxibution if and only if 

141 = 1 for sox~ie p # 0. (4 2.19) 
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4.3 LIMIT THEOREMS 

4.8.1 Central Limit Thwremq 

The rnairi ciistxi1)utiorlu 011 the circle which arise from corivolutioris of 
indepeiident and identically distributed random angles &re the uniform 
dist.ribut.ion and the discrete uniform dint.ribut.ions. 

Let 81, . . . ,a, be iiitlependeiit mid identically distributed rtuidorn variables 
on the circle. 1% show that the dist.ribut.ion of the sum 

s, =e, + . . . + a ,  (4.3.1) 

converges to the uniform distribution, provided thi%t t.hc? parent distribution 
is not a lattice distribution. 

Let (bp  be the characteristic funct.ion of the distribution of 81, . . . 9,. Since 
this is riot, a lattice ciistxibution, we have ho~n (4.2.19) 

lQpl < 1 for all p # 0. 

Hence the characteristic function d: of S,, tends to zero for all p # 0. From 
(3.5.16), this limiting characteristic funct.ion is the characteristic funct.ion of 
the uniforrn tiiiytribution. Therefore the rwiilt. follows 0x1 using the continuity 
property (property (ii) of Section 4.2.1). 

We now show t.hat. if 0 ha3 il 1at.ticc distribution on the circle with zero as 
a lattice point then the distribution of the sum S,, coiivergeu to a discrete 
uniform distribution. 

Consider a lattice distribution assigning prot)&i1it8y p,. to the point 2 m / m  
for r = O , l , .  . . , nh - 1: where 0 < < 1. We may take nh to be the srndest 
possible positive integer siich t.hat. the support of the distribution is contained 
in these points. Then there is an .Y which is coprime to r n  arid with pn > 0. 
From (3.3.12)? the characteristic Function of the distribution is 

(4.3.2) 

where w = exp{27t.i/m}. We have 

dp = 1 forp = 0 (mod na). 

If p # 0 (x~iod m) then u n P  # 1. Since the coefficients and of u" 
it follows from convexity of the unit disc that and wuP in (4.3.2) are 

l&,l < 1. Then 
0 if p # 01nod my 
1 if p = Omod ~n. lim 4; = 

n+m 

From (3.5.14), this is the characteristic functioii of the discrete iiriiforrii 
distribution on wa points. The result now follows from property (ii) of Section 
4.2.1. 
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To see that convergence need not. omir if the point 0 = 0 is not a lattice 
point, coiisider a distribution with 

Pr(0 = m) = q? Pr(B = CT -t- T) = 1 - q, 

where c is irrational arid y > 0. Then ~ $ 2 ~  = e2pri , so that 
not exist.. 

I$& does 

4.3.2 Poirw.w& 'Y Thwrcrn 

Intitition suggests that if a writiIiuous ciistxi1)ution is spread out over a large 
region of the l i e  then the corresponding wrapped dist.ribut.ion will be almost 
uniform on t.hc? circle. Poincark (1912) formidid this intuitive idea and gave 
the following example to illustrate it. Consider a nwtlle which is free to rotate 
about. the centre of a unit disc. After the needle is given an initial push, it 
spirw arid wentiidy stops. Let x denote the total di9taric:e covered hy a given 
end of the needle before it stops. The stopping position zw of the needle is 

xu, = z (mod 2x1. 

Thus xw is obtained by wrapping t round the circle. Poincark's result states 
that the variable z,, is distributed nearly uniformly if the spread of the variable 
z is large. 

For a given number c, defile 

XI = CIC. (4.3.3) 

We show that the distribution of the wrapped variable 

x:, = zI (mod 2x1 (4.3.4) 

tends to the uniform distribution as L' + 00. Let 4(1) be the characterltic 
function of z. Then the characteristic function of z,, is given bv &, = #(cp). 
Since z is a coiitinuous rmidom vahble, the Rieii1arm~ Lebesgue thieoreiii 
(Tit.chmarsh, 1958, p. 403) gives 

lirii 4(t)  = 0. 
Itl-+.u 

This implic!s t.h;tt. t.he characteristic fiinction of z:, sittisfics 

lim dp = 0: for all p # 0. 
1'- rx; 

Conscquently, the distribution of 2; t.ends t.a the uniform distribution. 
This result has alrrdy been tleriioiistrated in Section 3.5.7 for the special 

cases of the wrapped normal distribution WN(p,exp(-cr2/2)) as cr -+ 00 and 
the wrapped Caiichy ciistxibution W N ( p ,  e-") as n + cx). AIiot.her version of 
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Poinew6's resnlt, in which it is wsumd tlii%t the maximum of the density of 
z teiids to zero, is given by Feller (1966, pp. 62-63). 

Example 4.1: The Distribution of First Significant Digits 
It has been observed that for a wide variety of large data sets, the distribution 
of the first significant digits is not uniform on I , .  . . ,!I (as one might naively 
suypo~?) but is a good fit to the model 

Pr(first sigiificait digit of x = i) 3= log,,(i + 1) - log,, i (4.3.5) 

for Y = 1,2, .  . . ,9, which i.1 often kr~owri as the 'significmit digit, law', or 
'Benford's law'. This model was proposed by Newconib (1881). Bexiford (1938) 
arrived itt (4.3.5) independently through empirid stiidiw of many data scts. 
Table 4.1 reproduces one of Benford's examples, which gisivrs a ccmplete count 
(except for dates and page numbers} of fist significant digits froin large 
riwnhers in ai issue of the R P ~ w ' s  Digest. The expected freqiienries are 
obtained from (4.3.5). The observed value of x 2  is 3.27 and P r ( ~ i  > 3.27) = 
0.92, so that the fit is satisfactory 

Table 4.1 The frequencies of firs? significant digits from large numbers in 
issue of the R~ader's Digest (Bcnford, 1938, reproduced by permishion of 

American Philosophical Society) 

First digit Observed frequency Expected frequency 
1 103 92.7 
2 57 51.2 
3 38 38.5 
4 23 29.8 
5 22 24.4 
6 20 20.6 
7 17 17.9 
8 15 15.8 
9 13 14.1 

Total 308 308 

One heuristic argument for (4.3.3) is the following. k t  5 be the random 
variable which generates the data. Then it follows from Poinc.m-.ri?'s t,heorem 
t.hat, if the distribution of logs is very spread out along the line, the 
dist.ribut.ion of the wrapped random variable 

sqC = log,, z (mod 1) 

is almost uniform on the circle of unit circurnfcrence. The first significant digit 
of z is i, .i = 1,2, . . . ,9, if a id  only if 

i x 10' 5 z < (i + 1) x lo'+', 
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for some integer r .  Consequent.ly, 

Pr(tirst signific=mt. digit. of r = .i} = Pr{Iog,, i 5 zw < log,,(i -t l}) 
EZ log,*(i + 1) - log,, i, 

for i = 1,2 '..., 9. 
Careful derivations of ( 4 . 3 4 ,  from both (i) an argument using scale 

ixiwiant:e aid  (ii) a scheme of rmidoiri smripling from rmidomly chosexi 
distributions, were given by Hill (1995). 

4.4 

The dist.ribut.ion of the mean direction 8 and that of'the resultant length R for 
random samples from t.he uniform dist.ribut.ion are important in inference on 
the circle. They also arise naturally in random walks in the plane which s t a t  
from the origin and have steps of unit length in directions which are distributed 
indepentfently arid iiriiforrrily ON the cirde. Such raridom walks occur in the 
st.udies of random migration (Pearson, 1905) and the superposition of random 
vibrations (Rayleigh, 1880; 1905). It. is straightforward to generdise t.hc? results 
given in this section to tlie case aliere tlie Ierigtlis of succwsive steps of the 
random walk are not necessarily equal. 

THE DISTRIBUTION OF 8 AND R FROM THE 
UNIFORM DISTRIBUTION 

4-41 

If 81, . . . ,On are indeyendexitly arid urlifortrily distributed then, for miy 
constant angle c. (01 + c, . . . ,9,, + c) has the same joint distribution as 
(el , .  . . , e n ) ,  i.e. 

By (2.2-11), the sample mean direction 6 is equivariant under rotation (i.e. the 
memi tlirm:tion d 8, + c, . . . ,en + c is 8+ c),  while the snmple memi rt?Yultmit 
length R is invariant. (i.c. the mean resultant length of 01 + c, . . . , On + c is 
R), and so 

(6 + c, R) - (e, R),  

0 + C l R  - qi2, 

The DisYibutiwi of 6 und fi 

(el + c,. . .A, + c)  - (el,.  . . ,e,,). 

and 

i.e. the conditional distribution of 6 given R is hivariant under rotation. Since 
t.hc? uniform distribution is the unique distribution which is invariant under 
rotation, it follows that 

(4.4.1) 

(4.4.2) 
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Rttsiilt (4.4.2) has an interesting (:onverse. Kent, Mardia & Rao (1979) 
showed that iiidepe~ideiice of 8 arid R (for ~0l11e 2 2) diarmterires 
t.hc uniform distribution (among distributions with density continuous 
almost everywhere). This dinracterixatiori is in wntrast to G e q ’ s  (1936) 
characterlation of normal distributions by independence of the sample mean 
2 and t.hci sample variance b2. 

Since R = R/n ,  the distribution of R can be obtained readily from that 
of R. To obtain the distribution of’ R, we follow the characteristic function 
method of Sw%ion 4.2.2. Using 

in (4.2.17) shows that the characteristic function of (cosBj,sisin8j} is 

(4.4.3) 

where we have used the notation of’ (4.2.6). Since B has a dist.ribut.ion on the 
circle, the integral in (4.4.3) (foes riot, ciqwnd ON QI. On substit.uting its value 
from (4.2.8), we have 

Hence the characteristic fuxictioii of (C, S) is given by 

&(PI*) = JO(P1. 

JQ ( P )  ’’ 9 (4.4.4) 

which does iiot depend mi CP. On substituting (4.4.4) into the inversioii fnrriiiila 
(4.2.10) for R, we find t.hat the probability densit.4. function h, of R is given 
1)Y 

(4.4.5) 

where 

(4.4.7) 

Sincc p(R) = 0 for R > 12, the integral on the right of (4.44 vanishcs for 
R > n. A few particular caws of thc probability density fiinction /z,~ are 
discussed below. 

We now obtain the distribution function of R. Let Jl denote the Bessel 
fuxictioii of the first kind and order 1. defiried by (A.15) of -4ppeildix 1 as 



FUXDAMEKT.4L THEOREMS -4ND DISTRIBUTION THEORY 67 

We haw 
d 
ak 
- . { Z J l ( X ) }  = zJo(z) (4.4.8) 

(cf. (3.5.35)), so that t.hc distribution function corresponding to h, cCm be 
writtrin as 

(4.4.9) 

For 11 = 2'3, it is possible to get comparatively simple expressions for h,. 
= 2, we cai exploit. the fat:t that R2 = 2(1 + cc3se), where thie 111 the case 

angle 0 between the two st.eps is uniformly distributed, t.0 obtain 

0 < R < 2. (4 A. 10) 
2 

rl,(R) = =(4 - R")'/' ' 

For n = 3, the probability density function can bc expressed in t.ernis of'ellipt.ic 
fiinctions w 

I T - ~ w ~ R ' / ~ K ( J I L )  if R < 1, 
a-'R'lSK(1/7n) if R > 1, h ( R )  = { 

where 

(4.4.11) 

As R -+ l ,ha(R) -+ oc. For details of the derivation, see, e.g. Stephens 
(1962a). For n = 4,. . . ,7, the probability density fiinct.ion hiL5 been cdi:iiliit.td 
by Pearson (19OG), who also gave a series expansiou. which was used later 
by Greenwood & Durnnd (1955) to tabulate the distribution for 11 = 
6, . . . ,24. Durarid & Greenwood (1957) have examined thie axlequacy of 
sonic approximations by truncating Pearson's series expansion and compared 
various met.hods of approximation. 

A useful approximation for lasge IL is 

2 n P  + xi.  
which is derived below just before (4.8.14). 

saddlepoint approximation 
A more refined approximation, suitahle eve11 for srriall w.111~  of TL,  is the 

where 
t 2  = 2{ 22 - log lo (  k )  1 
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and 

k = A- ' (z )  

(see Jensen (1995, p. 165)). The approximation (4.4.12) holds uniformly in K. 

History 

The above problem of the random walk 0x1 the circle was proposed by Ii. 
Ptwson (1005) in a letter to Nature. Its asympt.atic solution had itlrtlarly been 
obtained by Rayleigh (1880) aid  was reported in response to Peamon's letter 
in Rayleigh (1905). The exact solution was obt.aincd by Kluyver (1906) and 
Pearson (1006) gave another proof of KIuyver's result. Later klarkov (1912) 
and Rayleigh (1919) studied this problem The solution given here (see also 
Mardia, 1972a, Section 4.4.2) seems to require a minimum of Bessel function 
theory. 

4-42' 
We now obtain the joint probability density function of 

The Ddstrrbution of C and S 

i= 1 i=l 

From Section 4.4.1, the joint. probabiiiit.3: density function of (8, R), where 
C = 8 ros e anti S = R sin 8, is 

where d,, is defined by (4-4.7)- Consequently, the joint probability density 
func%ion of (C, S) is 

(4.4.14) 
1 

2'iF 
g,(C,  S) = -&(P + s". 

We shall obt.ain the marginal distributions of C and S in Sect.ion 4.5.3. 

4.5 DISTRIBUTION OF C, S AND R FOR A VON MISES 
POPULATION 

We now assume that 81,. . . ,en is a random sample from the von hifises 
distribution M ( p ,  K ) .  
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4.5.1 

The joint probability density fimction q ( - ,  ’1 id., li) of (C, S) can be obtained by 
integrating t.he dexlsity function of #I,  . . . $8, keeping C and S fixed. Thus 

The Joint Distribution of C and S 

where the integral is taken over all values of 81,. . . , 8, satisfjying 

n R c cos Bi = c, 13siI16ri = s. 
i=l i= 1 

Takiig rc = 0 gives 

and so 

using (4.4.6). The miwginid distributions of C and S cannot. be obtain4 in a 
useful form from (4.5.2). We shall obtain them in Section 4.5.3 by a different 
approach. 

4.5.8 

On transforming (Cr,S) to (6: R) by C = Rcose and S = Rsine in (4.5.2), 
the joint probability density function of 0 and R is seen to be 

Diutribution.Y of 8 urrd R 

where I s ,  is the probithility density fimction of R for the uniform case md 
is giveu by ( ~ ~ 4 . 5 ) .  ~xitegratio~i with respect. to 8 shows that the probability 
density function of R is given by 

P(R) = - Z O ( K R ) ~ , ~ ( R ) ,  0 c R < n, (4.5.4) 

a rcsnlt due to Grwnwood & Dmand (1955). The large-sample limit.ing 
tfistributiori of (8, ii) is consitIered in Section 4.8.1. 

The marginal probability density function of 8 does not have a particularly 
simple form. However, using (4.5.3) mid (45.41, we obtain the iniportmt 
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result (Mardia, 1972a, p. 98) thi%t the conditional dist.ribut.ion of 8 given R is 
M ( p +  KR). i.e. 

(4.5.5) 

4.5.8 Maqinal Distributions of C and S 

The characteristic function of cose is gi\Vc.cn by 

To evaluate this integral, wc note that for complex a and b 

/d'" eXp(acos8 + ibsh8)& = t ln lo( (2 + b")'/"), (4.5.7) 

which (:mi I,e verified by expariding the exponential tenn arid using 

Thus (4.5.6) rddricw to 

The characteristic function of C is @(t)", so that by t.hc inversion theorem the 
pntbabi1it.y density furictioxi of I: is 

By contour integration of the irit,egiuid around the rect.;uigle with vertices 
( fc ,O),(fc ,~.p)  with c + 00, we find that 

Since the second part of the integrand is an even function of t, we have 

g ( C ; p : K )  = - 1 eKC'coalI 1" c o s ( ~ t ) ~ o ( { t 2  - (&sin p)2)':2)ndt. 
7r I0 (K)" 

(45.10) 
For p = 0, (45.10) reduces t.0 
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as given by Greenwood &. Dura.nd (19.55). For t.he isotropic cay(:, we take K = 0 
to Eet 

Y 

g(C;p ,O)  = JW cos(Ct)Jo(t)"dt, (4 3.12) 

as o1)taixied by Lord ( 1948). Largesarnple mid hi~~i-corn.eIItretion approximi- 
tions to (4.5.11) (4.5.12) are discussed in Sections 4.8.1 and 4.8.2. respectively. 

Replacing p by x / 2  - p in (4.5.10) givos the probability density fiinction of 
S w (Mudia, 1972a, Section 4.5.4) 

0 

Putting K = 0 gives the probability density function of S in the uniform case 
as 

y(S;p,Ic) 3= x-l  co~s(st).r,,(t)7+flt. (4 5.14) I" 
4.6 DISTRIBUTIONS R.ELATED TO THE MULTI-SAMPLE 

PROBLEM FOR VON MISES POPULATIONS 

Let (I!?,*, . . . , elrrr), . . . , (Q , .  . . .eqtlf) be Q indtrpeiident random ,w11ples of 
sizes n l , .  . . , nq from M ( p j ,  ~ j ) ,  for j = 1,. . . ,q. Let d j  and Rj den0t.e the 
111mx1 ciirec.tion a id  resultant of the j th  sample. We shall write 

4.6.1 The Distribution of R 

Again we utilise the characteristic function method used in Section 4.4 for 
the tiiiytribution o f  R in the iiriiforrn rase. In the notation of (4.2.6), the 
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After using the trtuisforrrintiori 0' = 0 - CP? this retlutxs to 

2Tr 

t;;(p,@) = - 1 exp(ipcos8 + K c O s ( e  - p + a))&. 
2TIO(KJ 0 

On substituting the value of this integral from (4.5.7), we obtain 

(4.6.3) 
.Jo({p" - 2 - 2ipKF,s(!P - / L ) } l f Z )  

4 ( p ,  *) = 

Hencc the joint characteristic function of C and S is given by 

(4.6.4) 

where 
1 p 

" j  = { f ? - / c ; - S e ' p K j c o s ( @ - p j ) }  . (4.6.5) 

On using (4.6.4) in t.hc inversion formula (4.2.10): we obtain the probability 
density function of R a.3 

-1 

f ( R )  = 2?r IT I g ( ~ j ) " j  n\kl(R; p,  K.)? (4.6.6) (i: } 
where 

By using t.hc method of Section 4.6.3 it cCm bc shown that, for q = 1, (4.6.6) 
reduccs t.a the probability density fiinct.ion of R for the von Miws distribution 
given by (4.5.4). 

4.6.2 

First we obtain t.he conditional dist.ribut.ion of R given R. Since, by (4.5.5), 
the coiiditiorial distribution of e, giveii Rj is M ( p j ,  ~ j R j ) ,  the characteristic 
function of (Rj  cosej, Rj sin&) can be obtained from (4.6.3) on replacing 
11, K anti p hy pi, KJ Rj arid pRj, respw%ively. Conqucritly, usiIig the 

The Joint Distn'bistion of ( R ,  R) 



FUXDAMEKT.4L THEOREMS -4ND DISTRIBUTION THEORY 73 

representation (4.6.2) of C and S? it follows t.hat. t.hc? conditional charwterist.ie 
function of (C, S) given R is 

' Jo(qt1jRj) 

j=1 

(4.6.8) 

Substituting (4.6.8) into the inversion formula (4.2.18) shows that the 
coriditiorial distribution o f  R given R is 

(4.6.9) 

where 

with w1, . . . ? luq defined by (4.6.5). 

function of R is 
From (4.5.4) and t.he independence of R1,. . . , Rq,? the probithi1it.y density 

(4.6.11) 

Multiplying this by (4.6.9) gives the joint probability daisity funct.iori of R 
and R as 

On dividing (4.6.12) by (4.6.6), it follows that the conditional probability 
tfeiisity fuiictioii of R given R is 

(4.6.13) 

where !PI and $2 are given by (4.6.7) and (46.101, respectively. 

4.6.3 Diutribution.Y for the Hvrrrvyeneoua Cue 

We now coiisider the liorriogerieous case, in which p1 = . . . = p,, = p a i d  
= . . . = K~ = K .  In this case, the distribution of R is given by (4.5.4). 

CoInparixig this with (4.6.6) shows that. 

(4 .ti. 14) 
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where 1 = (1,. . . , 1) denotcs a q-vwtor of 1s. Kcxt wc consider qz defined 
by (4.6.10). Without loss of geiierality, we iriay rotate coordinates so that 
p = 0. Further, on transforming (p ,+)  to Cartesian coordinates (z,.y) and 
perforrriing the same contour integration with resped to z as rarried out for 
(4.5.9), we obtain 

% ( R , R P k f i l }  

On transforming (5, .y) to polar coordinates and using the result 

2?r 1 Jo(R{$ - fiz + Pifip~oscP}’/~)dcP = 27rJo(Rp)lo(nR), (4.6.15) 

obtained from the Neumann addition formula (3.5.45), we find that 

With the help of the simplified versions of !PI and * 2  given by (4.6.14) and 
(4.6.16), varioiis distributions rdatcd to (R:  R) can be obt.nind. In part.iculiu, 
from (4.6.13), the conditional probability deimity fuiictioii of R give~i R is 

Sote that the conditional probabiiity density function (4.6.17) does not involve 
the parameters p and K. This is of considerable practical interest, and it 
forrriv the bliris of iriovt of the two-sarnpk mid multi-sample test,s presented 
in Sections 7.3 and 7.4. 

Thc cay(: q = 2 is particularly important in prac:t.iee. In this caw (4.6.17) 
simplifies nicely. Simple trigoncunetry giveA, 

R2 = R:+@+~R~R‘LcosA, (4.6.18) 

where X (with 0 5 X 5 a) is the angle between 81 and dz. If K = 0 t.hen 81 
and $2 iue uniformly dist.ribut.d? and so A is distributd uniformly on [O, TI. 
Hence, on using the transformation (4.6.18) from X to R, we find that the 
conditional probability density function of R given RI and RZ is 

(4.6.19) 
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(4.6.20) 

The fact that the probaliit.3: density function of’R given by (4.6.19) is identical 
to (4.6.9) wit.h q 3= 2 mid K. = 0 hnpliw that. 

r’m 1 

(4.6.21) 

Substit.iiting (4.6.21) into (4.6.17) wit.h q = 2 shows that the conditional 
probability derisity function of R, and RZ giveii R reduces to 

(4.6.22) 

where 0 < IR1 - R21 < R, 0 < RI + R2 < la and sin X is given bv (4.6.20). 

generalisation of t.his result to (4.6.17) is due to Rao (19G9). 
Result (4.6.22) WM obtained by Watson & Williarriv (1956). The 

4.7 MOMENTS OF R 

Let 8 be a raridorn variable on the circle. Put x = (cos8, 
the variance matris of x by X. Then 

arid denote 

tr I: = 1 - p1. (4.7.1) 

Similarly, if S cienotes the variance matrix of a raridorn sa~nple from this 
distribution, we have 

t r S  = -(I - R2). (4.7.2) 

Since S is an unbiased estimator of C, taking the expectation of (1.7.2) yields 

IL 

n - 1  

IL 
1 - p 2  = -(1 - E[R2]) n - 1  

and so 
1 E[P]  = p2 + -( 1 - p2).  
1E 

For the uniform distribution p = 0, and so (4.7.3) gives 

1 
E [ P ]  = -. 

n 

.4 calculatiou based mi (9.6.2) shows that 

(4.7.3) 

(4.7.4) 

(4.7.5) 
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4.8 

4.8.1 Largesample Approzimntaom 

The Joint Distribution of (F: and s 
By the rentrid lirriit theorem, the joint tiiiytribution of c = C / n  arid s = S/n 
is asymptotically normal. Their means, variances and covariance are given by 

E[(C,S)] = (a,:?) (4.8.1) 

) .(4.8.2) 
In particular, the aq7mptot.k: marginal distributions of and S arc normal. 
For the uniform case (x = 3 = ( x p  = ,& = 0, and so for YI large, fin(c, 9) is 
distributed asymptotically as N(0,Iz). Howcuer, the distribution of (0, R )  is 
riot so siixiple arid tieperids 0x1 whether p is 7xro or riot. 

LIMITING DISTRIBUTIONS OF CIRCULAR STATISTICS 

I + r.r2 - 2 2  & - 2 ~ ~ 3  
(cov(S,C) vax(S) ,$ - 2 4  1 - a2 - 2/32 

The Distributions of 8 and R 

Since a (52 + C2)1/2 

and 

(where tau-' (6')- is meamred in the irit,ennl [ - ~ / 2 ,  x / 2 ] ) ,  the astsympt,otic 
dist.ributions of 6, and R can be obtained from those of 6 and 9. 

Cue I: p > O. ~f p > o then the trarisfort~iatiou from (6,s) to (@,R)  is 
invertihlc at (a,d) and it follows from the asymptotic normality of (C,s) 
together with 'hylor expaxisiori (the '6 method': see RAO, 1973, p. 388), that 
the joint distribution of 8 and R is asymptotically bivariate normal with 

E[@] = p ,  E[@ EZ p ,  (4.8.3) 

(4.8.4) 

For distributions which are symmetrical about zero, 

(4.8.6) 

E[8] = 0 (4.8.7) 
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(4.8.8) 

E[R] = a, (4.8.9) 
1 - 0 2  

nvar(8) N - 
2** ’ 

A more detailed calculation gives 

+ O(n-3’2). 
1 - U y  

Ell?] = Q + - 
4 a n  

(4.8.10) 

(4.8.11) 

(4.8.12) 

If the parent distribution is M(0, M) then it follows from the general result 
(9.6.8) below due to Hen&&, Lmidsmiui k Ruyrngaart (1996) that 

~ ~ K . A ( K )  (1 - COY 8)  . X I ,  n + w .  (4.8.13) 

Case I t  p 3= 0. When p = 0, the trarisforrnation from (c, s) to (e, 8) is not. 
invertible at ( c u , ~ ) ,  so the above approach is not applicable. For simplicity, 
we consider only sitmples from t.hc? uniform distribution. In this case, (4.4.1) 
states that the distribution of 6 is uniform. Siwe fin(C, S )  is tfistributed 
asymptotically as N(Ol 1,tl 

2nR’ + x;, Y1 + cx. (4.8.14) 

The von Mises Distribution 

1% now assume that the parttrit ciistri1)ution is M(0, K )  with K > 0. 
Since p > 0, the joint distribution of 8 aid R can be obtained from w e  I 

above. The asymptotic means and variances are given by (4.8.7)-(4.8.12). 
Fro111 (3.5.30) arid (3.537)’ 

where 

2 4  I€ )  
0 2  = 1 - -; Q = A(.), 

K 

CoI1Yet~lleIlt ly, 

(4.8. IS) 

1 
?2Var(8) 2 - 

K A  ( K )  * 
(4.8.16) 
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Furt.her, from (4.8.12), 
1 
la& 

E[R] A(K) + 7. (4.8.17) 

From (4.7.3) aid (4.8.17), we have 

(4.8.18) 

By more detailed cdi:illations, wc can r d n e  (4.8.16) t.o 

If K is large, (4.8.17)-(4.8.19) can be siIriplified by using the exparision for A 
given by (3.5.34), i.e. 

For exariple, 

+.... A ( 6 )  = 1 - - - - 1 1  
2n 8n2 

(4.8.20) 

(4.8.21) 

4.8.2 High-Concentmtion Approximntaom 

Distribution of 1 - c 
Recall frorii (3.5.22) that if 8 - M(0,n) aid K is large then ~ ' 1 ~ 8  
Since ~ K ( I  - c:ose) N KP, we hilvc 

X(0,l). 

2K(1 - cosl9) + u:. K + Gc. (4.8.22) 

It follows from (4.8.22) and t.hc? iddithc property of x' distributions thilt if 
el. . . .8, are independelit and distributed as M(0, K )  then 

211n(l - C) + ,& (4.8.23) 

In practice: the asymptotic result (4.8.23) is not adequate for moderately 
luge values of K. One way of improving the approximation (4.8.23) is to 
multiply 2nn(l - C) I)y a suitable coilstant. so that, that its rrieaxi is drnmt 
exactly the limiting value t t ,  i.e. to replace tc by -1 such that 

E[2n3(1 - C)] = tb, 

either exactly or with error of order O ( K - ~ ) .  Such a multiplicative correction 
is a forrri of Bart.lett corrwtion for highly concuritrated distrihutions. Then 

(4.8.24) . 2  2uq( 1 - C) N Xn. 



FUNDAMEKT.4L THEOREMS -4ND DISTRIBUTION THEORY 79 

Using E[Q = .A(&) and the txpansion (4.8.20) for large taliics of K gives 

-,-' 3= K-1 + +-'L. (4.8.25) 

An alternative expression for 7 can be obtained by identifying the expression 
for nvar(8) given by (4.8.21) with I/?, giving 

-,-I 3= K - L +  +-'L. (4.8.26) 

Stephens (1969a) found that taking 

y - 1  = K-l + g K - 2  (4.8.27) 

(the average viiliie of l/r from (4.8.25) md (4.8.26)) ('nsiirw that 
approximation (4.8.24) is remnable for K 1 2. 

Distribution of a - 
Recall from (4.5.5) that 6JR - M ( p ,  KR). Shce 

R - c = R(1- cm@, 

it fdlows thi%t 
2nK(jZ-C)IR + x:, 

for large (c. Since this a.pproximation t.0 the conditional dist.ribut.ion docs not 
depend on R, it follows that 

% M ( R  - c) X t ,  K + OG. (4.8.28) 

A more refined approximation is 

where 7 is defined in (4.8.27). 

Distribution of 1 - R 
1x1 the identity 

2n/€(l- C )  = 2nn(l-  a) f Pn(c(R - C), (4.8.30) 

each term is approximately quadratic in 81. . . . ,On. It follows From Cochran's 
theorem (see, e.g. Sttiart 8t Ortf, 1991, p. 1490) that 

2'11K(1- R)  + &, K + Dc, (4.8.31) 

and the random variables 2 n ~ ( l  - E )  and 2 n ~ ( R  - c) are approximately 
indepentient . This irnportmt resiilt will be extended to higher dirrierisioris in 
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Section 0.6.3. It was obtained by a dittiamt mcithod by Wat,wn & Williams 
(1956). The approxiination (4.8.31) man be refirietl to 

2111.(1 - R )  + x:,  f i +  30, (4.8.32) 

where 7 is defined in {4.8.27). Replaxing the decomposition (1.8.30) by 

2ny( 1 - C) = z n ~ ( i  - R )  + 2ny( ii - C), 

where y is give~i by (4.8.27), arid using the refirie~rierit~ (4.8.24) of (4.8.23) 
yields 

2?Z7(1- c) x:,, 2p2.7(1- R )  Xt-1, 2laTfR - c) + x:, K + 00. 

(4.8.33) 
Kote the analogy between the decomposition (4.8.30) and t.hc decomposition 

(4.8.34) 

on the line (see (2.3.10)). If XI,. . . , x,, are distributed iridepexideritiy as 
rV(p, u2)  and (c is large then corresponding terms in (4.8.30) and (4.8.34) have 
approximately the same distributions, which are those in t.hci decomposition 

Xn = x r b - 1  + XI .  
2 2  2 

Approximations in the Multi-sample Case 
Suppose that, we have q iiitlependeiit raridoiri ,w11ples of sizes YII  , . . . , lip from 
itf(p,fi), j = 1, .  . . , q, summarked as in (4.6.1). From the a.bove discussion, it 
follows t.hat. for large lc 

. 2 r ~ ( n j  - R j )  N - 2  .xnj-lr j = 1 , .  . . , q .  (4.8.35) 2tZ(n - R)  N . K n - l ,  

Therefore 

and these two stat.istir:s are approximately indepcindent. Further spproxima- 
tions will be tliscusuecl in Sectiou 7.4.1. 

4.8.3 Further Appmzi'mations to the Distribution of R 

We now obtain approximations to the distribution of R whcin (i) 0 < K, < 1 
aid  (ii) 1 5 K 5 2. We luiow froin Section 4.8.1 that; R is asymptotically 
normal with 

(4.8.37) E[R] = p, rnar(R} = { 1 - p2 - 
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where p = A ( K ) .  By using variance-stltbilising transformations (we Rao, 1973, 
p. $26), we obtain, for each rmige of K ,  a function of R with asymptotic 
variance independent of p, and 80 of K .  After suitable modifications of’ 
the astsymptdk vuia~ices, these tr;uisfonnations provide a(icLquat.e norrrial 
approxiriiations to the distribution of R. 

Caw I. 0 < IC < 1. On using the npproxirnation 

frorii (3.5.32) in (4.8.37) we find that for srnall )c (Mardia, 1972a, (6.3.27)) 

k ( f i  - K )  ~v(o,2(1 - U2K2)), (4.8.38) 

where 

(4.8.39) 

Note that the same ronstnrit (I appears in (4.8.38) arid Stephens’s 
approximation (4.8.27). The variance-stabilising transformation g1 is (Mardia, 
1972a, (6.3.29)) 

yl (z) = siu-’ (ux) .  (4.8.40) 

Therefore the st at ist ic 

has mean approximately equal to 91 (K) and 

91 (2R) 3= sin-’ (2uI-2) 

ILvargl(2R) N 3/4. 

0 1 1  comparing the exact tail are. of R with various approximatioxis obtained 
on modifying the variance of 91 (a@, it is found t.hat the approximation with 

(4.8.41) 

(4.8.42) 

is quite ,satisfactory for 
below in c C w  I1 is recommended. For 
rximxi mid variance given by (4.8.37) is adeyiiate. 

K md using the asymptotic variance of R given by (4.8.38), we find that 

2 8. For K very near 1, the approxiixiatioxi given 
> 40, the normal approximation with 

The asymptotic mean given above can be improved. By expanding yl about 

For srridl IC, this reduces to 

(4.8.43) 
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Cam IZ. 1 5 K: 5 2. TJsing (4.8.37), the t-dri;~n~ncr-stahilising transformation 
92 is weii to be (Mmdia, 1972a? (6.3.32)) 

where c is givexi 1)eIow. By expaxiding ,r/A-* (r) ahout A-' (1.5): we find after 
some simplification that 

~ z ( K . )  = sinh- 1 - P-c1 - - log ( 7 + (1 + y2) '"} , (4.8.45) 
c2 

where 

c = c3/n'i2, CJ = 0.893 CL = 1.089, cz = 0.258. 

Hence the ~riarice-st,abilivirlg t,rarluformat;ioii is 

R - C I  
g 2 ( R )  = sinh-' - 

Q 
(4.8.46) 

with 
ravargz(i2) EZ c:. 

Again, on comparing the exact tail areaof R with the approximation obtained 
after rnodifyiug tfie variame t,o 

(4.8.47) 

it is found that the modified approximation is quite rtdequiltc: for n 1 8. 
Expanding y.t about; K and using the asymptotic variance of fi giveil by (4.8.38) 
shows that 

(4.8.48) 

The variancestabilising transformations (4.8.40) and (4.8.46) will be used 
in Sections 7.4.2 arid 7.4.4 to constnict tests of eqiial coricuritratiori of vou 
Mises dist.ributions. 



5 

Point Estimation 

5.1 INTRODUCTION 

Because of the special nature of the circle, the concept of unbiased estimation 
o f  rircirlnr pnrarrieteru requirt? careful cidinition. Section 5.2 provides such 
a definition and presents an appr0priat.e analogue of' t.he Crambr-Rao bound. 
Point cistimation for von Miws and wrapped Caiichiy distributions is discussed 
in Sections 5.3 a11d 5.4, respectively. Interval mtimation will be coxiuiderml in 
Section 7.2. Robust estimation on the circle will be considered in Section 12.4 
in the Inore general context of n h s t  t&mation 011 spheres. Estimation in 
mixtures of von Mises distributions is considered in Section 5.5. 

5.2 UNBIASED ESTIMATORS AND A CRAMER-RAO 
BOUND 

Circular distributions often involve circulw purumeters, i.e. parameters taking 
valuta on t.he unit. circle. For example, t.hc popalat.ion mcian direction p is a 
circular parameter of von Miws tfistributions. Because we carmot directly take 
expcctations of circular variables, it is not inimediatcly obvious how to define 
unbiasednws of est,irnators o f  circular parameters. The exnl)edding approach 
of regardiig each point 8 on the circle as the unit vector x = (cos8, sin6)' in 
the plane enables us to take expectations and so to define unbiasedness. 

Let. w be a circular pararieter of so111e family of circular distributioiis a i d  
let f. bc a statist.ic taking values in the unit. circle. At. first. sight, it. is tempting 
to call t mi unbiased thrnator o f  i~ if 

E[(cost,sint)] = (cosu,sin~}. (5.2.1) 

However, convexity of the uiiit disc meals that if t satisfies (5.2.1) then the 
distribution oft  is concentrated at u. Thus it. is appropriate to use the weaker 
definition that a st,atistic t taking values 011 the unit circle is ai unbiased 
estimator of LJ if the mean direction of t is LJ, i.e. 

Directional Statistics 
Kanti V. Mardia,Peter E. Jupp 

Copyright 0 2000 John Wiley & Sons, Inc 
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In this crtue, it follows from (3.4.10) tha t  

E[sin(t - u)] = 0. (5.2.3) 

There is a lower bound 0 x 1  the variability of unbiased estimators of 
circular parameters, analogous to t.hc usual Cram&-Rao bound for real-valued 
unbiased cstimi$tors. It can be obtain4 by the following variant of the ussal 
derivation. Let t be mi wibiatsed estimator of ul based 011 rtuidorn smriples 
81,. . . ,On from a circular distribution with probability density function f(-; w) 
wliich is positive everydiem. Differentiation of (5.2.3) with respect to u gives 

E[cos(t - u)] = cov sin(! - u), - 
aid 

(5.2.4) 

n 
where 

= el, . . . . , e,) = C i ~ g  !pi; .r) 
i=l  

is the log-likelihood. Using the Cauchy-Schwarz inequality 

c o v t ~ ,  1 - 1 ~  5 var(.U)var(Y) 

in (3.2-4) gives 

(5.2.5) Pd (t12 
I;J 

w(sin( t  - u)) 2 -, 
where p w ( t )  is the mean resultant length of t and 1, denotw the Fisher 
iriforrriatiori 

which is assumed to be posit.iw. Inequality (5.2.5) is due t.0 Mardia (19'i2a, 
Section 5.1). A generalisation by Hendriks (1991) to the contest of manifolds 
is outlined in Section 13.4.2. Equality holds in (5.2.5) if and only if 

- 61 = csin(t - u), 
DW 

(5.2.6) 

for some constant c. 
As an exampit!. consider estimation of /A by a single observation B from the 

voii Miws distril~utit~ii M ( p ,  rc ) ,  where K > 0. Take t = 0 as the eststirnator of 
p. Then (5.2.6) holds with c = K: so equality holds in (5.2.5). To verify this, 
note that it follows from (3.5.30) anti (3.5.37) that. 

E[cos(~ - p ) ]  = A ( K ) ,  

var(sin(0 - /A)) 
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5.3 VON MISES DISTRIBUTIONS 

5.3.1 hfmbauna Likelihood Estimation 

Let 8, . . . , e,, be a rirndrxn sarnple from M ( p ,  K ) .  The log-likelitiood is 
n 

Z(p, 6; $1, . . . , $,&) = Y1 log 2a + K 1 COS(& - p )  - n log Io(K.) 
;=I 

= YZ (l0g2a + ~ R ~ 0 8 ( e  - p)  - I o ~ ~ o ( K ) } .  (5.3.1) 

Since cos z l im its rnaxirniirn at z = 0, the rriaxirriurri likelihood esstirnate ji of 
p is 

fi  = 8. (9.3.2) 
Differentiating (5.3.1) with respect to K arid iisirig 

- 

G ( K )  = 11 ( K )  (9.3.3) 

(5.3.4) 

gives 
dl 
d K  
7 = I I  {Rcotj(B - p )  - A(&)} , 

where A(.) 3= I I (K) /~o(K) ,  its in (3.5.31). Then the rriaxirnurn likelihood 
estimate R of K. is the solution of 

A ( k )  = R, (5.3.5) 

i.e. 
k = P ( R ) .  (5.3.6) 

Expressions (5.3.2) and (5.3.6) for the maximum likelihood estimates can 
be obtained alternatively from general theory, using the fact that the 
von Mises ciistributions forrri a regular exponentid model with natural 
parameter K.(cosp,sinp)T. By (3.5.7), the maximuni likelihood estimate of' 
~ ( c o s p ,  sin p)" is obtained by equat.ing the sitmple mean of the canonical 
statistic (cos8,siu8) to its population mean, so that 

R(cos8,sind) = ~ ( i t ) ( w s / i , s i n ~ ) ,  

giving (5.3.2) and (5.3.6). 
Some selected values of the functions A and A-' are gi\Vc.cn in Appendix 

2.3 and Appendix 2.4, repectively. Approximate solutions of (5.3.6) cai be 
obtained by inverting the expansions (3.5.32) and (3.5.34) to obtain 

I 2~ + R 3  -t grl.i (5.3.7) 

for small R and 

k ,N 1/{2(1- R)  - (1 - 8)' - (1 - R)$)  (5.3.8) 
1 I 

N 

- 2 ( 1 - i i )  
(5.3.9) 
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for large R. The iqqwoximations (5.3.7) md (5.3.8) are reasonable for R < 0.53 
aid  R 2 0.85, respectively. For 0.53 5 R < 0.85, the approxirnatiou 

R 'v -0.4 + 1.39a + 0.43/(1- I?) (5.3.10) 

is adequate (see Fisher, 1993, p. 88). The approximation 

(?) k cz (1.28 - 0.53R2) tan (5.3.1 1) 

has Inaxirriiirn relative error o f  0.032 (Dobson, 1978). -4 routine for numarid 
calculation of f i  and k was given by Mardia 8i Zeuiroch (1975a.). 

Example 5.1 

length were dculi~ttcd in Example 2.1 
and k = 2.08. 

For the roulette data in Example 1.1, the mean direction and mean resultant 
# = 51' and R = 0.71 1.  Then fi  = 51" 

The distributions of fi  a i d  K are coinplicated. However, it follows from 
(4.5.5) and (5.3.2) that the conditional distribution of' fi  given R is 

filk il/r(p. TMR) (5.3.12) 

as noted first. I>y Mardin (1972a). 

Asymptotic Properties 

Luge-Sample Aspnaptotics 
Standard theory of rnaxirniirn likelihood estimators (Cox 9c Hinkley, 1974, 

pp. 294 296) shows that the lasge-sample asymptotic distribution of ( f i? R )  is 

h(ji - p,  i - n) 4 Ilr(0.  I-'), (5.3.13) 

where I denotes the Fisher information matrix 

I = E  - 1 (5.3.14) 

based 0x1 a siugle observation. (In (5.3.13) f i  is regaxded as unwrapped onto 
t.he line.) Repeated differentiation of (5.3.1) with respect. to p and n, t.oget.hc?r 
with (3.4.10) mid (.4.14) of Appendix 1 (with 1) = 2) shows that 

> -  n.4 ( K )  0 
0 1 - A(K)? - A(/€)/n I =  ( (5.3.15) 
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(5.3.16) 

(5.3.1 7) 
1 

nm.r(k) N 
1 - A ( r ; ) 2  - A(n)/n' 

7hcov($, k )  N 0, (5  3.18) 

so t.hat ji and ir. are approximately independently normally distributed with 
I I I P ~ ~ S  /L aid r; aid wriarices (5.3.16) arid (5.3.17), respedvely. Since A(K) 
increases from 0 to 1 as increases from 0 to 00, it follows from (5.3.16) that 
/.I can be estimated with much smaller precision for small K than for large 
6. This is iiot surprising, since the voii Mism clistributiou M ( p ,  K )  tends to 
the uniform distribution as K tends to 0. The approximation (5.3.16) cCm be 
rcfincd by (4.8.19), which states that 

iavar(p) = - + + o(n-'). (5.3.19) 
1 3 4  1 - A ( K ) ~ ]  - 5A(r;) 

K A ( K 1 )  nK.*4( K)S 

The sarriple mean vector f l (cos 8, sin 8) is mi uri1hw.i estimator of the 
population mean vector A(r;)(cosp,sinp). Since .4 is a noon-liuear function, 
k is a biased estimator of K. Approximations to this bias can he obtained 
by substituting p = 2 in the gerieriil results (10.3.18)- (10.3.19) below due to 
Schou (1978). Thus 

1 A'(r;) - /€.A"(/€) 
n 2 K A ' ( K ) 2  

E[k - K ]  = - + o(r&-2)1 (5.3.20) 

and 
3 K  

I b  
ELk- K] EZ -, la -+ 00, K + 00. (5.3.21) 

Application to (5.3.20) of the expaIdon of -4 given by putting p = 2 in (-4.12) 
of Appendis 1 yields the approximation 

3K 
E[k - K] N - 

5ia 
71 + OO, /€ -+ 0. (5.3.212) 

Best & Fishier (1981) proposed the estimator 

and showed by simulation t.hat it is approximately unbiased unless both 12 and 
K we smdl. 
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Hagh-Concentration Asymptotics 

t.ogether with (5.3.9), shows that 
The hi~~i-cont~eutration apprc)ximat;it>~i 2rw( 1 - R) .&.I of (4.8.31), 

(5.324) 

for large K .  

Restricted Maximum Likelihood Estimation 

Two important clwcs of von Mises distributions arc those in which one of the 
parameters p and K is known. If rc is known then it follows from (5.3.1) that 
the restricted maximum likelihood estimator of p is equal to the unrestricted 
rnaxirrii~rn Iikelihood estimator e. If p is kriow~i tfieri (5.3.4) shows that the 
restrict.ed maximum likelihood estimator Rp of tc is 

k2., = A-' (C cos p -t S sin p) .  (5.3.25) 

Approximations to the bias of k2., can be obtained by substituting p = 2 in 
the gerieraJ resiilts (lO.3.20)-( 10.3.22) below tilie to Mardia, Southworth & 
Taylor (1999). The analogues of (5.3.20) and (5.3.21) are 

(5.3.26) 

5.Y.d Estirnatdon Usivsy Mapyivsul Likelihood 01 R 

The fact that the maximum likelihood est.imate rZ is a function of R alone 
saggets t.hat. R is in some sense snffir:ient for K,. Although R is not. snfficient 
for K in the usual sense, it is G-sufficient for rc (Barndorff-Sielsen, 1978a, 
Section 4 4 ,  where G is the group SO(2) of rotations of R2. That is, 
(i) tfie tiistribution of ciepends only 0x1 K mid not 0x1 p, (ii) for each K ,  

t.hc family of condibional distributions of 8 given R (which is M (14, PZK.R) by 
(4.5.5)) is il t.ransformation model undw G. This suggests tlii%t inference on K 
should be based (111 the marghial distribution of 8. 

Accordingly, Schou (1978) considered estimation of K by R,  the maximum 
likelihood estixriator k e d  on the rnnrgirial distribution of 8. The 
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corresponding t3timatc k maximises the marginal likctlihood, which is 
proportional to 

A ( lc) / A  (n&) . 
The estimate k is given by 

(5.3.29) 

A table of k as a function of R is given in Appendis 2.5. The approximation 

k = 0, R < n-1/2, { A(k)  = A(n,kR), R 2 n - I / * .  

. 1- 1/71. W -  1/n2 
k ?  + -  

2( 1 - R) 4R( 1 - 1/71) ’ (5.3.30) 

is suitable for R > 0.9. Schou (1978) showed that k 5 R and k = A + O,(n-’ )! 

(5.3.31) 
anti that 

K .  2 

k 
(11 - 1)- N xn-l 

for large lc. 

5.4 WRAPPED CAUCHY DISTRIBUTIONS 

The probability density function (3.5.68) of the wrapped Cauchiy distribution 
tt’C(p, p)  can be exprescd as 

(5.4.1) 

where 
2p 

1 + p2 
x = (cosO,sinB)T, (5.4.2) 

so that llpll < 1. The log-likelihood bascd on independent obsermtions 
81,. . . ,8,, is (up to acldit.ion of a (:onstmt) 

p = - (cos p,  sin p)?’ 

(5.4.4) 

Differentiatiou of (5.4.3) with rt?ypa:t to J.L sbows that the rnaximu~ln likelihood 
estimate j i  of 1.1. satisfies 

n 

(5.4.5) 
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where 
7” wi = 1/(1 - p Xi). (5.4.6) 

The t3timatc j i  can bc w1culat.d using the following it.erat.ive reuyeighting 
algorithm ( K w t  & Tyler, 1988): Let po be ariy 2-vector with IlpOll < 1. Theu 
define py : v = 1,. . . iteratively by 

where t.hc weights ,u?i,v are defined iteratively by 

1 
711i,~+1 = 1 - /&?;xi * 

‘Cnder rnilci conditions, the zligorit,hm converges to the uriiqiie rnaxirnixrn 
likelihood esthiate = (iil,Fz)r. The maximum likeliiood estimates p and 
p of f i  and 6 we given by 

= tan-‘ ( E )  /i = 1-d- 
IlPll 

For mi accelerated version of this algorithm in a slightly more gexieraJ setting, 
see Blake & Maxinos (1990). 

5.5 MIXTURES OF VON MISES DISTRIBUTIONS 

Seine data sets cannot he tiecril)tut adequately I)y fitting a single vo11 k1i.w 
distribution but are fitted well by a mixture of li. von hiIises distributions, i.e. 
by a probability densitmy fiinction of the form 

(5.5.1) 

where pt L: 0 and pl + . . . ‘ tpk  = 1. For example, the turtle data in Table 1.5 
mi be described adeqiiateiy by a rnixture of two vori hlises distributions. 
The parameters (p1 , p i ,  KI), . . . , ( p k ,  pk, ~ k )  of such finite mixtures of \-on 
Mises dist.ribut.ions iue identifiable (Frauer, Hsii & Walker, 1981; Kent, 1983a, 
for ideentifiability in a xuucli more general class of nlivtures of directional 
distributions). The parameters of (5.5.1) cram be estimated by maximum 
likelihood, using the EM algorithm (Titterington, Smith & kiakov, 1985, 
Section 4.3.2). 

An important special crtve of (5.5.1) consists of mixtures of t.wo von 
hfise?q distributions. -411 dgorithm for niaxiiriuiri likelihood evtirriatiori in 
this case was given by Jones & James (1969). A convenient alt.ernative 
(Spiirr 9c Kontbc.iy, 1991) to rriaxirnurn likelitiood estirnat.ion is estimat.ion 
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of the paramettcrs p1, l i l  , pi, l i2,p by Ieast-squww fitting of the trigonometric 

t.0 their sample ~ i l l t > ~ ~ ~  nj and bl for j = 1,2,3.  
A particularly useful case of (5.51) coilsists of mixtures of two voii Mises 

distributions with the same concentration and modes R radiCms apart. Then 
the prot)ahi1it8y density function (5.5.1) has the form 

Such a mixtiire i.1 bimotfd (with modes at j 4  aid p + n) if anti only if 

1/(1+ 2 s )  4 p 4 1/(1+ e-26) 

(Mardia & Sutton, 1975). Double-wrapping of the circle onto itself as in 
Sect.ion 3.6.2 sends 6 to 6) = 28. Then 3 h;tu probability density function 

cosll(Kcos(Pi,/2 - p) ) ,  f ( t / xp ,K . )  = - 1 
2T'Io(K.) 

(5.5.3) 

which doe,r iiot depend 0x1 p. The parameters p arid K mi be estirriated by 
equating the sample and population first trigonometric moments of 111 (and 
using (3.5.37)), to give t&mates p* aid K* satisfying 

1 -  2A(K*) 
$=+, I--- - R 2 ,  

2 lc* 

where d and l& denote the mean direction and the mean resultant length of 
the tioubletf iuigles 31, . . . . q,,. The mixing puarneter p mi be estimated by 
equating the sample and population first trigonometric moments of 8.  t.0 give 
the estimate y* of p which sat.iufies 

(2p* - I)A(K*) = Ccmp' + Ssiiip*. 

Some variants of' t.his method of estimation for (5.5.2) were considered by 
Spurr (1981). 

For the submodel of (5.5.2) in which p = 1/2, the probability deimity 
functions h a w  the form 

(5.5.4) 

Maxirriurri likelihood estimation in (5.5.4) was corisidertrt by Barteis (1981). 

applied to axial data after 'doubling the angles'. 
The methods described above are suitable for circular data. They can be 
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Example 5.2 
For the turtle data in Table 1.5. calculatitm gives d = 125' mid & = 0.481. 

Then K* is a solution of A(rc)/n = 0.260. 1nt.erpolation in Appendix 2.3 gives 
K* 3= 3.15. Also, = 0.217 mid 3 = 0.447 mid so the estimate o f  the 
proportion of turtles heading towards the sea is p* = 0.80. Cairns (1975) 
fittd il projtxted normal distribution to this data sct. Stw Frawr (1979, pp. 
226- 23 1). 



Tests of Uniformity and Tests 
of Goodness-of-Fit 

6.1 INTRODUCTION 

Becczusc of the central role played by the uniform distribution, one of the most 
important hypothe.qes i h u t .  il distrihut.ion on the circle is  that of unif0rmit.y. 
Graphical assessmelit of uniformity is co1isiderml in Section 6.2. The rnairi 
formal tests of uniformity are presented in Section 6.3. In Section 6.4 we show 
lion: test,s of uniformity give rise to tests of goodness-of-fit. 

6.2 GRAPHICAL ASSESSMENT OF UNIFORMITY 

Before carrying out a formal test of uniformity it is sensible to inspect the 
data. Some imprt9sion of whether or not the data might remonahly rox~ie from 
the uniform distribution is given by a siniple plot of the observations 81 . . . , en 
on t.hc circle. It can bc more uvcfiil to construct. a uniform probability plot. In 
such a plot, the observations are ordered as 0 5 @(,) 5 . . . 5 @,,, 5 2~ (with 
respect to sonic initial direction) and then 8( , ) /2n  is p1ot.tcd against i / ( n  + 1). 
If 8, , . . . ,8,, is a riuidom sarnple from the uriiforrn distribution then the points 
should lie near a straight line of slope 45" passing through the origin. 

Note that the plot depends on the initial direction. One way of guarding 
against, mislearting impressioxis arising from ari iinfortwiate dioice of initial 
direction is t.0 extend the plot by adding the p0int.s (1 f i / ( n  + l),  1 + 8(,)/27r} 
for (say) 1 5 i 5 0 . k  mid (-l+i/(n+l),-1+8,i)/27t.) for (say) 0.8n 5 i 5 ri .  

Example 6.1 
1x1 a11 experiment 011 pigtmi ~io111i11g (S~:~imitIt-Koeriig, 1963), the vauisbirig 
and- of 10 birds were Xio. 60", Go, 95", lOO", l l O o ,  260". 275", 285", 295". The 
uniform probability plot in Fig. 6.1 calls st.tcntion to the gap bt?twwn l l O o  
and 260", and suggests that the directions were not selected uniformly. This 
impression of non-uniformity is not confirmed by the formal test which we 
shall apply in Example 6.2. 

Directional Statistics 
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Figure 6.1 Uniform probability plot of the pigeon-homing data of 
Exittiiple 6.1. 

6.3 TESTS OF UNIFORMITY 

6.3.1 The Rayleigh Test 

Perhaps t.hc? simplest tsst of unif0rmit.y is Rrtyleigh's tsst? which wc now 
describe. Because E((cosB,~in8)~] = 0 when 8 has the uniform distribution, 
it is intuit.ively reasonable to reject. uniformity when the vector scample mean (c, S) is far from 0, i.e. when R is large. -4s shrmn in the riext paragraph, it 
is useful to take the test statist.ic as 2nR2. 

A more formal justification for the byleigh test, is t.h;tt. it. is t.he score t.est. 
of uniformity withm the von h.iises model (3.5.17). Put o = ( ~ m p ,  Ksinp)'. 
Then w is the natural parameter of this exponentid model and the log- 
likelihood I~ased on 8, , . . . ! 4, is 

,,... !@,,I = r h o T ~ -  . r r ~ o g ~ O ( K ) ,  (6.3.1} 

where 

is the ,wnple mean vector. The score is 

(6.3.2) u = - = nj2 - nil(K)(cosp,sinp)T. 

At, K = 0, U = n X .  while it follows from (4.8.2) or from (4.7.1) arid circular 
symmetry that 

nt-ar(U) = $12. 

a 
ilwT 
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Then the score statistic is 

u'r%w(u)-lu = 2 7 i R 2 .  (6.3.3) 

It follows from the general theory of score tests (see Sectioii 9.3 of Cox & 
Hinkley, 1974) that t.he large-sample asymptotic dist.ribut.ion of 2nR2 under 
uniformity is 

2nRA + & (6.3.4) 

with error of order O(r1-l). An alterriative proof of (6.3.4) cmiw from the 
central l i i i t  theorern and the moments of C and S under uniformity, which 
cam be obtained from (4.8.1)-(4.8.2). 

It follows from geiierd re-yults of Cordeiro 8t Ferrari (1991) 011 correcting 
score tests that the modified Rayleigh statistic 

(6.3.5) 

has a dist.ribut.ion with error of order O(?Z-~)  (see Jupp. 2001). The 
practical importance of t.his is tha t  for all except the smallest sample sizes, 
there is negligible error in the significance levels if the observed S" is cornpaxed 
to the usual upper quantiles of the 

An exsxc:t4lent approximation (ever1 for srnall sa~nples) to the upper tail 
probabilities of ? 2 R 2  is given by the saddlepoint approximation (4.4.12) to 
t.hc upper tail probabilities of R. Approximii,tion (4.4.12) involves explicit. use 
of Bessel functions. These ase avoided in the alternative approximations 

distribution. 

(6.3.6) 
(Pemson, lW6; Greenwood & Durand, 1955) imd 

~r(7&* > K )  = exp{[~ + 471 + 4(n2 - . r r ~ ) ] ' / ~  - (1 + 2 n ) )  (6.3.7) 

(Wilkk, 1983). 
The Rayleigh test is also the likelihood ratio t.est of' uniformity within the 

von k1i.w family. Let ti! be the likelihood ratio statistic 2[ ( t (2 ;  81,. . . ,&) - 
Z(2; trl, . . . , t r , , ) ] ,  where 3 and 2 denote respectively the unrestricted inaxiriium 
likelihood estimate and the maximum likelihood estimate under the null 
hiypotJiesk. Then 

w = 2n{RR - l o ( k ) }  = 2n{RA(ii;) - I o ( k ) ) .  (6.3.8) 

Different.iation with respect to R gives 

dw 
dR 
- = 27r(;l(k) + kA'(k) - I l ( k ) }  

= 2nrZA'(R), 
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and so 

Thus w is an increasing function of i? and so (hlardia, 1972a, p. 134) the 
likelihood ratio test is equivalent to the Rayleigh test2. 

Example 6.2 
For the data on pigeon homing in Example 6.1, is there evidence that the 
directions were not selected uniformly? 

Here 71 = 10, c = 0.149, 3 = 0.166, so that 2nR2 = 0.993 mid the modified 
Rayleigh statistic (6.3.5) is 0.956. Comparing this with t.hc x$ distribution 
gives an observd signific-ance level of 0.62, so the dirwtions .wwm to havc 
been selected uuiformly. Comparison of 2nR2 with the x z  distribution gives 
an observed significance level of 0.61, so in this case the modification of the 
byleigh statistic 111akes little t1ifferem.e. 

Example 6.3 
Do the leukaeniia data of Table 1.4 show evidence of seasonal effects? 

If there were no seamnal variation, the corresponding angular observations 
(obtaixid hy trarislatirig time o f  y e !  into mi angle) could I)e regarded as 
being drawn from the uniform distribution on the circle. Becausc months 
have differing lengths, it. is approprintc t.o adjust t.he numbers of caws so t.hat. 
they correspoud to ‘ruoiiths’ of equal length. The acljuutetf data are showu 
in Table 6.1, where the first interval (Oo! 30”) corresponds to the month of 
.Ja~iiiary, arid so 011. Cdcdation gives 

C = -48.278, 5’ = -16.005, R = 0.101, 

axid M) 27rR2 = 10.22. AY the 1% value of xi4 is 9.21, the lid1 hypothesis 
is rejected strongly. Thus there is evidence of a seasonal effect. It may be 
noted t.hat. if we use the grouping corrvction (Section 2.5), the vdiie of 2nR’ 
increases to 10.46. 

This data set has heen analysed bv David & Newel1 (1965) using another 
tmhniqiic. 

Becausc the Rayleigh test is cquimlent to t.hc? likctlihood rat.io t.est. i5ggdnst 
von Mises alternatives, it follows from the Seymm-Pearson hmia that the 
Rayleigh test is most powerful against these alternatives. Also, because the 
statistic R is invariant under rotation and reflection o f  the data, the test 
is invariant under these operations. Indeed. the Raylcigh test is the most 
powerfill irn-ariant tcst against von Miscs alternatives. To sct! this. noto t.hat. 
by ttie Neymari Pearson lemma. ttie most, powerful irivariaxit test is the 
likelihood ratio test based on the marginal likelihood of a maximal invariant. 
(see Lehmariri, 1959, Chapter 6). The joint, proba1)ility (tensity function for 
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1946-1960 (Lee, 1963, reproduced by permision of the BMJ). Times have been 
converted to angles aiid iiiriiibers of cases liave bwn adjostccl accorciiiigly. 

97 

Table 6.1 Mouth of onset of cases of 1yinpha.tic leukmia in the IJK, 

Month Angular range (in degrees) Number of cases 
January 0--30 39 
Febuary 30-60 37 

April 90-120 45 
May 120-1 3) 38 
June 150- 180 59 
July 180-210 50 

August 210-260 54 
September 240-270 37 

October 270-900 47 
November 300.330 34 
Decem brir 330-360 37 

March 60--90 29 

independent random variables 81,. . . ,On with the M ( p ,  6) distribution is 

(6.3.9) 

.4 ruaxiirial irivarimt under the g o u p  of rotatioils is givm by i l l , .  . . ,un-1, 
where 

u j = 0 j - 8 , ,  j=1, ..., TI. (6.3.10) 

The joint dcnsit.4. of u1.. . . , un-l is 

j (u I ,  ... , t ln-I;&n) = 

It follows from (6.3-11) that the marginal likelihood ratio is 

L ( K ;  u1,. - - 1  .*,-I) - 1 , ( 7 1 R K )  

L(0; Ul,. . . ,?&I) I n ( W  
--, 

(63.1 1) 

(6.3.12) 
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Since I;(lc) = ZI (K) 2 0, IO(aRtc) is i5 monotonically increasing function of R 
for K > 0. H a i t s  the test rejects iiriiforriiity for large vduev of R, i.e. it is the 
hyleigh test. Since the critical region docs not depend on K, the Rayleigh 
test is the iiriifonnly most powerfill imariait test. 

Bhattacliaryya & Johilson (1969) have shown that the hyleigh test is 
locally most powerful invariant against projwtrd normal distributions. 

Kote that, although the Rayleigh tmt is consistent against (noii-uniforrn) 
von hlises alternatives, it is not consistent against alternatives with p = 0 (in 
particular, distribixtions with antipodal symmetry). Tests o f  nriifonnity which 
are coilsisteiit against all alternatives include Kuiper’s test and Watson’s U2 
test considered in Sections 6.3.2 and 6.3.3. 

The Rayleigh Test When the Mean Direction Is Given 

Under certain circumstances, we wish to test uniformity against an alternative 
in which the mean direction is specified. In this case, it is intuitively reasonable 
to reject uniformity for large values of 

(6.3.13) 

where 11 is the hypot.hesised 111mx1 ciirtx.%ion. This test, can be considerctd as a 
variant of the Rayleigh test. It is the score test of uniformity (K = 0) within 
the family of von Miscs distributions Af (11, K ) .  The log-likt4ihood bawd on 
i l l . . . . ,  tJn is 

I ( K ; B  ,,..., e,,) = ~ ~ ~ ~ O S ( X ~  - 1 1 )  - n l o g I g ( K ) ,  (6.3.14) 

and so the score is 

a 
- = u = ?a[cos(d - /A) - 441. an (6.3.15) 

At M = 0, li = n 6 ,  while it follows From (4.8.2) or from (4.7.1) and circular 
syrrirnetry that 

nvar(li) = 8 .  
Thus the score stat.istir: is 

c2 

V.r(V) 
= 2 n P .  

It follows from the general theory of score tests t.hat. the largesamplt. 
asymptotic distribution of 2nC2 under uniformity is 

2nC2 + u:. (6.3.16) 

An alternative proof of (6.3.16) comes from the central limit theorem and the 
momexits of under uniformity. which cai be obtained ho~n (4.8.1)-(4.8.2). 
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arc' given in Appendix 2.6. From Section 4.8.1, for 
large ri, (2n)'r2C hay approximately a staridartf normal distribution. A better 
approximation to the tail probabilities is given by t.hc Edgeworth expansion 
(DnraIid & Greaiwood, 1957) 

Somci quantilw of 

Pr[(2n)'i2C 2 K ]  = 1 - @ ( K )  

>. 3K - K" 15K + 305K3 - 125K" + 9K7 
4608ra2 

+ @ ( X I {  l & a  + 
where 
function of t.hc standard normal distribution. 

and 4 dexiote the distribution function and the probabiiity density 

Example 6.4 
Before the tiiixovery of imtopw in the 1920s) it was speculated that the 
atomic weights of elexuents were integers (subject to errors). Von M i s  (1918) 
investigat.d this speculation by regarding the fractional parts (convertcd to 
angleq) of the atomic weights as a raridoin sample froin a tfistribution oii the 
circle with mean direction 0, and t.esting for uniformity. The fractional parts 
(converted to angles) of the atomic weights (a3 k110wn to vou hlises in 1918) 
of the 24 lightest elements are given in Table 6.2. 

Table 6.2 Fractional parts of the atomic weights (ar k n m  in 1918) of the 
the 24 lightest elements 

Fractional part (in degrees) Frequency 
0 12 
3.6 

36 
72 

108 
169.2 
324 

Here p = 0. Cd(:ihtion gives 6 = 0.724. Rom Appendix 2.6, the 1% 
value of c for n = 24 is 0.33-1, and so the null hypothesis of uniformity 
is rejected strongly. Since (2n)I&? = 5.02, the largesample approximation 
(6.3.16) yields ai observed significawe level of 10--7. 

6.3.2 Kuaper 's Test 

Various tests for distributions on the line are based on mea5uring the deviation 
between the empirical mid hypot.hesised (:nIndative distxi1)ution fiixic%ions. To 
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construct i~~logu;ucs of these for distributions on the circle, we nwd to define 
the eiripirical tlistributioii func:tion in the circular case. 

Once an initial direction and an orientation of the circle have been chosen, 
the e,rnpirical dhtribution func%ion Sll is defined a.l follows. The ordered 
observations 8(, 1, . . . ll[,$) ase augmented by Bto) and 6)(,+, j :  which me defined 
by 8ro) = 0 and 8(11+1) = 27r. Then S,  is defined by 

s,(q = i / 9a  if qz)  5 e qi+,), i = u, 1, . . . Yl. (6.3.17) 

Sote that both Sn(B) and F(8)  depend on the origin and orientation. It is 

u, = - 6 ) ( i )  i = 0 ,  ..., n + 1 .  (6.3.18) 

Coilsideration of the Kohiiogorov -Smirncw statistic 011 the line suggests that 
uniformity of a distribution on the circle should be rejected for large values of 

useful to put 

2?r ' 

max( D:, D;] ,  (6.3.19) 

where 

0; = sup{s,,(e) - ~ ( e ) ) ,  D; = s11p{~(e) - sll(e)j. (6.3.20) 

with S,, denoting the einpirical tlistriButioii furictiori given by (6.3.17) arid 
F denoting the cumulative distribution function of the uniform distribution, 
given by F(8)  = 8 1 2 ~ .  However, D: arid Dl depend on the rhoice of the 
initial direction. This led Iiuiper (1960) to define 

B 8 

I,;, = 0,' + D,, (6.3.21) 

which (as we shall see below) does not depend on the choice of the initial 
direction. The null hypot.hc?sis of uniformity is rejected for livge viihies of \&. 
Kiiiper's test is coxisistent agaixist all alternatives to uniformity. 

An Alternative Representation of i/;l 

We have 

so that 

(6.3.22) 

(6.3.23) 



TESTS OF UNIFORhIITY AND TESTS OF GOODSESS-OF-FIT 101 

where Uo,.  . . U,&+., are defined in (6.3.18). Similarly, 

(6.3.24) 

Substitution of (6.3.23) and (6.3.24) into (6.3.21) yields the following 
equivaleiit representation of I.;* : 

It is somet.imt?s usefiil to rewrite (6.3.25) as 

(6.3.26) 

Rota tion-Invariance of Vn 
We now show that does not depend 0x1 the cliaice of initial direction. 
Consider a yet of points on the circle represented by angles 27rU1, . . . , 2nUn 
with 0 5 L'I 5 . . . 5 L',, 5 1. If a new initial direction is diown iriakirig 
angle 2ac with the old initial direction, then there is an integer k. such that 
C'k 5 c 5 C'k+l. The observations ~nake arigle? 27r?Yi, . . . ,27r17; with the new 
initial direction, where 

(6.3.27) Uk+, - c for j = 1 , .  . . ,7& - k, 
t ~ k + j - , ,  + 1 - c for j = n - IC + 1, .  . . t t .  

Consequently, for j = 1 , .  . . , n - k. we have 

with .i = k + j ,  whierem for j = - k + 1, . . . , ri, we have 

with .i = k + j - 18. Then 

j 1 k - - li! = - - Lri + c -  -. 
I b  ' r1 71 

i = k + j  (modn), j = 1,. . . ,n. (6.3.28) 

It fo1lou.s from (6.3.25) thi%t V, does not depend on c (or k). Hence L& is well- 
tiefined (i.e. it does not, depend 011 the choice of initial direction). Note that 
the proof shows also that Vn is invariant under rotation. A similar argument 
shows that. \./; is ixivarimit wider rliaige of orientation. 
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82 3u 

-- 3.n'/a vn2(4m2z2 - 3)e""'" + O(n-') (6.3.29) 
m=l 

(see Kuiper, 1960). 
It is convenient to uw t.he mod%cat.ion 

(6.3.30) 

of V,,. Stephens (1970) showed that the tiiiytribution nrider uriiforrriity of Vz  
varies very little with n,  if YZ 2 8. Some upper quautiles of 1: ase given in 
Table 6.3. 

Table 6.3 Upper quaxitiles of t" (reproduced froin Stephens, 1970, by 
permission of The Royal Statist.ical Society) 

u 0.10 0.05 0.025 0.01 
1.620 1.747 1.862 2.001 

Some tables of upper tail probabilities of V; are given by Arsham (1988). 
-4nother approxirnatioii to the iidl clistributioii of Kt is given I>y M u g  &L 

Dicairc (1971). 

Example 6.5 
The hypothesis of uniformity of the distribution giving rise to the pigeon- 
homing data of Example 6.1 cafi be tested using Kniper's test. (The data set 
is also shown in Table 6.4). 

Table 6.4 shows the neccssary calculations. The underlined entries denot.e 
the maximum and minir.tim values of C;i - i /n.  We therefore have 

L& = 0.053 - (-0.294) + 0.1 = 0.447, 

so that t: = 1.517. and t.hc hypothesis of' uniformity is accepted at  the 10% 
significance level. 

The way in which D: arid 0; inemire the difference between the ernpirical 
distribution function S,  and the cumulative distribution function F (of the 
uriiforrri distxibution) car1 be scwi from Fig. 6.2. 
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Table 6.4 Calculations required to apply Kuiper's trst to the pigeon-homing 
data d Example 6.1 

i 1 2  3 4 5 6 7 8  9 10 
O( i j  55' 60° 65" 95O 1MP 110' 260' 275' 2X5O 295" 

ui = e(,t:2n 0.1~3 0.187 0.181 0.264 0 . 2 7 ~  o.:wi 0.722 u.7rj.i 0.792 0 . m  
i /n  0.1 0.2 0.3 0.4 0.5 0.B 0.7 0.8 0.9 1.0 

fi', - i f n  o.ofi3 -0.033 -0.119 -0.156 -0.222 -0.291 0.022 -0.036 -0.108 -0.181 

0.2 ~ 00 .. Di=0.15 900 180" 270" 3 

Figure 6.2 Empirical rtnd cumulative. distribution functioas for the 
pigeon-homing data of Exauiyle 6.1. 

A version of Kuiper's tcst for use with grouped data has been given by 
Freedman ( 1979). 

6.3.5 Wutson's U2 Ted 

Instead of measuring the discrepancy between t.hc empirical distribution 
fiinction and t.he cumiilative distribution fiinct.ion of the uniform distribution 
by a variant of the niavirnum deviation (as in Kuiper's test), we can use the 
{corrected) mean square deviation. This leads to Watson's {l96l) statistic 

where 

(6.3.31) 

(6.3.32) 
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Kotc that l j 2  is an sn;zlogi~c for circular bt ta  of the Cram&-von Visw statistic 
W 2  for data on the real line. It follows from (6.3.31) a i d  (6.3.32) that U2 is 
well-defined and invariant under rotations and reflections. Carrying out the 
iritgrirtion in (6.3.31) given the explicit fonnula 

where 0 = (C'I -t . . . + Un)/n. 
expression 

I! - I - ~ - 1 / 2 + ~ ] 2  +-  1 
7A 2 12n' 

(6.3.33) 

Further manipulation gives the alternative 

The form (6.3.33) of CJ' is analogous to the form 

11 

ra 
i= 1 

of the Cram&-von klises statistic. 

The Null Distributiou of C2 
It is useful to consider the modified statistic 

(6.3.34) 

(6.3.35) 

(6.3.36) 

Stephcms (1970) showed thi%t distribution tinder uniformity of U*2 varies very 
little with n? for I A  2 8, arid calculated the quarltiles of U*2 which me given in 
Table 6.5. Other approximations have been discussed by Pearson & Stephens 
(1962) arid Tikii (1965). 

Table 0.5 Upper qumtiles of U"' (reprodiiced by permission of The R.oyal 
Statistical Society) 

CE 0.10 0.05 0.025 0.01 
C'"' 0.152 0.187 0.221 0.267 

The largesample asymptot.ic distribution of U2 under uniformity is given 
1)Y 
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This series converges rapidly md can be calculated easily. It follows from 
(6.3.58) mid (6.3.72), a i d  was obtairietf by Watsoii (1961). A iuore elerrieiitary 
proof is given in Watson (1995). Watson (1961) showed t.hat the largesample 
asyrnptotic distribution of Cr2 is the same as that of k:/r2. He showed &o 
that if 

kVqt(t) = n”2{Sn(t)  - F ( t ) } ,  (6.3.38) 

where F ( t )  3= t /2n, then under uriiforrriity the process IV,, converges in 
distribution as n -+ .xs to a Brownian bridge process. 

Example 6.6 
The hypothesis of uniformity of the distribution giving rise to the pigeon- 
homing data of Example 6.1 car1 I x t  test,ed using Watson‘s test,. (The data are 
also shown in Table 6.4). 

The Ui for the data are shown in Table 6.4. Calculi5tion yields 

n n c F: = 2.728, 1 ir:i = 31.796, 0 = 0.445. 
i=l  i=l 

Consequently, U2 = 0.116 and V2 = 0.115. Since the 5% value of V2 in 
Table 6.5 is 0.187, the hypot.hesis of uriiforrriity is agairi accepted. 

Somci modifications of U’at,wn’s U‘ test for use with gr;roupc?d di5tta are 
corisidered iii Section 6.4.2. 

As we shall show in Section 6.3.7, Wat.son’s i? test is a locally most powerful 
invariant test. against the alterriatives (6.3.64) wit.h f(6) = 62/27r2. An 
invariant test of uniformity which is most powerful aga.hist distant alternatives 
with probability density functions of the form cpf(0)p  as p + 00 is Watson’s 
(1976) test, which rejects iiriiforr~~ity for large values of G,,, where 

S,(@) - - B - - 1 + -c%}. 1 ”  
2n 2 IL i=l 27r 

The distribution function of G, was determined and tabulated by Darling 
( 1983). 

6.3.4 Some Quick T e y t y  

The Hodges-Ajne Test 

One strategy for testing uniformity of’ a distribution on the circle is to reject 
uniformity if the obserwxl number of points of a sample which fall in a 
suitable set differs gratly from the expected number. Two natural xriemures 
of the discrepancy between the observed and expected numbers are (i) the 
Iriaxirriiirn differttrice arid (ii) the mean square difference as the set wries in a 
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suitable CliLqS. in the cay(: where the set. runs through d l  semicircular arcs, the 
fortrier gives the Hodges- Ajne statistic and the latoter gives A j d s  A, statistic 
(considered in Scction 6.3.5). 

Let N ( B )  denote the Iiiirnber of observatiorlu in the semicircle ceritred 011 B, 
i.e. in the am (0 - 7r/2,0 + 7r/2). The Hodges -Ajjue test rejects uniformity for 

max X(@), (6.3.39) 
liuge V ~ I U V S  of 

0 

or, qtlivalently, for siriall values of 

nh = nlin M ( t ) ) .  (6.3.40) 
e 

This test, was irit.rodricd hy Ajxie (1968), using 71 - 7 4  the rriaxirnurn niirriber 
of observations in a seiuicircle, as the test statistic. Bhattacharyya & J o h o n  
(1969) pointed out. the conncction with the biwriatc sign t.est. of Hodgw 

A combinatorial argunicnt. (following the method of Daniels, 1954) shows 
(1955). 

that 

(6.3.41) 

a formula ol)tai1ied by Hodges (1955). Tables for .rrL axe giver1 hy Hodges (1955) 
and Klotz (1959). For large n? it. can be shown (Daniels, 1954; Ajne, 1968) 
that 

For most purposts it. is siifficiexit t,o take just, the leading term, giving 

The approximate 5% arid 1% values of (7h - 2 r r ~ ) / n * / ~  axe 3.023 arid 3.562, 
respectively. Appendix 2.7 gives some quantilcs of n z .  

Example 6.7 
In a pigeon-homing experiment reported by Batscheiet. (1971), the vanishing 
angles of 15 birds were 

115', 120", 120°, 130", 135', 140", 150", 150°, 

150°, 165": 185", 210", 235", 270", 345". 

We test the hypothesit of iiriiforriiity iming the EIodges Aj11e test2. By drawing 
a circular plot (as in Fig. 1.1) of this data set, it can be wen readily that 
all the observations exxc:ept that at 345" lie below the line rnakiug ariglt. 110" 
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with the Z-i%xis, md so rn = 1. Sincc for n = IS> the 5% valiie of rn given in 
.4ppendix 2.7 is 2, the lid1 hypothesis is rejected at  the 5% sigiifimance level. 

Ajne (1968) has sliown that the Hodges-Ajne twt is the locally most 
powerful invariant test for testing uuiforlllity against dternatives of the form 

(63.42) 

where p + q = 1 and p + 1 or p -+ 0. A locdly most powerful invariant test 
for p 2: q will be presented in Section 6.3.5. 

We xiotc' give two sparing tests. i.e. twts whidi are baed on the sarnple arc 
lerigths TI, . . . , T,* defined by 

The Range Test 

The circular sample range w was defined in Section 2.3.4, as the length of t.he 
smallest arc which contains all the observations, i.e. 

(6.3.43) 

Since srriall t-aluw of ,ti: indicate clustering of the observatiorlu, the hypothesis 
of uniformity is rejected for sniall values of w. Clearly, w is invariant under 
rotations. 

A cornbinatmial argu~rient shows that, the clistribution function of the 
circular range under the hypot.hcsis of uniformity is 

where the sum is over values of k such that 1 - k( 1 - 1'/27r) > 0. This result has 
already i%ppcitird in various contests (we David. 1970, Section 5.4) and WM 

first obtained by R. 1. Fisher (1929). In this context, it was given by Laubscher 
& Rudolph (1968) and Rao (19139). Appendix 2.8 gives some quantiles of the 
distribution of the circular rmge w. 

Example 6.8 
W e  test the liypothesis of uriiforrriity for the roulette data in Example 1.1. 

n = 9 is 88.1", so the hypothesis of miifor1riit.y is rejjeetd at the 3% level. 
From Example 2.3, w = 169". From Appendix 2.8, the 5% value of w for 
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A Test of Equal Spacings 

Lxider uniformity, E[Ti] = 2n/n. Hence it. is int.uitively recwmltblt! t.a rejcct 
uniformity for large d u e s  of 

1 
(6.3.45) 

Large values of L indicate clustering of the obsermtions. This test in the above 
writext W E +  iritrodiicud by R;ut (1969): who rioted that for the Iixiear a y e  it 
was suggested by Kexidall (1946) and studied by Sherman (1950). The null 
distribution of L is given by RM> (1976) imd follows from Shcnnim (1950) 
aid Darliiig (1953). The first aid secoiid rrioineiits of L are giveii in Shermmi 

Soxne quantiles of L are givexi in .4ppendix 2.9. -4 more extmsive talh of 
yuantiles and tables of upper tail probabilities ase given in Russell 8 . ~  Levitiu 
(1996). Sherman (1950) has shown that, 

(1950). 

for large n. A (:omparixon of the Bahadur effiicienq of this test with that of 
some other tests of unif0rmit.y under von Pvlises alternatives was given by Rao 
(197%). 

Example 6.9 
hi a pigeon-homing experiment, 13 birds were released singly in the 
Toggenburg Valley. Their vanishing angles were 

20°, 135", 145", lW, 170", 200°, 300", 325", 335', 350°, 350", 350°, 355". 

We test the hypothesis of iiiiifoririity using the L test. The successive values 
of the Ti ase 

llz', lo", 20°, so, 30', looo, 25', 10'. 15', Oo,Oo, 5": 25'. 

Here n = 13, so 360°/n = 27.F and L = 162O. Since the 5% value of L given 
in Appendix 2.9 is 167.8", the hypothesis of uniformity is accepted. 

6.3.5 &be'$ A,  Test 

Let N(8)  dexiote the number of observations in the semicircle centred on 8, i.e. 
in the arc. (@-7r/2, 8+7r/2). Since the expected value of K(0)  under uniformity 
is n/2, it is iiitiiitively rrmonable to reject uniformity for large values of 

(6.3.46) 
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as proposed by Ajne (1968). (Somc ot.her i%ut.hom define A,, t.o be various 
multiples of (6.3.46).) 

The following computational forniula for A, will be derived in Section 6.3.7: 

(6.3.48) 

where Do is the circular meam difftwncc given by (2.3.15). 

be obtained from (6.3.72) as (Watson, 1967) 
The large-sample asymptotic null distribution of A,, under uniformity can 

Some upper qiianti1t.s of the large-sample isymptotir: null distribution of A, 
are gi~i'en in Trible 6.6. Upper quasitiles of A,, for mrioiis values of 7i were 
given by Stephens (196%). His table shows that for n 2 16, the upper 5% 
qiiantile o f  A,, is withiri 0.01 of the vdue given in Table 6.6. 

Table 6.6 Upper quantilm of A,, 

(2: 0.10 0.05 0.025 0.01 
A, 0.516 0.656 0.797 0.982 

It follows from a general rwnlt. in Stx%ion 6.3.7 that AjjIie's -4, test is locally 

A generalisation of A ,  to 
illost powerful invarimt against the alternatives (6.3.42) for p / q  + 1. 

(6.330) 

where ,Y(t,8) denotes the number of observations in the arc ( B  - t x , B  -k tr) 
anti 0 < t < 1, was considered by Rothmnn (1972) arid (for l/t a positive 
integer) by Ilao (197%). Sote that &(1/2) = A,. 

6.3.6 The Herrnnn-~-RRs.son Test 

Harmans & Fbsson (1985) proposcd t.hc? t.est. which rejects uniformity for large 
values of 

(6.3.51) 
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This teHt is consist.ent against dl alternatives and was c:onutructed to he 
powerful against a large class of multimodal alternatives to uniforruity. For 
n > 10, approximate lo%, 5% and 1% upper quantiles of H, are 0.60, 0.75, 
1.09, respectively. 

6.3.7 Beran's Class of Tests of linifomtity 

The Rayleigh test rejects uniformity for large \dues of the squared resultant 
length R2 of the observations. The observations car1 be regnrdd as unit 
complex numbers 21,. . . , z,,. Since pfold wrapping of the circle onto itself 
by z I+ zP preserves the uniform distribution, it would also be reasonable 
to reject uniformity for large values of the squared r e d t a u t  length R; of 
zfl.. . , z;, for any p = 1,2, .  . . . Note that 

where 
n n 

j=1 j=1 

with zj = ei8j. More generally, if pI , p2,. . . is any squareswimable seyuence 
of real numbers t.hcn we can consider 

(6.3.52) 
p=l p = l  

which is a weighted sum of the Rayleigh statistics 2nRi for diffcrent powers p 
of the data. It is reasoxiable to reject uiiiforrxiity for large rnluaq of B,.,. Note 
t.hat B, can bc rewritten as 

n n  

(6.3.53) 

where 
X' 

h(B) = 2 p; cosp@. (6.3.54) 
p' 1 

The tests based 011 B,, were introduced I)y Berm] (1968; 1969a). These tests 
are sometimes called 'Sobolev tests'. (The reason for this nCme is indicated 
in Stx%iou 10.8.) 
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Some Special Cases 

llagleigh Test 
Taking 

gives 

and so 

(6.3.55) 

which is a iuultipie of the Rayleigh statistic 2iiR2, 

WtLtuon’Y uz 
Taking 

(6.3.58) 
1 

Pp = - 1  

XP 

Substituting (6.3.59) into (6.3.33) and writing Ui = &/2n shows that 

Further Inaxiipirlation mid comparison with (6.3.34) yields 

gives 

(6.3.59) 

(6.3.60) 

(6.3.61) 

(6.3.62) 
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Cdculat.ion shows t.hat. 

so it follows from Parseval's formula (4.2.3) that 

BTi A,  = -. 
n 

Substitution of h(B) into (6.3.53) leads to the computational formula (6.3.47) 
for A,&. 

Comparison of tG.3.58) and (6.3.61) shows that Ajne's A,, can bc considered 
as t.he inon-ant.ipodally-symmetric part' of Watson's U2. 

A,(t)  of Rothman and Rao 
Taki~ig 

Sin@lr) 

2ptn PP = - (6.3.63) 

yields 

where A,,(t) is t.hc statistic of Rot.hrnan (1972) and Rao (1972b) defined in 
(6.3.50). 

Beran's Tests as Locally Most Powerful Invariant Tests 

The tests based on Bn were introduced by Beran (1968) as locdy (i.e. 
for K --t 0) most powerful rot~tion-ir1\~ri;rrit tests o f  uniforrriity against 
alternatives with densities of the form 

where 11 i.1 ari urikriown loc.&k)n pnrauieter a id  f i.1 related to B,, by (6.3.67) 
and (6.3.69). 
By the Neymim-Pturson lemma, the mavt powerfi~l invariant test is the 

likeliiiood ratio test based on the masgind likelihood of a maxinial invariant. 
A slight generalisation of the argument given for the Rayleigh test in Section 
6.3.1 shows that the joint tierlvity of the rriaxirnal iwarinnt UI , . . . , un-l (where 
ui = Bi - en) is 
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Thus t.hc? most powcrful invariant t.est. rejcctu uniformity for large talucs of 

Expanding the integrand in a power serics in K and using the fact that f(e+&) 
is a pntbabi1it.y tierlvity function gives 

horn the inversion formula (4.2.2), the Fouricr expansion of f(0) is 

and so 

. / a ;  (*' 

= & { ~ ( c t y C p  + ;?$,, cosp8 + c ( f i P C p  - a,&) sin@ 
p= 1 p= J 

Then Pnrseval's formiila (4.2.3) gives 

(6.3.69) 

2 
and so 

= L- 27r ~ d * "  [ (g f ( e  + ei)J - 4 &. (6.3.70) 

Then 

Since each integral in the third term on the right-hand side of (6.3.71) does 
riot. depend ON Br, 

I = c + K'B,~ + O(K") 

for some constant c. Thus B, is a locally most powerful invariant test. 
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Important speci;rl cascs of this general result arc ils follows: 

(i) the hyleigh test is a locally most powerful invariant. test against 
raxdioid dtwriativw; 

(ii) Watson's U2 test is a locally most powerful invariant test against the 
alternatives (6.3.64) with f(0) = 02/27r2; 

(iii) Ajiie's .4,, test is a locally iriost powerful invariant test against, the 
alternatives (6.3.42) when p and 9 are nearly the same, i t .  p / q  -+ 1. 

The Rayleigli test has the inucli stronger property (proved in Section 6.3.1) 
of being uniformly most powerful invariant against von Mises alternatives. 

The Asymptotic Null Distribution arid Consistency of B,, 

Luder uniformity, the large-sample asymptotic distribution of R2 is given 
by 2nR2 x i .  Similarly, for large 11, Cl, St, Cz, Sz, . . . are asymptotically 
indepentieritly distributed as A7(0, 1/2), suggesting that the astsyrriptdk 
characteristic function of B,/n is 

p= 1 

This argument can be made rigorous (see Beran, 1969a). When the non- 
vanishing 4 are id1 distinct, the chiwa:t.eristic function may he invertcd and 
it is found by a partial fractioii expansiou of the characteristic function that 

where a,, = nker,(l - (pk/pP) ' ) - ' .  These results are due to Berm (196%). 
We now consider the consistency property of the B,, test (Beran, 1969a). 

Lct G be the distribution function under the alternative hiypothe.qis. From the 
strong law of large numbers and (6.3.53), 

where p; is the mean resultant length of (cosp9~sinfl) under the distribution 
function G. Hence the test B, is consistent if there is at lea5t one p for which 
Iwth pp aid p; are t io~i-~~?ro. Since p; # 0 for some p whenever the dterriative 
is not uniform, a necessary and sufficient condition for B, to be consistent 
against ill1 altcrnst.ives is that pa # 0 for all p > 0 . In particular, it. follows 
from (6.3.58) that Watsm's U2 rest is consistent against all alternatives. On 
the other hand, in view of (6.3.62), Ajne's A,, test is not consistent against 
all alternatives. 
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The asympt.atic distribution of B,t tinder general sltcmativw was obtained 
by Berm (1969a). He also derived the B d i d u r  efficieiicy of the tests based 
on B,. 

GerieraJisations of 0, for test,irig uriiforrriity or1 spheres (and other sample 
spaces) are given in Section 10.8. 

6.3.8 Relntive Performances of Various Tests of Unifomitp 

The powers of hiper’s  V,,, Watson’s U2 and Ajrie’s A,& t,est.s have beexi 
compared by Stephens (1969b) hi a simulation study. This suggested that 
Kuiper’s test may be preferred for small samples. For alternatives giwn by 
(6.3.42), the .4,, test (the loc~lly most powerful i ~ ~ ~ i r t r i t  test) is taily very 
slightly more powerful than Vn or U2 (which have almost the same power). 
Stephens (1969b) also fourid that: 

(i) for a class of urihiiodd nlteriiativex, all the thee tests are equally 
powerful; 

(ii) for a class of biriiotial dternativw, V,t mid Cr2 tiave the same power 
but both are much uore powerful than A,; 

(iii) for il clilss of sltc?mat.ivw with four modes, is more powerful thim 
U” which in turri is more powerfid ttiari A,, . 

The difference between the power of and F2 is less marked for moderately 

Rao (1969) liar shown by simulatioii that for ma l l  siiliiples, the power of the 
L test relative to the Raybigh test against von Miws alternatives is tolerable 
for large IC. 

lilrge ~itmple~. 

6.4 TESTS OF GOODNESS-OF-FIT 

6.4.1 The Probabilitp Integral il)umsfortraation 

Consideration of the probability integral transformations on the line suggests 
the following arialogue or1 the rirck. Let F be the rnrridative tiiiytribution 
function of a circular dist.ribut.ion and suppose that an orientation and initial 
direction hilvc been chosen. Then t.hc probability integral tnznqfolmntion of 
the tlistributioii is the traxisformntiori of the circle which sends t9 to 2?rF(B). 
If F is continuous then the transformed random variable 

u = 2 q e )  mod 2?r (6.4.1) 

is ciistributed iiriiforriily or1 the circle. 

6.4.2 Tests of Goodness-of-Fit 

By means of the probability integral transformation (6.411, any test of 
uriiforrriity ON the circle gives rise to a (:orrespomiiIig test of goodness-of-fit. 
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Consider the hypothesis t.hat. a distribution on the circle is a given distribution, 
with continuous cumulative distribution functiou Fo. Given observatio~is 
81,. . . , en, this hypothesis ccan be tested by a.pplying any test of uniformity to 
1 7 1 , .  . . , brr,, where t;i = 2nfi,(Bi). 
I more common problem is to test the hypothesis that the distribution 

generat.ing the data belongs to some given family. After fitt.ing a distribution in 
this family, we are interested in in assessing how well the fitted ctistributiou fits 
t.hc data. Goodness-of-fit of' a fitt.4 distribution with cumulative distribution 
furic%ion F to data 61, . . . , e,, is judged by assessing whether or riot, the nriifonn 
order statistics of 2a$(C)I), . . . ,27rF(O,) could reasonably be a random sample 
from the uniform dimibution. More precisely, a test of uniformity is applied 
to 2nP(e1), . . . , ~ , ~ P ( B , J .  usually the alternative is coiripletely geiierd a i d  SO 

an omnibus test of' uniformit.y, such as Kuiper's test or Watson's U2 test is 
appropriate. Because parameters have been estimated, the null tiistribution 
of such goodness-of-fit tests will not be the same as the null distribution of 
the corresponding test of uniformity, although the difference will be small for 
large samples. For the goodness-of-fit. test of von Miws distributions based 0x1 
Wat.son's U2, quantiles have been calculated by Lockhart. SL Stephcns (19851, 
and art? given in Appendix 2.10. 

Some specific tests of 'von MLsesness' are given in Section 7.5. 

Example 6.10 
Docs a von Miscs distribution provide a good fit to t.hc pigcon-homing data 
set of Example 6.7? 

The maximum likeliiiood estimates of the parameters are j i  = 155.8" 
and ri. = 1.63. Using the goodness-of-fit test b'lsed on Watson's Cr2 gives 
U2 = 0.238. From Appendix 2.10, the hypothesis that. the data come from a 
von Mises distribution is rejected at  the 0.5% level. 

Watson's F2 for Grouped Data 
Because the probabi1it.y integral transformation (6.4.1) transforms a given 
distribution to the iiriifonn distribution only when the given tiistribution 
is continuous, goodness-of-fit tests based on tests of uniformity have to be 
modified before they are uscd on grouped dnt.n. We now describe t.wo such 
modificatious of kVatmIi's U2 test. 

Grouping of circular data puts obsermtions into ordered cells. Suppose that 
there are Ic cells arid that the niill hypothesis spwifie the probability of mi 
observation falling in the j th  ccll as p j ,  for j = 1 , .  . . , k. For ra independent 
ohscrvations, denot.e the obuervd and cxpwt.ed numbers of observations in 
the j t h  cell by Oj arid Ej ,  respectively. T'heii Ej = ~ t p j .  

j 

Define 

Sj = C(0i - Ei), j = 1 , .  . . , k ,  (6.4.2) 
i= 1 
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and 
k 

s = cpjsj. 
j =  I 

Then 

(6.4.3) 

(6.4.4) 

is an analogiic of U2 which is siiit.able for grouped data. It was introduccd 
by Choulnkian, Lockhart &. Stepliens (1994). The statistic [I,$ is irivariaxit 
under cyclic permutations and order-reversing permutations of t.hc celIs, so 
it is appropriate for grouped data 0x1 the circle.. In the a y e  p1 = . . . = pa, 
(6.4.4) reduces to 

(6.4.5) 

which is Reedman's (1981) grouped version of U2 and ran he obtained by 
replacing C, axid (i - 1/2)/n in (6.3.33) I)y O,/n a i d  p, ,  respectively. For the 
cCxe p1 = . . . = pk and various values of k, some quantiles of the largesample 
asymptotic distribution of !I& are given in Choulakiari, Lockhat I Stephexis 
(1994). In patticular, €or rz 2 8, these 1096, 5% a d  1% quailtiles ase within 
0.01 of the corresponding quantiles of U2' given in Table 6.5. 

An alternative groiipd version of U2 was obtained by I3rown (1994) fro111 

careful consideration of the clfect of grouping on the process Wn of' (6.3.38). 
First define 

1 - 1  

(6.4.6) 

Then Brown's gouyed vemiori of Uz is 

The first term in (6.4.7) is a grouped mialogue of the iisiial U2 statistic (6.3.33) 
and is similar to C2, while the other two terms are grouping corrections. 
Thc! statistic U: is invariant under cyclic permutations md order-reversing 
permutations of the cells. The null distribution of i7: is close to that of U2. 
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Example 6.11 
D o e  a VOII Mises distribution provide a good fit to the leukaemia data of 
Example 6.3:' 

The rnaxirniirn likelihood estimates o f  the parameters are f i  = 198.3' arid 
R = 0.202. Brown's statistic (6.4.7) is L:: = 0.041. Since the upper 10% 
quantile of li42 given in Table 6.5 is 0.152, wc c:onchide that the fitted von 
Mism distribution is a good fit, t,o the data. Comparison of C$ with the upper 
15% quantiles given in Appendix 2.10 for (c = 0 and (c = 0.5 leads to the same 
wricliision. 

If it is accepted that the data come from a von Mises distribution, then the 
tests in the next chapter can be applied. 
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Tests on von Mises 
Distributions 

7.1 INTRODUCTION 

Inference on distributions on the circle has been most highly developed for 
t.hc? von Vises distributions. This dewlopmcnt is due to t.hc?ir elegant structure 
as mi exponential trtuisforrrintiori rriodrl under rotatiow. 111 this diapter we 
discuss inference on von Vises distributions. Section 7.2 treats tests and 
corifiderice intervals b a d  on a single sample. arialogcm to those of standard 
iiormal theory. Two-sample inference is considered in Sectioii 7.3, and this is 
extended to the multi-sample caw in Section 7.4. A test of von Miwsness is 
described in Sectioii 7.5. 

7.2 SINGLESAMPLE TESTS 

In this section we consider inference on H von Miws distribution M ( p ,  K )  on 
the l~ask of a ra~ld0111 sample 8,. . . . , On. We slid1 assume that IC > 0, so that 
the distribution is not uniform. 

When a mean tiirer:tiori is specified, it will be usefiil to modify the 
iiotation of (2.2.1) by writiug 

7.2.1 

Concentration Parameter Known 

The Likelihood &utio Test 

Tests for the M e w  DiYvction 

Suppose that we wish to test 

HU : p = pu against HI : p # p0. (7.2.2) 

Directional Statistics 
Kanti V. Mardia,Peter E. Jupp 

Copyright 0 2000 John Wiley & Sons, Inc 
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The likelihood ratio t.est. rejccts HO for large valuta of 

w = 2nn(R - C).  (7.2.3) 

Luder Ho the large-sample approxi~xintion 

2nK(R - C) + u: 
holds. For moderate sample sizes, this approximation can be improved by 
replacing 11) by the Bartletf-corrected version 

(this is the case p = 2 of (10.414)}. An alt.ernative improvement is Stephens's 
approximation (4.8.29) : 

2ny(fi-C) + x.:, (7.2.4) 

where 
(7.2.5) 

This approximation is adequate for K > 2. 

A Conditional Test 
The likelihood function can be mpressed iL5 

L(P, 4 @I 7 .  . . ,en) = 91 (6lR; 11, K)fi(R; K ) h ( o ) ,  (7.2.6) 

where yl denotes the coiiditianal probability density function of 8 given R, 3 
denotes the marginal probability density Function of R, and h is a function 
of 8, , . . . , B,, only. Since j ( R ;  K )  does not. depend ON p, no inferenc*t?s ahout p 
are possible if only R is given, while thc observed value of R can be regarded 
as detcrmining the prwision with which infervnces about p can he mi&. 
-4 iuore detailed coiisideratioii of (7.2.6) shows that R is G-ancillary for p 
(Barndorff-Nielsen, 1078a, Section 4.4), where G = SO(2) is the rotation 
group of the circle. By the tuicillarity principle (Fisher, 1959, Section IV.1; 
Stuart & Ord, 1991, pp. 1202 1203), it is appropriate to test (7.2.2) using only 
the distribution of #lR. Rom (4.5.5), #IR - Af(p,lcR). Sincc the likelihood 
ratio statistic is given by (7.2.3), tJe coiiditioiial liielihood ratio test, rejects 
HO for large values of R - C, i.e. for small values of cos8. Hence the critical 
region of size u is given by (see Fig. 7.1) 

7r - 6 < e - < R + s, (7.2.7) 

where d is determined by 

a 
exp(lcRcos9)dB = - 

2 
(7.2.8) 
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Figure 7.1 Density of OIR for p = 0 arid KR = 1. Shaded area = i c y .  The an: 
(T - 6, ?r + 6 )  is the critical region of sizc u. 

and can be calculated from Appendix 2.2. For rcR > 10. the wrappml normal 
approximation M ( p ,  KR) = N(p, ~ / ( K R ) )  cram be used. 

It can be shown that this test is the rmly uribiawd twt against HI among 
all the t.ests of size a having critical regions containing K. (See Stuart fli. Ord, 
1991, pp. 833-834, Example 22.7 for the normid cay(:; Mardin, 1972s, pp. 
140-141 for this case.) 

Example 7.1 
F'rom a largescale survey, it is known that the dip directions of cross-beds of 
a section of is riwr hilvc mean direction p = 342O and concentration K = 0.8. 
111 a pilot survey of a ndglibouring section of the river, 10 observittioiis gave 
6 = 278" and R = 0.35. Can the mean direction for the neigbbouring section 
be taken a.l 342'? 
An appropriate null hypothesis is p = 342". We have KR = 2.8. From 

Appcindix 2.2, for K, = 2.8 and p = 0, the critical region of aim? 0.05 defincd 
by (7.2.7) is (180' f 101.3'). Hence the critical regioti when p~ = 342' is 
(342" - 180" f 101.3"), i.e. (60.7".263.3"). Consequently, we accept. the null 
1iypot.hesis at the 5% sigiifiaice level. 

The Score Test 
Ftorn (5.3.1) the scc3re at is 

so the score test rejects Ho for large values of ISI. Under Ho, 

(7.2.10) 
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for n large. For conwntrattd dist.ribut.ions (K > 2, say), M(BJ,K) can he 
approxirnatetl by a wrapped Normal distribution W N ( p , ) ,  p) with .4(~) = y. 
Then (7.2.10) can be replaced by 

sin(8 - b) 
-2 l ogp  

+ 

Concentration Parameter Unknown 

Consider the problern o f  testing 

N(0 , l ) .  (7.2.11) 

when K is unknown. 

(7.2.12) 

The Likelahood Ratio Test and Variants 
The likelitiood ratio statistic for (7.2.12) is 

w = 2n (RR - iiC - log~o(k)  -t logIo(k)) , (7.2.13) 

where k = A-’ (C) cienotes the rnaxirnurri likelitiood wtimate o f  K. under Ho. 
The likelihood ratio test rejects HO for large values of’ w. 4 simpler statistic 
than (7.2.13) is 

27Gk(R - C), (7.2.14) 

obtained hy replacing K. in (7.2.13) by its rriaxirnurn likelihood estimate 
given by (5.3.6). It follows from Wilks’s theorem that, under Ho? (7.2.14) 
is distribiitc!d iq)proximately iL5 x: for large n. 

More refined approximations by Upton (1973) to the likelihood ratio 
statistic w of (7.2.13) lead to 

which is appropriate for n 3 5 and C 5 2/3, and t.0 

2n3 1-P . 
log - y >r;, 

112 + c2 + 3rt 1 - Rt 

(7.2.15) 

(7.2.16) 

which is appropriate for n 3 5 and c > 2/3. 

(Yamiunot80 8t k’ariagimoto, 1995) which rejects Ho for large values of 
Another uuefiil approximation t.a to the likelihood rat.io tcst is t.hc t.est. 

2nk(R - C), (7.2.17) 

where k is the ruargiual maxirmmi likelihood estimate of f i  @veil in (5.3.29). 
An advantage of this test is that, under Ho? 

271k(R - C) + FI,n-I  (7.2.18) 
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if either n or li is large. This follows from (7.2.22) and (7.2.14), respect.ivdy. 

The Scon: Test 
F'rorn (7.2.9), the score at  (p,,, 2 )  is 

Under Ho, we have 
&s2 . 
A @ )  x:, 

(7.2.19) 

(7.2.20) 

for tt large. For most practical purposes, we can replace (7.2.20) by 

(n.Rii)'/2 sin 8 + X(O,I).  (7.2.21) 

This approximation i.1 satisfactory if rZ 2 2 or if rZ 2 0.4 mid 7h 2 10. 

Some Other Tests 
Another test, of (7.2.12) is based on the approxiiuatiori 

R-c 
(1 - R ) / ( n  - 1) FI+-l ,  (7.2.212) 

for large K. This approxirnat.icm follows from the high-(:onceIitration 
asyniptotic distribution of (211~(iZ - C), 211~(1  - C)) given in Section 4.8.2 
and was first suggested by Watson & Williams (1956). It is  suitable when c 2 516. 

Approximation (7.2.22) can bc related as follows to the usual t t.est. of the 
I I I ~ X I  of a Iiorrnal tiiiytribution. Rwdl  that the decomposition 

2n(rr - C) = 2 K ( I L  - R )  + 2K(R - C). (7.2.23) 

given in (4.8.30) is analogous to the decomposition 

given in (4.8.34) for a raridorn sarnpie q , . . . , .c,~ from ~ ( p ,  2).  A s  disctiwed 
in Section 4.8.2, if (c is large t.hcn the terms in (7.2.23) have A2-distributions 
andogous to those of the corrcsponding terms in (7.2.24). Then (7.2.22) is 
ailaloJzous to 

A tcst which is suitable when K is small is b i L 4  on the approximii,tion 

2 n ( P  4 2 )  + xi. (72.25) 
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This approximii,tion follows from the largesample iLqymptotir: distribution of 
3 under iiriiforriiity (see Section 48.1). It is suitable when c 5 1/3. Related 
t.est.s which are appropriate when 1/3 < f? < 5/6 are given in Stephens 
(1962a). 

Confidence Intervals for p 

(7.2.2). 
Confideiice iiitervds for p cai be obtained in the usual way from tests of 

rlri approximate lOO(1 - a)% confidence interval for /L based 0x1 (7.2.14) is 

(7.2.26) 

where & den0t.w the upper a quantile of the >I: distribution. An 
approximate lo()( I - a)'% co~ifidencu interval for /L with wverage prolxbility 
closer to 1 - u is 

(7.2.27) 

which is based on (7.2.13). This is ii,ppropriate when R 5 2/3. Similarly, 
(7.2.16) leads to the approximate lOO( 1 - a)% confidence hiterval 

(7.2.28) 

for p. This is appropriate when R > 2/3. 
IJsirig (7.2.21) an apprcmirriate lOO(1 - a)!% wrifidence interval for p is 

(7.2.29) 

where x , : ~  denotes the upper 4 2  qriaritile o f  the N(O, 1)  distribution. This 
is appropriate if R 2 2 or if B 2 0.4 and rz 2 10. 

Confidence intrna.ls for 11 can dso bc b;tuexi on the conditional distribution 
of 6 given R, w used in the likelihtxxl ratio test gi~i'eii by (7.2.7). Replacing K 
by it.s maximuni likelihood estimate R gives 

r 7 f d  (7.2.30) 

as an approximate lOO(1 - u)% wnfidenc*e interval for /L (see Fig. 7.2), where 
d is determined by 

a r+6 
exp(RRcos9)dB = - 

2 
1 

(7.2.31) 
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Confidence interval 

Figure 7.2 Cotifidmice interval (8 + 6,8 - 6) for the titem clirectioti p .  

and can be found froin Appendix 2.2. 
If R 2 0.4 and ra 2 30 then (7.2.30) can be approximated by 

(7.232) 

Because the rnargitlal rrinxixiiiirri likelihood estixiiate of K tlefirietf by (5.3.29) 
is less biased than k ,  t.hc confidence interval 

(7.2.33) 

Example 7.2 
1x1 an experiirieiit mi homing pigeons (Sdir~iidt-Iioerrig. 1963), the vauisbirig 
angles of 15 birds were 

85': 135O, 131i0, 140°, 145O. 1504, 150', 150', 

160°, 185*, 200', 210'. 220': 225*, 270'. 

The hoirie dirw-tion was 149". Way there any preference for the home 
direction'? 

Here n = 15 and calculat.ion giwv # = 168.5": R = 0.74. First, we twt 
the hypothesit of uniformity living the Rayleigli test. Sirice 2nR2 = 16.43 > 
10.591 = x ~ : ~ , , , , ~ ,  we reject the hypothesis of uniformity, i.e. there is a 
preferred direction. 
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Nest we make the pliiusiblct assumption tlii%t the data are H random sitmplct 
from a voii Misw distrittution M ( p ,  K ) .  Froxn Appeiid~~ 2.4, k. = 2.29, arid SO 

n R A  = 25.42. Interpolation in Appendix 2.2 shows t.hat b = 23.1°, where S is 
defined by (7.2.31). Then the approximate 95% confidence interval given by 
(7.2.30) is (145.401 191.6'). Since 149' is in this interval, we accept at the 5% 
significance lewl the null hypothcsis = 149", i.e. we concludc that there is 
a preference for the hoixie direction. 

7.22 

Consider the problem of testing 

Tests for the Concentration Pamnaeter 

mi the basis of a raridoixi sample 61, . . . ,On froixi M ( p ,  K), where p is u~ihowxi .  
The likelihood ratio statist.ic is 

Thus the likelihood ratio twt of r; = KO against K > reje& Ho for large 
values of R, while the test of K = IQ against r; < K.O rejects Ho for small values 
of R. 

We iiow show that these taiesidecl tests are iiiiiforxiily most powerful 
invariant tests under rotations of the circle. F'rorn (5,3.1}, 6 and R are sufficient 
statistics for p arid K .  Since R is a maximal invariant after this sufficient 
reduction, hivariant tests of K. = K.O depend only on R. Frorii (4.5.4, the 
marginal probability density function of R is 

m; .) = {Ig(rc))-"lo(rcn)h,(R), (7.2.36) 

where h,  ( R )  does not depend oil 6. Differeiithtioxi g i v ~  

(7.2.37) 

Application of (3.5.4) to the ( 1 , l )  exponential motiel M(0. r;R) shows that if 
6, - iti(0, rcR) theii var(cos8) = A'(r;B). Thus A'(K.R) 2 0. Shce A(KR) 2 0 
the right-hand side of (7.2.37) is non-negative. Hence the marginal density f 
1 1 s  a monotone likelihood ratio in K. -4pplyixig the Neymari Pearsoxi leixirna 
t.0 (7.2.36) gives the result.. 

Apperitiix 2.11 gives 90% mid 98% eqiid-t&d ronfidenre intervals for K .  

For rc > 2, an approximate (1 - a) confidence interval for K is 

( 4u I 4b 1, 1 + (1 + 3u)'/2 1 + (1 + 34'1' 
(7.2.38) 
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where 

2 
(4 = (. - R)/xta-,;,-a,;?, 

b = b - R)/XX-1:a/2. 

To see this, recall Stephens's approximation (4.8.32): 

(7.2.39) 

(7.2.40) 

(7.2.41) 

where 3 is defined in (7.2.5). From (7.2.41), we have 

Pr(a-' < 27 < &-I)  cz 1 - a. 
The inequality 27 < 6-' implies that 1666' - 8~ - 3 < 0. The roots of the 
quadratic equation 166d - 8 ~ .  - 3 = 0 are of opposite sigxis and if d is the 
positive root then K < 0, which is t.hc right end-point of the interval (7.2.38). 
Similarly, the ixiequality 27 > u-' leads to the left end-point of the interval. 

Tests of K. = KO against one-sided alternatives can be obtained sinlilarly. 
{For large I ) ,  the normal approximation for l? with mean and variance given 
by (4.8.17) a i d  (4.8.18) is satisfactc>ry.) Stephens (1969a) lias givexi quaxitiles 
of l? for a = 0.01, O.Ot, 0.95, 0.99, which are based on approximations by 
Pwrson curvcs. 

For QI 5 2, the approximations of Section 4.8.3 can be used. 

Example 7.3 
In the pigeon homing experiment used in Example 6.7, the vanishing angles 
for 15 birds were 

115°,12c)*, 120", 130°, 135", 140", 150°, 150°, 150°1 

165': 185', 210°, 235', 2$0°, 345'. 

Obt.ain a 90% confidence int.erva1 for t.hc concentration parameter. 
We have 7h = 15 arid R = 0.626. Let y arid K.,, be the lower anti the upper 

90% confidence limits, respectively. From the lower curves in Appendix 2.11a 
at R = 0.626, we find that K.[ = 0.44 for 11 = 10 and K /  = 0.88 for la = 20. 
Similarly, from the upper curves at R = 0.626, K., = 2.62 for YI = 10 a i d  K~ 

= 2.40 for n = 20. For n = 15, interpolat.ion gives ~ . l  = 0.66 and K . ~  = 2.51. 
Hence a 90% confidence intcrtal for K is (0.66,2.51). 

For illustrative purposes, we also give the 90% confideiice interval for K h n i  
(7.2.38). We have 

'rr. - R = 5.604, .yf4;o,05 = 23.68 arid x : ~ : ~ ~ ~  = 6.57. 

Conuequeiitly, (1 = 0.853 arid b = 0.237, SO the approximate 90% coxifide~ice 
interval for M given bv (7.2.38) is (0.85,2.44). Note that this interml is not. 
necessarily an apprcmirriate 95% confidence interval, because k is less t h m  2. 
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Figure 7.3 Geometry of resultant vectors. 

7.3 TWO-SAMPLE TESTS 

Suppose t.hat 811.. . . , and 1921,. . . , I92,,, are independent random samples 
of s i z ~ s  n1, T Z ~  from M ( P I ,  K I )  iind AI(p2, K Z ) ,  rcspect.ively. Lc:t the 
corresponding sanple irieari directicms be ill, 8, mid the resdtarit lengths 
be R I ,  R2. Suppose that the mean direction and the resultant length of the 
corribiried sample are 8 arid R, respm%ively. Let 

ni ni 

j = 1  j=l 

7.3.1 

We are interested in testing 

Tests for Equality of Mean Directions 

Ho : PI = PZ. against Hl : j.bi # pa, (7.3.1) 

where the concmtration pmametcrs lcI and IC'L arc (quid (to K ,  say) and 
unknowii. One way of coristructirig suitable tests is suggested by the geoirietry 
(see Fig. 7.3) ofthe resultant vectors Rl(cos&,sin&), R;!(cos&,ssin&) of the 
two sarriples arid R(cos e, sin g) of the combiwd sarriph. 

The cosine rule gives 

R2 = 8: + Ri + 2RiRZ COS(& - &}, 

so that RI f R2 2 R. If HO is true then 81 N 62 ,  and so RI + R2 N R. If HO 
is false then R1 + R2 - R will tend to be lnrge. Thus it is reasonal)le to rttjec% 
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(7.3.2) 

When IC is kiiown, the likelihtxxl ratio statistic for testing Ho against HI of 
(7.3.1) is 

and YO the test lxisetl 011 (7.3.2) is equi\deiit to the likelihimd ratio test. 
However, when lc is unknown. the distribution of (7.3.2) depends on the 
nuismcc paramettcr lc. We nwt  give t.wo ways (due to Watson & Williams, 
1956) of eliminating K :  (i) by conditioning on R; (ii) by 'cancelling' K in F 
tests based on normal approximations. 

w = 2 ~ ( R l  + Rz - R) ,  (7.3.3) 

The Two-Sample Watson-Williams Test 

The Ted 
We have shown in Section 4.6.3 that. when HO is true, the conditional 

distribution o f  (R1, Rz) given R (with probability density (4.6.22)) does not. 
depend on K. Hence an appropriate t.est rejects HO for large \dues of R1+ R2 
given R. For given R, this test is a similar t.est, since under Ho the valut: of 
K such that 

does not depend on M. 

Pr(R1 + R.t > KIR) = (1 (7.3.4) 

The Null Distribution 
On transforming t.hc variables R1 and Rz to 

?A = R1 + Rz, 'L: = R1 - Rz 

in the probability density function of (R1,Rz) given R in (4.6.22), we 
obtain the probability density function of (u, v) given R. On integrating this 
probability tleasity fulic:tion with respect to v,  we h i d  that, wider Ho, the 
probability density function of u given R is 

where R < u < IL and h, is the probability density function of R for the 
uniform case, which is given by (4.4.5). 

Let n1 5 n z .  Piit r = n l / n  arid I? 3= (R1 + R z ) / n .  Appendices 2.12a-2.12b 
give t.he 5% quantiles for the test whcn t' = 1/2 and r = 1/3, respectively, 
i.c.. for nl = nz and nz = 2nl. For 0 < R < 0.4 and 1/3 < r < 1/2, we 
red  the values of R from ~ppeiidices 2.12~ aid  2.12b for r = 1/2 a i d  1/3 
respectively and then obtain the value of R' for given r by interpolation. For 
R > 0.4 arid ariy mocierate value of I', .4ppendix 2.1% rmi be used. 
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A High-Concentration F Test 

For large K,, we have from approximation (4.8.36) due to Watson k Williams 
(1956) that 

~ K ( R I  + R2 - R) u: (7.3.6) 

and 

F’urthcr, for large tc, t.hcse statistics are approximately independently 
distributd. Hence, under the null hypothesis, 

(7.3.7) - 2  
2ti.(~t - R, - Rz) xr,-2. 

(7.3.8) 

asymptotically for large rc. (Note that. from general asymptotic theory of 
likelihood ratio tests applicd to (7.3.3), under Ho (7.3.6) holds also for large 
nl anti 712 arid for all wliies of K.) The apprcmirnntion (7.3.8) can I,e refined 
using Stephens’s approximation (4.8.32) 

2r(% - Ri) + Xn,-l ,  2 (7.3.9) 

(7.3.10) 1 1 3  
7 tc 8tc 

Using (7.3.6) and (7.3.9), and replacing the unknown (c by its maximum 
likelihood t3timatc k ,  gives 

where 
- -  ----t-?. 

Simiilationu (Stephens, 1972) support this approximation for k. > 2, i.c. for 
R > 0.7. The approximation (7.3.11) differs negligibly from (7.3.8) for k > 10, 
i t .  R > 0.95. 

An Approximate Confidence Interval 

We iiow gi~ivr a method of obtainbig approximate coxifideiice intervals for the 
difference 

From (4.5.5),8,IR1 arid82IRs aredistributedas Ai(pl,rcR1) a i d  M(,u~,KRz) ,  
respectively. Hence, from (3.5.44) the distribution conditional on ( E l .  R 2 )  of 
the differexice 

h = - 1r.t- 

d = 81 - 8 2  

is approximately M ( S :  M*), where K* is given by 

A ( K * )  = A(fiRI)-4(ti.R~). (7.3.12) 
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In practiw? we may r e p l i ~  K, by its maximiim likelihood cstimate k under 
the iiiill hypothesis, whidi is @veil I)y 

(7.3.13) 

Then (Mardia, 1972a, p. 156) the distribution of d car1 he approximated by 
.M(cS,R'), where R' is defined by 

A(IZ*) = A ( A R I ) A ( ~ R ~ ) .  (7.3.14) 

For given u, define v hy 

Pr(x - v < 0 < K + v) = a, (7.3.15) 

where 0 - M ( 0 ,  k..'). Then an approximatc 100(1 - a)%, confidence intcrtd 
for S is the arc 

( d +  R - v,d+7r + v). (7.3.16) 

This method is illustrated in Exaxq.de 7.4. 

Example 7.4 
Iu an experiment on pigeon-homing (Sclimidt-Koenig, 1958), the 'internal 
clocks' of 10 birds were reset by 6 hours clockwise, while the clocks of 9 
bir& were left wialtered. It is predicted from siin-a~irnut~h cornpass theory 
that t.hc mean direction of the vanishing angles in the experimental group 
should deviate by about 90" in the anticlockwise direction with respect to the 
xuean direction of the angles of the birds iu the control group. The vanishing 
angles (nieasured in the clockwise sense) of the birds for this experiment me 
as follows: 

Control group (&I) : ?so, 75"? 80°, 80°,80*, 95", 130°, 170*, 210". 

Experimental group (0,) : lo", 50", Xi", 55", 65", 90", 285", 285", 325", 355". 

Do the data support sun-azimuth coriipass theory? 
We may iLsume t.hat. the t.wo sarnplw come from von Miws distributions 

M(p1,1c1) and iV(p~,  K.L)  with 1c1 = K.L (see Example 7.5). An appropriate null 
hypothesis is p~ = p2 +90° (where the circle is oriented clockwise). To test this 
we rot.ate the angles for the experirrieritd group (:lockwise by 90' ? t,rrisformirig 
Bi2 to Oi2 + 90": and then apply a test for equality of the mean directions. The 
data for the cont.rol gmup iwd t.hc? rotat.4 data for the experimental gmup 
give 

= 9, C1 = -1.542, S1 = 6.332, Rl = 6.507 

~1 = 10, C;L = 1.892, Sz = -5.530, R.t = 5.845 
R = 12.340, R = 0.65(1, 8' = (R,  + Rz)/ri = 0.650. 
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We uw the Watson-Williams teHt. Since R > 0.4, we iise Appendix 2.1%. 
For R = 0.65, the 5% values of R' for IA = 16 a id  IA = 20 are 0.72 aid 0.71, 
respectively. Thus, for PZ = 19, int.erpolation gives the 5% \ d u e  of R' as 0.71. 
Since the observed w . 1 ~  of 8' i.1 0.65(1, the ~iiill hypothesis is accepted at the 
5% significance level, and we conclude that the data support the sun-aziuiuth 
compass t hwry. 

For this exarnple, we iiow obtain an approximate 95% cc>~ifideiits interval 
for d using (7.3.16). We have 

81 = 103.7" and 82  = 18.9". so that d = 84.8". 

By using (7.3.13) arid .4ppendix 2.4, we find that i = 1.739. Appendix 
2.3 gives A(RR1) = 0.955 and A(kR2) = 0.950, Hence, from (7.3.14), 
A ( P )  = 0.901, which gives k" = 5.67 from Appendix 2.4. Using Appendix 2.2, 
we find that v satisfying (7.3.15) is 49.7'. Hence, frorii (7.3.16), an approxiriiate 
95% confidence interval for b is (35.1", 134.5"). Note that 90" lies in this arc 
(h agreemelit with the above test) but 0" does not.. 

The Likelihood Ratio Test 

The likelihood ratio statistic for testing HO : pi = p2 against H I  : pl # p2 is 

where k12 aid k daiote the rnaxiiriu~ri likelihood eststirnates of K. uiider HI arid 
Ho, respectivcly. For large K ,  it can he shown by using 

I o ( K . )  2: (27rn)-'l'an, A(&) 21 1 - - 1 
2K' 

(7.3.18) 

t.hat 

(7.3.19) 

which is an increasing function of the F statistic given in (7.3.8). For smalI K., 

on iisiIig the approximations 

n - R  
IL - (R1 + RP)'  

,U? N log 

A(K.) 2: - I€ I&) 2: 1 + 7, I 2  (7.3.20) 
2 '  

we find t.hat 

(7.3.21) 

Thus, in these two extreine cases, the likelihood ratio statistic UI is 
approximately an increa5ing function of RI + R2 for given R, and so the 
test Imwd on 

2 
w 'V -{(I21 + R z ) ~  - R2} .  

n 

given R is close t,o the two-sample ~~~t..sori-\Yilliarris test. 
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7.3.2 

Consider the problem of testing 

Tests of Equality of Concentmtion Parameters 

HO : ~1 = 6 2  against HI : rcl # I E Z ,  (7.3.212) 

where the mean direct.ions ~ L I  , ru:! md the concent.rations tcl , tc2 we unknown. 
We iiow obtain tests suitable for wiow ranges of R. For R 5 0.7, thew 

tests are bascd on t.hc variance-stabilising transformations of' Section 4.8.3. 
For R > 0.7, the test, is I~ased on the high-concentratio11 apprcmirriations of 
Section 4.8.2. 

Caw I. fi < 0.45. 111 this case, we cai use the statistic 

- 2 91 (2&) - 91 (2Rd 
{ I/(n, - 4) + l/(n2 - 4 ) } ' / 2 '  

(7.3.23) 

where g1 is defined by (4.8.40). Under Ho, (7.3.23) is distributed 
approximately iL5 N(0,l) .  Thc critical region consists of both tails. If nl = rtl, 
the mean of (7.3.23) is of order O(n- l ) ,  but if nl # 182 then it follows from 
(4.8.43) that the bias in gl(2&) - g1(2&) is 

This bias is negligible if either K is small or nt 2 1x2. 

Case II. 0.45 5 R 5 0.70. For this case, we take our test st.atist.ic as 

(7.3.24) 

where the fimction g l  is defined by (4.8.46) and C J  = 0.893. Under Ho,  t.his 
statistic is distributed ayproxiniately as N(0, l ) .  For ,181 # y i p ,  the bias to 
order n-' cam be obtained from (4.8.48). Example 7.5 illustrates this test. 

Case III. l? > 0.70. In this case, it follows from (7.3.9) t.hat, under NO, 

(7.3.25) 

The critical region o f  the test wrisists of both tails of the F, , , - I ,~~-I  
distribution. Simulations have shown that this approximation is adequate for 
R > 0.70. 

The likelihood ratio statistic w for testing 61 = ~2 is again complicated. 
However! on following the method iised to obtain (7.3.19) arid (7.3.21), we fixid 
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t.hat., for large lc: to is approximately an incre;tuing funct.ion of t.he F stat.istic 
in (7.3.25). For siriall K 

(7.3.26) 

Example 7.5 
Using t.he data in Example 7.4, we test the equality of t.hc concentration 
pasiuneters of the rorrespontfixig populatiorlu. 

U'e have R = 0.48, RI = 0.723, R n  = 0.585,181 = 9, I L ~  = 10. Since R > 0.45, 
we usc the test based on (7.3.24). It is found that 

g 2 ( R 1 )  = -1.150, g 2 ( R 2 )  = -1.425. 

The value of the denominator in (7.3.24) is 0.497. Consequently, the value of 
the test statistic is 0.553, which is less thiui 1.96, aid  so the riull hypothesis 
is accept.ed at the 5% significance level. 

7.4 MULTI-SAMPLE TESTS 

Suppose that (for i = 1, . . . , y) eZ!, . . . ,Ox,, are y indepentfent ranthi  smiples 
of sizes ?ti from M(pt, lc i} .  Lct Bi and Ri denote thc mean direction and the 
rcmltant It\ngt,th of the ith sample, and e md R denote' the mean dirwtion 
and the resultant length of the combined sample. Tlieii 

R: = C;L + S:, R' = C' -I- S', (7.4.1) 

where 

7.4.1 Orre- Wuy Clavsifiimtion 

We wish to test, 
Ho : = . . . = lie (7.4.2) 

against the altcrnat.ive thilt at least one of the equalities does not hold. In 
this subsection we shall assume that lc1 = . . . = K,,, where the coirii~ion 
concentration K is unknown. Tests cram be constructed using the approaches 
empioyd in the two-sample case. 
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The Multi-Sample Watson-Williams Test 

The miilti-sample mid(>ae of the t.w+sample Watson-Williams test is the 
conditional test which rejects Ho for large values of 

R1 +...+I?, (7.4.3) 

given R. From (4.6.17), the probability density furiction of R1, . . . , R, giivexi 
R does not depend on K. Thus, for given R, this test is a similar test. 

A High-Concentration F Test 

On following the same argument as for the rriodified F-approximation (7.3.8), 
we find that wder HO 

FiVW + K/-l*,&-q? (7.4.4) 

where 

The approximation (7.4.5) can be refined as in (7.3.11) to 

(7.4.5) 

(7.4.6) 

where k is the maximum likelihood estimate of K bascd on R,  and is given 
by (5.3.6). It is fouiid from simulatioii (Steyheim, 1972) that approximation 
(7.4.6) is adequate for )E 1 1, i.c. R 1 0.45. For k > 10, the factor in k 
in (7.4.6) is negligible. The dctllations car1 be displayed in mi ariitlyds of 
variance (ANOVA) table (see Table 7.1). The last column of this table can be 
modified to incorporate the correction factor in (7.4.6). 

Total n -  1 n - R  

Confidence intervals for the simple contrasts p, - p j  cram be obtained by the 
xnetthod uad to chive (7.3.16). 
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For large lc: Rao & Stmgiipta (1970) invwtigatcd the problem of thoicc of 
sample sixe in attiriiiig a desired precision in estiriiatiiig the irieari direction. 
They also considered the problem of optimum allocation of resources under 
this model. 

The Likelihood Ratio Test 

Whcn (c is known, the likelihood ratio st.atist.ic is 

R U 

where 

are the unit vectors corrcsponding to the mean directions 8i and 8 of the ith 
sample a id  the corribiried sample, resspt~tiwly. Under the null hypothesis. 

Q 
2 K ~ & ( l - c o s ( 8 , - 8 ) )  +J (7.4.8) 

t= 1 

-4 better approximation (Cordeiro, Paula & Botter, 1994, Section 4.4) is 

In the a y e  where K. is iinknowi, Anderson & Wii (1995) siiggestd replacing 
K in (7.4.7) by its maximum likelihood estimate b to obtain the test which 
rejwtu Ho for large viilws of 

u ; =  2 k C & ( l -  COS(8i - 8)) 
i=l 
9 

= k.X &Ili i i -  - ii.f. (7.4.9) 
id 

Under the iiull hypothesis, the largesample asymptotic distribution of (7.4.9) 
is xi-,. 

For data from a concentrated von Mises tiiiytribution wit.h n 1  = . . . = 7&,, , 

where Fww is defined in (7.4.5). 
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For smdl K ~ ,  the approximat.ions (7.3.20) show that the likctlihood rat.io 
statistic w of (7.4.9) is approximately equal to U, where 

(7.4.10) 

When Ho is truq Li + xi-l for large n. This approximation can he improvd 
as follows, using a multiplicative correction to bring the mean closer to y - 1. 
horn (47.3) and (4.8.17), we have 

E[R,] = n i A ( ~ )  + , E[R:] = 7ti + n j ( ~ ~ ,  - 
2 K  

Siibst.ituting these into E[U] gives 

Using A ( K ) / K  N f ( l  - ;K?) + O ( K ~ ) ,  we haw 

CL! + &, 

&} 

(7.411) 

where 

This approximation (Mardia, 1'372a, p. 164) is found to be satisfactory for 
moderately small values of IL,  provided that )c is not near 0 or 1. Iu practice, 
we replace K by its maximum likelihood estimate and we reject HO for large 
values of c u .  

Example 7.6 
Table 7.2 gives wind directions in degrees at Gorleston, England, between 11 
a.m. and 12 noon on Sundays in 1968, classified by seamn. For this data set, 
q = 4, 711 = Y I ~  = r14 = 12, ~ 1 3  = 13, 71 = 49. (Three readings are missing 
because there was no wind on the corresponding days.} Do the data indicat.e 
t.hat. t.he mean wind directions for the four seasons are dii€crmt? 

Table 7.2 Wind directions in degrees at Gorleston on Sundays in 1968, 
classified hy wason. 

Season Wind dirwtions (in deqt.c!s) 
Winter 50 120 190 210 220 250 260 290 290 320 320 ,340 
Spring 0 20 40 60 160 170 200 220 270 290 340 350 
SuIlimer 10 10 20 20 30 30 40 150 150 150 170 190 290 
Autumn 30 70 110 170 180 1'30 240 250 260 260 290 350 
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Table 7.3 Calculations of various statistics for thc wind direction data in 
Table 7.2. 

Season ca Sz Ra bi 2, 
Winter 0.166 -5.116 5.119 272" 0.94 
Spring 1.842 -1.074 2.132 330' 0.36 
Summer 2.121 3.234 3.868 57" 0.62 

Co~111birietf ,wriple 2.163 -5.464 5.877 292' 0.24 
Autumn -1.966 -2.509 3.188 232" 0.55 

We assu111e that the concentxatioii parmrieters are equal. (This wswnptiou 
will be justified in Example 7.7.) Table 7.3 gives the values of the relevant 
statistics for this data set. Sirice rZ = 0.24, we us(? (7.4.11). -411 the r Z j  are 
less t h i  1. We have c = 0.59, C&, & = 14.306, and R = 5.877: giving 
cii = 4.10. Since the 5% value of xi is 7.81, we accept that the mean wind 
directions for the four seamiis are the siilrie. 

In passing, we notc from (7.3.20) that the likttlihood ratio st.atist.ic for tcsthg 
the null hypothesis pi = ... = pq and K I  = ... = )cq aga.hist the general 
alternative is approximately 

(7.4.12) 

when K] , . . . , )cp arc) small. lhtier the nil11 hypothesis, the asymptotic Inrge 
sample distribution of (7.4.12) is ,&,-Il. 

ANOVA Based on the Embedding Approach 

Another approach to mialpis of variance for circular data was proposed by 
Harrison, Kanji & Gadsden (1986) aid Harrison & Kanji (1988). Their idea 
is to take the embedding approach and so to consider the observations as unit 
vectors in the plaie. Recall that for a siiigle smriple XI, . . . , x,, 011 the circle 
we have 

i=l 

Similarly, for q samples xt l , .  . . , xtnl;. . . : x q l , .  . . ,Xgn,, the basic AKOV.4 
deeomposi tion 
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can be reuTitt.en as 

which is renliniscent of (9.625). hi (7.4.14) the t e r m  represent respectively 
the total variation, the variation between smples, and the variation within 
sanplat. This leads to the test which rejects Ho for large values of 

(7.4.15) 

Uuder Ho, the high-(:onceIitration asymptotic tiiiytribution of (7.4.15) is 
Fg-'=,,n-g. Harrison, Kanji & Gadsdeii (1986) give also the more refined 
approximat ion 

7.4.2 

Because the  tcsts of Sect.ion 7.4.1 are bawd on t.hc wsumpt.ion of cqiial 
contzntratioiis, it is often necessary to test the hypothesit 

Tests for the Homogeneity of Concentmtion Pammeters 

Ho : /€I = . . . = ng, (7.4.17) 

where P I , .  . . , p q  and the common concentration K are not specified. Following 
Section 4.8.3, we divide our test. procedure into three parts. 

< 0.45. Applying the sin-i trensfonnation 91 giivcn by (4.8.40) 
to 2Rj: aid using (4.8.42). shows that: under Ho, yl ( ~ R I ) ,  . . . , yl(2R,,) are 
approximately distributed as independent N(gI (K), a?) variables, where 

Case 1. 

, say. (7.4.18) 
1 - - -  3 

0: = 
4(ni - 1) 'Ill$ 

Standard iiormd thm3ry shows that the weighted least2-Yqtiares estirriate of 
g1 (n) bascd on g1 (2&), . . . , g1 (2&) is 

md t.hat., under Ho,  

(7.4.19) 
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Example 7.7 illustratcs this procedure. 

Cue If- 0.45 5 R 5 0.70. On proceeding as in case I but. applying the 
defined by (4.8.46), we find that mi appropriate sii1h-l t,rtuisforrriatiori 

statistic is 

where tiow 1 0.798 - = -  
wi ni - 3' 

Case 111. R > 0.70. For t.his case, the high-concentration approximation 
M ( p , ,  K )  'v N ( p , ,  1 / ~ )  g ive  the sarriple variawe of 4 1 , .  . . ,4,,, as 
approximately 2 4 n i  - a). Tlieii it is appropriate to use Bartlett's test of 
homogeneity (Stuart 8i Ord, 1991, pp. 875-8761, and so to reject HO for large 
value., of 

ni - R., 

i= I 
l + d  

1 where 

i=l 

Under HO and for large K ,  1?3 

Example 7.7 
We test the hornogendty of the contzntratio~i parameters for t,he wind 
direction data in Example 7.6. 

Since R = 0.199, we use 1;1 of (7.4.20). Table 7.4 shows t.hc? relevant 
calculations where 2aRj = 1.225&, wi  = 4(ra, - 4)/3. Using the totals hi 
the last three columns in (7.4.20), we obtain 

C' = 6.377 - (16.21S)*/44.000 = 0.601. 

xi-1. 

Table 7.4 Cdrulationa for testing homogeneity of the conceritrations for the 
wind direction data in Table 7.2. 

Y Z ~  2a.R 91 ( 2 ~ & )  ~ ; i  (2aRj) ~ i y l ( 2 ~ R i ) ~  

12 0.522 0.550 10.667 5.861 3.221 
12 0.218 0.219 10.667 2.340 0.514 
13 0.364 0.373 12.MH) 4.475 1.669 
12 0.325 0.332 10.667 3.538 1.174 

Total 44.000 16.215 6.577 
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Since t h e  5% value of xi is 7.81, we accept that t h e  concentra.tion paramettcrs 
for the wind direct.ioxis are the same for all four seasons. 

Various suggestions for two-way axid multi-way ANOVA for circtilar data 
are given by Stephens (1982), Harrison, Kanji 8i Gadsden (1986): Harrison kL 
Kanji (1988) and Andwson & Wu (1995). 

A Tangential Approach 

One way of measuring the deviation between observations 8 and 4 is by 
sin(@ - 9). This can he regarded as a 'tangential approach', since sin(8 - 4) 
cafi be thought of as the length of a taugent to the circle at B. This approdl 
leads to t.hc test which rejects HO for large \ducts of 

(7.4.23) 

where 

dij = I - &)I, j = l r . . . , n a ,  (7.4.24) 

(7.4.25) 

Under the xidl hypothesis, the high-concentration asymptotic distribution of 
(7.4.23) is Fq-l,n-q.  Fisher (1993, Section 5.4.4) recommends this test on the 
grounds of its robustness against both outliers aid  departure from the von 
Mises assumption. 

7.4.9 The Hetervyenmw Cuse 

If it is not. reasonable to iriake the htunogeueity assumption 6 1  = . . . = K~ 

then it is not appropriate t.0 use the methods of Section 7.4.1 to test 

against the alternative thilt at least onc of the qualities does not hold. We 
noow consider tests of (7.4.26) in the heterogeneous case. 

If K I ,  . . . , Kq are known then the likelihood ratio statistic for (7.1.26) is 

where 

(7.4.27) 
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Uiitler (7.4.26), the large-sa~iiple asymptotic distribution of (7.4.27) is &.I. 

If ~ 1 ,  . . . , K,, are not. known then they can be replaced by their rnaxirrii~rn 
The statistic (7.4.27) generaliscs (7.4.7). 

likeliiiood estimates to give 

(7.4.28) 

where now 

Under (7.4.26), the large-samplc asymptotic distribution of (7.4.28) is xi-1. 
The twt whit41 rejects (7.4.26) for large values of (7.4.28) was introdiic:ed by 
Watson (1983b). 

7.5 TESTING VON MISESNESS 

Most of the inferential procedures ciescribed in this c.hapt,cr have bmri 
based on the assumption that the underlying distribution is a von hiises 
distribution. Thus it is usefill to be able to assess whether or not. this 
as~urnptic~i is rrmonable. One way of testing that a gi~i'eii distribution is a 
von Yises distribution is to test for von hfisesness within some larger model. 
hi part.icular, we can extend the voxi hlises 1nod~l to the exponential motfel 
(3.5.46) with probability density functions proportional to 

exp(tccos(8 - p )  -t cos(28) + $j2 sin(28)}. 

The von Miscs distributions are those members of this model for which 

Define 

Then a suitable test of (7.5.1) is the score test based on the conditional 
distribution o f  V given II. Usiug a large-sarnple approximation to this 
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conditional dist.ribiit.ion leads to t.he statistic 

(7.5.3) 

where n, a i d  ?I. are the components 

n R 

i=l i= 1 

of the c:ondit.ional score, 

(ZO(.) - Z 4 ( 4 ) ( Z o ( f d  - W)) - (h(4 - M4)’ 
210(4(l0(4 - W)) Vs(4 = 

are approximations to their variances, and @, A denote the maximum 
likelihood estimates wider the von h4ises model. The null hyp~t.hiesk (7.5.1) 
of von Misesness is rejected for large values of 5’. Under the null hypothesis, 
t.hc? large-sample wympt.atic distribution of S is 1;. This test, was proposed by 
Cox (1975). Further details can be found in Barndorff-Nielsen & Cox (1989, 
pp. 227-228). 



Non-parametric Methods 

8.1 INTRODUCTION 

If preliminary investigation of a data set on the circle indicates that it 
is unlikely to have been gexierated by some von hlises distribution (or a 
distribution in some other standard parametric family) then inference bas 
t.a be c m i d  out either by resampling mcithods siich bootstrapping or 
by non-puarnetric met hods. Bootstrapping is co~iisideretf in Section 12.5. 
Non-parametric methods on the circle are considered in this chapter. These 
are b a s 4  011 rumulative distribution fimc-tions anti ruiks,  as on the line. 
Section 8.2 considers tests of symmetry. Two-sample tests are considered in 
Scct.ion 8.3. In particular, we discuss two-sample versions of Kuiper’s tcst md 
\Vatmu’s U2 test, arid show how ariy rotation-intrdriarit, test for uniformity 
gives rise to a two-sample test. Extensions to the multi-sample case are given 
in Section 8.4. For a survey o f  Iiori-pnrmietric methods in dirm%ioxial statistics 
up to 1984, the reader is referred to Janlrualamadaka (1984). 

8.2 TESTS OF SYMMETRY 
8.2.1 

To test. the hypothesis that a specifid dirm-tion 110 is ari axis o f  syInIrietry 
against t.hc alternative that it. is not., we can use the: usual tests of symmetry on 
t.hc? line. After i5 suitable rotation of t.hc? circle, we may assume th5t pi] = 0. 
\Ve describe briefly two stmdard procetlures adapted for the circular case: 
(i) The sign test rejects the null hypothesis if the number of obsermtions 
on the upper .wrnicirc:le i.1 either too large or too small. (ii) We (:an dso 
use the one-saniple Wilcoxon test as follows. Let . . ,19( ,~)  be the ordered 
obsenations. Suppose thitt 8 of these observations lie in the upper semicircle. 

Tests of Symrrretry uboplt u Given A& 

Put 
19; = B ( i )  - K, .i = s + 1 , .  . . , n,  

Let r l , .  . . , r s  be the ranks of these Y observatioiis in the sequence 
O , , ) ,  . . . , 19(s) ~ . . ,0R. The null hypothesis is rejected if the sum +I +. . .+rs 
is either too large or too smd. 

Directional Statistics 
Kanti V. Mardia,Peter E. Jupp 

Copyright 0 2000 John Wiley & Sons, Inc 
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Various parametric c:ompet.itors of these tests have been given in Section 
7.2.1. Schadi (19694 lias sbown that the asymptotic relative eficieiicy of 
t.hc Wilcoxon test rela.tive to t.hc locally most powerful test for von Mises 
distributioris tends to 6/n' as K -+ 0 mid 3/n as K. -+ 30. For the sigm twt, the 
asymptotic relative efficiency tends to 8/r2 as rc -+ 0 and 2/n as K. -+ 30. 
Furt.her, in each crtue, the ;t+ympt.otic rdat.iw &icicncy is an increasing 
function of K.. -4s we would expect, for K -+ 00 the asymptotic relative 
clficiencies of both non-parametric tests coincide with the corresponding 
asymptotic relative efficiencies for detecting shifts of a norrnal distributiou. 
These comparisons indicate that for small rc and large 'I&,  the sign test may be 
preferred to the Wilcoxon test. 

Example 8.1 
We twt the hypothesis of syrrirnetry about B = 149' for the pigem-homing 
data of Example 7.2 by applying the sign test. 

The number of obsermtions in the interval (149",329") is 10. Since the 
probability of 71' 2 11 for 7i = 15 is 0.118 (see Siegel, 1956, p. 250), we accept 
at t.he 10% level the null hypothesis that the population circular median is 
149". 

8.%.2 T e y t y  01 Z-fold Symnietiy 

Consider the hypothesis that the distribution h a  /-fold symmetry, i.c. 

Hu : F(&) - F(I91) = F(B? + 2n/ l )  - F(B1 + 2n/ l ) ,  (8.2.1) 

so that F is invariant under rotation by 27i/l. If 1 = 2 then this hypot.hesis is 
that of antipodal (or central) symInetry, i.e. the prohahilit8y ciwsity function 
satisfies f(z + x )  = f(z), so that the distribution is suitable for modelling 
axial data. Onci way of testing (8.2.1) is t.a extend t.hci given sample 1 9 1 , .  . . , B,& 
to a 'symrnetrised smriple' 41 , . . . , chnl coimisting of 

If dl, . . . , are moved around the circle until they are equally spaced then 
81 :. . . ,On are transformed to uniform scores, as described in Section 8.3.1. 
Then (8.2.1) iriay be tested (Jripp & Syrirr, 1983) by applying ariy test of 
uniformity t.0 t.hcse uniform scores. 

8.3 TWO-SAMPLE TESTS 

hi many circtnnstaxicw we may wish to twt the quality of two distributions. 
More precisely, we wish t.0 t.est. 
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a 

0 

Figure 8.1 Generation of equiciistatit sample points arid the c:oinbiiiecl ranks 
for the two samples in Example 8.3. 

where F1 arid & deriobe the tfistrihution functions, mi the basis of iiidepeiiderit 
random samples 811.. . . ,el,, from the first distribution and 821,. . . , 6'zn2 from 
the second distribistiori. The wml,ixieci sarnple has size n = n1 + n z .  

8.3.1 The linifomt-Scores Test 

Suppose that t.hc elements e l l , .  . . ,el,,, 82)21,.  . . , e2,, of thc combined sample 
are distinct (as happens with probability 1 if the distributions are continuous). 
We then move these points continuously around the unit circle (keeping them 
distinct) until the spaces between sucwssivc points are of length 2x /n  (see Fig. 
8.1). That, is, we replace the arigiilar observat.io~iis iii the coinbinetl sample by 
the uniform scores 27rk/n. k = 1, .  . . , n, on the circle. Then the n1 observations 
in the first sample arc transformcid to 

,n1, (8.3.2) 

where PI. ... ,r,, denote the linear ranks in the combined sample of the 
observations in the first sarriple. For the data in Fig. 8.1, the ranks rt are 
6,  7. 8, 9, 10, 12, 13, 14. 15. Under the null hypothesis of equality of the 
t.wo populations, the im&S 31. . . . , will be a random sample (without 
replzuwment) froin tlie uniform tlistributiou on { 2 r k / n  : k = 1.. . . , n}. 
However, if the null hypothesis is false, the angles Bi will tend to cluster 
in s011ie proper subset of {%rk/n : k = 1, . . . , ri). 
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The Test 

Since, tinder the null hypothesis, t.hc? angles 31 . . . ,& will he H random 
sainple (without replacemeiit) from the uniform distribution 0x1 {2nk/n : k = 
I,.  . . , n}, their resultant length will tend to be small. The unifoma-scows test 
is the two-saInple twt which rejects the 1iiil1 hypothesis for large t-ahrm of 
t.hc resultant length R1 of t.hose uniform scores 81, . . . , .gn, in the combined 
sample which comci from the first, sample, i.e. 

2 

Rf == (2 cos ,3j) 4- (2 ~irl,3j) , 
where 31 ~ . . . ,& are defined by (8.3.2). To we that t.he t.eHt. is unitltered by 
interchanging the first and second samples, let R and R2 denote respectively 
the resultant lengths of all 11 uniform scores and of those ?12 uniform scores 
which (:o~rie from the swoxid sarriple. Since 

(8.3.3) 
i=l  i= I 

it follows that R = 0 and R1 = R2. 
This test, was proposed by IVheeler & Watson (1964), following a suggestion 

of J. L. Hodges Jr. As shown by Mardia (1969b), the test is a particular case 
of a twt for the bitmiate loratioxi problem given irideperideIitly I)y Martiia 
(1967; 1968). 

Kote that the uniform-scores test is the Rayleigh test applied to the uniform 
scores 91,. . . , ,3,,, of the first saxnple. This idea will be ge~ierdised in Sectiou 
8.3.5. 

Null Distribution and Power 

Sorue selected cpiuitiles of Rf are given in Appendix 2.13. For 7i > 20, we 
can use the result (Mardia, 19G7: 1969a) that under HO the largesample 
(nl + 00, n2 + 00,0 < lim n l / n  c 1) wympt.otic distribution of 

(8.3.4) 
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where 
n(n  + 1) - 6n1ri5 

d = l +  
T L ( f l l  - 1)(7l:! - 1)' 

This approximatit>ii is obtinetl I)y fitting a beta distribution to the riull 
distribution of Rf with the help of the first two moments. 

The asymptotic power of this test, is given in Mardin (196%) mid Schach 
(1969b). The test is consistent against thosc alternatives (Fl.F2) whcre F'l 
and Fi w e  unimodal imd symmetricd about t.hcir mcian direct.ions (Mardia. 
19691)). For shift-type alternatives, it. is showu in Mardia (1969b) mid Schadi 
{ 1969b) that the asymptotic relative efficiency of this test relative to its locally 
most powerful competitor tends to 1 when the underlying population is v011 

Mises and rc tends to zero. 

Example 8.2 
In an experiment on pigeon homing. similar to that described in Example 
7.4, it was predicted from siiri-azimuth rompass tlieory that the migles of the 
birds in the experimental group should deviate about 90" in the anticlockwise 
dirwtion relative to the angles of the birds in the control group. The viinishing 
angle9 of the birds for this experiment with 7 l l  = 12 a id  7iz = 14 are given 
below in degrees (Schmidt-Koenig's data cited in Wat.son, 1962). 

Control group ( O i l ) :  50, 290, 300, 300, 305, 320, 330, 330, 335, 340, 340, 
355. 

290, 300,300,300. 
Experhental g o u p  ( B i z ) :  70, 155, 190, 195, 215, 235, 235, 240, 255, 260, 

Let us first test the null hypothesis that the two samples are drawn hm 
the scant? population. We break the ties in the combined scanple by replacing 
ttie observatioim 290, 300, 300 of ttie control group by 285, 295, 295, so that 
all ties between samples are broken in favour of' Ho. Since RI is invariant 
under rotations, we niay rank the observations 1)y takiug the first angle in the 
combined sample as 50" and proceed in the anticlockwise direction. The ranks 
ri for the control group are 1,2,3,4,5,6,7,8,9: 13,14,16. Calculation gives the 
resultant vector of the uniform scores as (Cl, S I ) ~  = (-0.115,5.966)'. Then, 
from (8.3.3) and (8.3.4), we have 

R* = 10.60. 

is 9.21, HO is rejected strongly. As the 1% value of 
Sincc the sun-ai4rnut.h theory predicts a shift in location of 90", we now t.eHt. 

F*(O) = F,(O -I- ma). 

We do this by applying the uniform-scores test to the data set consisting of the 
control group arid the r.otatd experirrieritd group (rotated clockwise by 90' , 
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as in Example 7.4). Brmking the t.ies by randomisation, we find that the data 
support the theory. For this example the co~i~:lusio~ii is the same, irrespective 
of how the ties are broken. 

U’e now give an example in whidi  n < 20. 

Example 8.3 
1% t.est the hypothesis of equality of’ the t-wo populations for the following 
pigeon tioxrihig data (in degrw) of Example 7.4. (The data a id  the wmhined 
ranks ase shown in Fig. 8.1.) 

Sample 1: 75, 75, 80, 80? 80, 95, 130, 170, 210. 
Sample 2: 10, 50, 55, 55, 65, 90, 285, 285, 325, 355. 

On taking the ri as 1, 2, 3, 4, 5, 7, 8, 9, 10, we have 

= 9, 112 = 10, Cl = -1.085, Sr = 4.954, R;” = 25.72. 

From Appendix 2.13, the 1% value of RT is 21.07. Hence the null hypot.hcsis 
is rejjeeted st,rorigly. 

8.3.2 Kuipclr ‘s Two-Sample Test 

Sincc t.hc sample versions of’ t.hc distribution functions Fl and Fz axe the 
erripiricd distribution fuxic%ions S1 and S2 of the two sar~iples~ it is appropriate 
to reject the null hypothesis (8.3.1) when S1 and S2 are ‘far apart’. Measuring 
the distance between S1 and Sz by the maximum deviation leads to Kuiper’s 
(1960) two-sample test, which rejects HO for large values of 

J%,.ta, = SUP{Sl(fl) - S2W) - yslv) - 52(0)). (8.3.5) 

This test, is t.hc? two-sample i~d<)gu;uc? of Kuiper’s one-sample test I;;, considered 
in Section 6.3.2, and is a modification for the circle of the two-sample 
Kolmogorov-Smirnov test. Kuiper (1960) has shown that the largesample 
asymptotic 111111 ciist,ribution of ,,ca is the same as that of bi. Steck (1969) 
h a  given a method of evaluating its null distribution but the quantilcs have 
not yet bwn tabulated. For an example and furthcr details, t.hc? reader is 
referred to Batsdielet (1981, Section 6.5). In the linear w e  Abrdiaillson 
(1967) has compared the asymptotic relative behaviours of the Kolmogorov- 
Srniniov arid Kuiper’s test,s. 

e 

8.3.3 Watson‘s Two-Sample Ci2 test 

Instead of measuring the discrepancy hetwcen the empirical distribution 
fuxic%ions S1 arid Sz of the two sar~iples by a variant of the iriaxixnurri tieviat.ion 
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(hs in Kiiiper’s t.w+sample tcst), we can usc il form of (corrcctcd) mean square 
deviation. This leads to \Vatmi’s (1WZ) two-sample test. which rejects HO 
for large values of 

where S is the distribution function of the combined scwnple, given by 

This test is the t.wo-samplc analogue of 1Vat.son’s one-sample Ci2 t.est 
considered in Section 6.3.3, and is il modification for t.hc? circle of the two- 
sanple CrwitSr von Mises test. 

To obtain a more explicit form of Cr:,,rd2, consider the ordered combined 
sample. Suppose that a, is the nurnbw of observations from the first sample 
among t.hc first i order statistics of the combiied samplc and &i is the cor- 
responding number of observations from the second sample, so that. ai +b+ = i. 
From (8.3.6) we have 

(8.3.7) 

wtiem d r ; = b n - - ! ! k  a=x-. dk 
112 P Z 1 ’  n 

Since U:,,,12 depends only on the relative ranks of the two samples, it. is 
inmiant uritler rotations. 

Following Burr (1964), we now express (8.3.7) in terms of the linear 
ranks , . . . , r,,, o f  the first saxnple. This alternative forrn is xxiorc) iisefiil for 
calculations. Let si be the xiumber of observations of the second sample which 
precede the it.h observation of the first sample in the combined sample. Then 
ni = Tj - i auld 

Henw, from (8.3.7): we obtain 

By following the same procedure as for the Crmi?r-von hlises statistic, we 
have from (8.3.6), under Hn, 
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Stephcins (1965) ohtdncid the first four moments of Ui,.,h2 and fitted H Pearsun 
curve to its riiill distribution. It, follows from the general results of Bemi 
(1969b) (and was shown by Watson, 1962) that, under Ho. the largesample 
asymptotic. distribiition of Cri, ,na is the same as that of Watson's one-sample 
IT2 statistic. Burr (1964) has given the exact tail probabilities of IT:,.,t2 for 
n 5 17. imd some sdecttd quantiles arc' giwn in Appcindix 2.14. For n > 17 
aid  nl < I A ~  with ~ 1 1 / 7 t 2  not, near zero. we can use the d u e s  of U&,+ 
given in Appendix 2.14. For 12 > 17, thc quantiles from thc Pearson curve 
approximation are given in Stephens (lX5). 

Beran (1969b) has shown that the test is consistent agahist d alternatives. 
However, no small-sample comparisons with other tests are yet. available. 

Person (1979) has showii that 

where 

with 

1 if 8,, and 8,, lie on opposite sick! of the chord hoxn 02k to O21, 

0 ot.herwisc. 

Thus Watmi's two-sample U2 test car1 be regarded as mi a~ialogie (111 the 
circle of t.hc hlann Whitney test on the line. 

l i j k t  = 

Example 8.4 
For the bird migration data in Example 8.2, wic test the hypothesis that the 
two popiilatiorlu are the sm~ie. 

From Example 8.2, the ranks for t.hc control group are 1, 2, 3, 4, 5. 6, 7, 
8, 9, 13, 14, 16. Then (8.3.8) gives L'&14 = 0.320. Rom Appendix 2.14, the 
1% value of U&ou is 0.268. Hence HO is rejected (as it was hi Example 8.2). 
For the data sct consisting of the control group and the mtated experimental 
group (rotated clotdcwise by 90°, as in Exanpie 7.4), this test givw the same 
conclusion as was reached as in Example 8.2. 

-4 versiou of U:,.,,, which is suitable for grouped data can be obtained by 
putting q = 2 in (8.4.7) given below. 

8.3.4 The Runs Test 

Coxisider the cornbiried ,wnple plot8ted 011 the unit circle. As in the linear case, 
a run is an uninterrupted scquence of points belonging to one of the samples. 
Let r be the to td  nurnber of runs in the two samples 0x1 the circle. The 
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hypothesis Ho is rejected if r is smdl, since H smdl number of runs hdicaks 
a separation of the two smnples. On the cirvle, the number of runs is always 
even, as the number of runs for the first sample is same as for the sccond 
sample. 

Barton & Da.vid (1958) and Da.vid & Barton (1962, pp. 94 95,132-136) have 
giwn a method of cmumerating t.hc? null distribution of runs. Asano (1965) has 
tabulated the tfistribution of runs for 7i 5 40 mid Appendix 2.15 gisives sox~ie 
selected quantiles for the test obtained from these tables. For ra 3 40, we can 
use the result that 

r - p  . - N N(0,  l)? 
U 

where 
2nln2 
n 

p = -  ~ 0 2  = 

The normal approxiriiation (8.3.9) is derived as 
relationshb between runs on the circle and runs on 

- 1). (8.3.9) 

follows, by usiug a 
the line obtained by 

cuttirig the circle. Let PJr) and e(r) be the probabilities of r runs 011 the 
circle and on the line, respectively. If there are r runs on the circle then there 
are r + 1 or r runs on the line: dryending on whet.her or not the cut-point. 
occurs within a run. Tlius (Mar&, 1972a, Section 7.4.4) 

Pc(r) = 9 ( r )  + S(r  + l), (8.3.10) 

and so 
q r  5 2h) = 9 ( r  5 2h + 1). (8.3.11) 

Hence the lower tail of the null distribution for the circular case can be 
obtained from the corresponding linear case. The approximation (8.3.9) now 
follows hy using the well-luiow~i riorrrial approximition to tlie tiii~tribution of 
runs for the linear case. 

This test provides H quick method of testing the c.quidity of two populations, 
but we should expect it to be less powerful than tlie tests discussed earlier. 
Its consistency properties are the s c a m  as in the linear case (Rao, 1069). One 
test whidi is tiYyrnptot,icdy Inore efficient than the niris test is the test which 
rejects equality of the two populations for large values of 

1 - C(r*+1 - I', - V ?  
T1l t= l  

where T I ,  . . . , rtr, are the rariks in the rombined sarnple o f  the observations in 
the first sample (Rao. 1976). 

Example 8.5 
For the pigeon-homing data of Example 8.3, wc test the hypothesis of equality 
o f  the two populatiorlu. 
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We order the combined sample starting from the first. ohscrvation of 75". If 
we write '0' for mi observatioii frcuri the first smnple and '1' for an observation 
from the second sample, the combined sample reduces to 

o,o,o,o,o, 1,o:o,o,o, 1,1,1,1,1,1,1: 1 , l .  

(For obvious reasons, the cut-point is selected so that it is a starting point 
of a new run.) Hence 1' = 4. We have 111 = 9 and yip = 10. From Appendix 
2.15, the 5%- valiie of r is 6 md the 1% valiie is 4. Hence the null hypothesis 
is rejected, as it was in Example 8.2. 

8.3.5 Derivations of Two-Sample Tests from Tests of Unifornaity 

The uniform-scores test of Section 8.3.1 can be obtained by applying the 
Rayleigh test to the uniform scores &, . . . , Wt, of the fimt smnple. More 
generally, any t.est of uniformity gives rise to a corresponding t-wo-sample test, 
as follows (Beran, 1969b). The twt of unifonnity is applied to the unifonn 
scores PI.. . . , &, of the first sample. If the test of uniformity is invariant 
under rotation and reversal of orientation then the corresponding two-sample 
test is invariant under htuneornoryhisms (continuous trmisfortIiatious with 
continuous inverses) of the circle, and so is distribution-free. 

In piwticiiliw, we can obtain two-sample t.est.s from tcsts of uniformity in 
Beran's class considered hi Section 6.3.7. Replacing by di in (6.3.53) gives 
the corresponding two-sample statistic 

(8.3.12) 

where the function la is defincd by (6.3.54). An alternative form of Bc can 
be obtained froin (6.3.70). A generdisatioxi of L?: in which IG can depeiid oil 
n was considered by Schach (1967). On using the special forms of h given 
in Section 6.3.7 for wtne irnport.atit tests o f  uniforrriity, we mi now obt.ain 
t.hc corresponding two-sample tests. For example, on substituting & = ,3i in 
t.he stat.istir: R2 used in t.hc? Rilykigh t.eHt. (see Section 6.3.1), we obtain the 
uniform-scores test statistic R: given by (8.3.3). Csixig Ui = T ~ / T ~ I  in Watsoii's 
U2 statistic (6.3.33) gives 

where U:,,,,, is Watson's two-sample bi2 statistic given by (8.3.8). From Ajne's 
A,, st.atist.ic (6.3.47), we obtain t.he corresponding twchsample statist.ie 

(8.3.13) 
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where 
d ( z . y )  = min(lx - yI, 1 - It - gl) (13.3.14) 

is the length of the smaller arc between T and g on a circle of unit circim- 
ference. The large-samplc (a1 , n2 + m! 1 / n  bounded away from 0 and 1) 
asymptotic iiull distribution o f  

(8.3.15) 

is the same as the asymptotic null distribution of B, (Beran, 1969b). The 
asymptotic null distribution of Schach's { 1967) generalisation of B; is similar 
(Scbwh, 1969b). 

Consistency of the B: Test 

Let St and S be the empirical distribution functions of the first sample and the 
combined sarnple, respectively. As in the linear rase, the e1npiric:al tiiiytribution 
function of the t.ransformed observations of'the first sample after ranking and 
spacing out the corn bincid sample is S1 o S- ' , where S1 o S- ' (13) = SI{ S- ' (8 ) ) .  
Suppose that Y Z I ,  n2 + 00 in such a way that 

where 0 < X < 1. Then as 
G, where 

with 

+ 50. S1 o S-' teiids to the tlistril~utit~xi function 

G(@) = FI ( H - ' ( O ) ) ,  (8.3.16) 

H = XFl + (1 - X)F2. 

If Fl = Fz then G(f3) = 6'. Hence, if Bn generates a test of uniformity 
consistmt against the alternative G, Bft gives a two-sample test consistent 
against alternatives (FI, F') which satisfy (8.3.16). Therefore, from the 
consistency properties of B,, given in Section 6.3.7, we deduce that Watson's 
twtrsiunple I/2 test is ronsistent against aJ alterriatives (F1, F2}, wherew the 
A; test is consistent at least against those alternatives (F1,Fz) for which G 
has a symmctrir: unimoditl density. 

By the same xgument, it follows that the uniformscores test is consistent 
only for the alternatives for which the distribution of G has non-zero resultant 
length (Berm, 196%). By wrying A, Mardin (196%) has shown by a different 
method that the test is consistent when Fl and F2 correspond to unimodd 
densities. 

It is expected that the B: test will perform favourably against the 
alternatives of (6.3.64), since for these alternatives the B, test is a locally 
  no st powerful invariant twt. 
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8.3.6 

Distxibiition-free tnwsamplc! tests on the circle can also he derived from 
orbnary two-sample rank tests on the line. Given a rank test T on the 
line, the corresponding test statistic for circular data is maxT(rl,. . . : rn), the 
rnaxirriiirn being over all choices of origiri aid orientation o f  the circle. The 
circular test obtained in t.his way from the Mann Whitney test was introduced 

Test9 Obtained fram Two-Sample Rank: Tests on the Line 

B&schelet. (1965, p. 37) imd staditxi by Epl& (1979; 1982). 

8.4 MULTI-SAMPLE TESTS 

Suppose that we wish to test 

Ho : F1 = . . . = F,, (8.4.1) 

where 4, . . . F,, are the distribution functions of y popiilations: against the 
alternative that F1,. . . F9 are not all the same. We shall asume that FI , . . . F9 
me continuous. The data will consist of q independent random samples 

combined sample has size n = t t l  -t . . . -t ~ 2 ~ .  

Ariy test. of uriiforrriity gives rise to a corresponding q-saxripb test, by the 
following generalisation of the construction of Section 8.3.5. If the test of 
uniformity is invariant under rotation and reversal of oricntation then the 
corresporidiug y-smriple test, is invariant; under ~iorni?orriorpliis~nu of the circle, 
and so is dist.ribut.ion-free. 

Let r i j , j  = I . , .  . . ?ni. be t.he ranks of the angles in the ith sitmple, for 
.i = 1,. . . , q. We replace the n angles by their uuiforrn scores 

0 . .  ,J, j . - - 1, . . . , ri i ,  i = 1: . . . , y, of sizes 111 . . . , ny from the y populatious. The 

2nraj 
i’3ij = - , j =  1 ,..., ni, i =  1 ,..., q. 

Y1 

The correspoiiding y-sample test, rejects the riiill 1iypot.liesk for large valuev 
of CV, where 

W = 2 Ti (8.4.2) 
i=1 

and Ti = T(&, . . .j.3i,ai) is the test statistic for uuiforlllity applied to the 
uniform scores of the ith sample. 

In particular, if the test of uriiforrriity is the Rayleigh test, then the 
corrresponding q-sample test is the q-sampZe uniform-scorns test, which rejects 
the riuli hypothesis for large va.111~ o f  W ,  where 

(8.4.3) 



NON-PAR,4METRIC METHODS 157 

in which Ri is t.he resultant length of t.hose uniform scores in t.hc? cwmbined 
sample which cc)xiie frorri the ith .saxnyle, i.e. 

Appendix 2.16 gives WIXW qiiaritiles o f  CV for q 5= 3. For other w . 1 1 1 ~  of 71 a id  
q, we can use the large-sample result (Mardia, 1970) 

For q = 2, RI = R2, and so 

lElPl2 

Mmiia (197%) hay sliowri that the Bahaclur efficiency of the q-sample 
uniform-scores test relative to its parametric competitor (7.4.12) for von hlises 
distributions tends to 1 as r; --t 0. 

Example 8.6 
We test equality of the populations for the wind direction data of Example 
7.6. (The data are given in Table 7.2.) 

Talk  8.1 shm43 the riuiks rXJ for the data obtained with 0 as the starting 
point. The ties were broken by a process of randoillisation. On usiug the totals 
C, md Si from Table 8.1 in (8.4.3), it is found that W = 12.81. We have here 
q = 4 mid = 49. Since Pr(xg > 12.81) = 0.046. the null hypothesis is (just) 
rejected at the 5% level. The conclusion is not the same as in Example 7.6. 
This cfierenc*e in I)dinvionr of the two test,s rnny I)e clue to the influewe of 
the ties on the q-sample uniform-scores test. However, in geiierd, the q-sample 
uniform-scorcs test detwtu not only changes of 1ocat.ion but also chimges of 
dispemion. 

Table 8.1 Calculations required for an application of the uniform-scores test 

to the wind direction data of Example 8.6. 

Winter 12,16,27.2Y.30,33,31i,Lw,41,~,45,~ 0.113 -4.743 
Spring 4,10,13,20,22,28,31,38,43,47,48 1.528 0.195 

S1rmmt.r 2,3,5.6.8,0,11,17,18,19,21.25.42 1.216 6.476 
Auturriri 7,14,15,23.24,26,32,34,35,36,39,49 -2.857 -1.928 

Seaso11 Ranks rY CZ st 
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(8.4.4) 
where Sj mid S cleiiote the empir id  distribution fuiictioiis of the j t h  sa~xiple 
and of the combined scample, respectively. Carrying out the integration in 
(8.4.4) giivcs the explicit formula 

(8.4.5) 
The largesample asymptotic null distribution of Lrfq-l)  is given in klaag 
(1966). Its qiiaritiles for srnall sarnples have riot, yet h e n  tabiilatd. 

For grouped data, thc following variant of (8.44) was given by Brown 
(1994). Suppose that the data arc poiiped into rn c:t.lls. Let O,, be the number 
of observatioiis from the jtl i  sanple in the Ah cell. Put 

Then Ti and Eji are the total number of observations hi the it11 cell and 
the expected number of obsermtions from the j t h  sample in the ith cell, 
respectively. Define 

i-1 

E’.. at  - - C ( O j k  - E j k )  + $(Oji - ~ j i ) .  (8.4.6) 
C = l  

Then Brown’s grouped version of LTfq-l) is 

The runs test can easily be extended to the multi-sample case. For q = 3 and 
4, qunntiles of the ruiis test statistic can be obtained mi using the eiiwneration 
of the null distribution of’ runs given by Barton & David (1958). 



Distributions on Spheres 

9.1 SPHERICAL DATA 

There are various pract.icd situations in which observations are made on 
directions in thrm tiirriensions. Examples of such data include: 

(i) directions of palaeomagnetism in rock, 
(ii) tiiiect,ions hoIn the earth to st.ars, 
(iii) directions of optical axes in quartz crystals. 

In many cayes, ils in (i) imd (ii) ilhovc, the direct.ions arise from ordiniw 
multivariate (vectorial) data when the magnitudes of the observed vectors are 
unknown or irrelevant. Sometimes, as in (iii) above, the direction is determined 
01dy up to sign, i.e. the observation is of an d. Diita which are ciirtxAions may 
be represented as p0int.s on a sphere. Data which are axcs may be represented 
as antipodal pairs of points on a sphcm. In either casel the ohsenations are 
of spherical data. In order to handle such data, the techiques of spherical 
statistics are required. 

Much of the theory of spheritd st,atist,ics i.1 ariatogous to that for circular 
st.atist.ics. Further, one cCm consider directions in p dimensions, i.c. unit vectors 
in pdimensionitl Euclidtian space Rf'. In this chnpt.er and the nwt  we shidl 
corisider the general ydiirierisiotial cast! because 

(i) this gives a unified treatment of t.he circuliu (p = 2) and sphericd 

(ii) from many points of view the general ydimensional case is just. as easy 

Furthermore, one of'the important tools of t.hc theory of directional statistics 
can he (:onsidered iL5 embedding the sample space SY- '  into an infinite- 
dimensional sphere (see Section 10.8). Of course, illost applications are to 
two or three dimensions. However, 

(i) btrc:ausc! S3 is related t,o the p u p  SO(3) of rotatioris of t h w -  
dimensional space (see (13.2.2) below), the case p = 4 provides a way 
of tfealixig with rotational data (see Section 13.2 below)! 

(p = 3) cases! 

as the thr~tiiIriensional case. 

Directional Statistics 
Kanti V. Mardia,Peter E. Jupp 

Copyright 0 2000 John Wiley & Sons, Inc 



160 

t 

DIR ECTIOlVAL STATISTICS 

Figure 9.1 Spherical polar coorciinat.c?s: B = colatitude, 4 = longitude. 

(ii) compositional data on the (p - 1)-simplex, i.e. observatiorlu o f  the fonn 

( ? h , . . . , ! J p ) ,  l l r  2 0, a ‘ =  l , . . . ,p ,  91 + *.. f l l p  = 1, 

( ~ l : . . . l ~ ~ ) ~ - , ~ , l . . . l ~ p ) .  

can be transformed to (y - l)-tiimensional spherica.l da.ta by 

Direct.ions in p dimcinsions can be reprc?scnted w unit vectors x! i.e. as 
points on SP-l = {x : xTx  = 11, the (p - 1)-diiensional sphere with unit 
radius and centre at the origin. 

When p = 3 we can iise spherical polar coordinates (0,qh) defined hy 

x = (cos B,  sin B cos ~ 3 ,  sin B sin &)T, 

which are indicated in Fig. 9.1. In geographical terminology, B denotes 
colatitude (so that w / 2  - 6, denotes latitude) and 4 denotes longitude. If x is 
a random unit vector which is distributed uniformly on S2 (see Section 9.3.1) 
theii (6,qi) lias probabi1it.y derisity 

1 - sine, 0 5 8 5 n, 0 5 Q 5 2n. 
4% 

In order to visiiitiise data ON the iiriit sphere in three-dixnensional space IR? 
it is useful to project it onto a phie  using an equal-area projection. For many 
purposes, the most useful such projection is Lanabert ‘s equal-awo pmjeetion 

(cos 8,  sin e cos dl sin B sin 4)’ i-) 2 sin (i) (cos dl sin qj)Tl (9-1.1) 
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Figure 9.2 Configurations of observations on the sphere from (a) mimodal, 
(b) Iiiniodsl, (c) girdle distrihatiuiis. An  open circle iiidicat% an observatioii 011 

the far side of the sphere. 

which maps the wiit sphere in IR.~ to the tfisc of radius 2. 111 the gm~ogica~. 
literature, Lambcrt's cqual-area projection is known as the Schmidt projection 
and the image in the disc of a net of (:urves of constant latitude or longitude 
is known as a Sch~to'dt net. Calculation shows that if 

then clgt LEy2 = sir18dt9dd, arid so (9.1.1) is area-preserving, i.e. it sends the 
uniform distribution on the unit sphere to the uniform distribution on the 
disc of raiiiiis 2. D e t d d  refererice books 0 x 1   nap projections include Maling 
(1992) and Richardus & Adler (1972). 

The projoction (9.1.1) distorts t.hc lower hemisphere more thiln the upper 
liemisphere. If the data are sprwl over both hemispheres then it is helpful to 
project the two hemispheres onto separate discs in the plane, using (9.1.1) on 
the upper herni~phere mid the variant which rep1nc.w t9 by R - t9 on the right, 
Iiand side of (9.1.1) on the lower helllisphere. 

Somci common configurations of sphciricsl data are shown in Fig. 9.2. 
A key idea in tfistribution theory mid data analysis on spheres is the 

'tangent-normal' decomposition: any unit vector x can be decomposed as 

x = tp + (1 - t*p< (9.1-2) 

with < a unit tangent to SP-' at p. Figure 9.3 shows this decomposition. 
Rorri the theoretical point. of view, there are three basic approaches to 

directional statistics, which may be termed the embedding, wrapping and 
intrinsic approitchw: 

(a} in the embedding approachr the sphere SP-' is regarded as a subset of 
IRP; 
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Figure 9.3 Tangent.-norrrial decorripositim x = t p  + (1 - t') it. 

(b) in the umpping approach, t.mgent. vectors x to t.hc sphere i%t p are 
wrapped onto the sphere by 

x F-) sin(llxllb 3- cos(llxllK, (9.1.3) 

where x'p = 0 (in the cireuliu casel p = '2 imd (9.1.3) is essent.idlg 
addition mod 2n); 

(c) in the intrinsic appmach the sphere is regarded just as a manifold in 
its owu right, without referelits to any embedding. 

We have already used tJese approaches in the circ:ular case. for exarnple: 

(a) the embedding approach was used in the construction of projected 

(h) the wrapping approach was used in the constmctiou of wrapped 

( c )  the intrinsic i%pprowh WM uscd when obtaining von Mises distributions 

normal distributions in Section 3.5.6; 

distributions in Section 3.5.7; 

hm diffusions on the circle (Section 3.5.4). 

Further examples of these approaches ase as follows: 

(a} the embedding approach is used in t.hc construction in Section 9.2 of 

(b) the wrapping approach is used in Section 9.3.3 to construct the 

(c) the intrinsic approdl  is useful for constmcting splines mi splieres 

descriptive measurm for spherical data: 

Brownian motion distributions: 

(Section 12.8.1) and for inference on rotations (Section 13.2). 
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Figure 9.4 Descriptive statistics of spherical data: 20 = mean direction, a = 
mean resultant length. 

9.2 DESCRIPTIVE MEASURES 

9.2.1 

Let xI , . . . , x, I ) e  points ON P-'. Then the loration o f  these points mi be 
sumiarled by their sample mean vector in Elp, which is 

The Mean Dimtion and the Mean Ressultnnt Length 

(9.2.1) 

.4s in the circiilar case, it is useful to express the vector x in polar form as 

i = &O, (9.2.2) 

where l o  is a unit vector and R 2 0, so that 

XI) = ~ ~ Z ~ ~ - - 1 X .  

The unit vector XO is called the ntmn direction of the samplc and l? is called 
t.hc? mean resdtant length. If the points XI,. . . , x,, iue considered as having 
equal mass then their centre of IUWY is x, which IIW direction xo arid (listaxice 
i? from the origin. Figure 9.4 shows these yuantitics. In the case p = 2, (9.2.2) 
is equivalent to (2.2.2)-(2.2.3) arid is the unit vwtor with tuiglc! #. 
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Anitlogously, for i5 random unit vect.or x we define the population meun 
iwdturrt length p by 

When p > 0, the population mean damction is defined by 

/A 3= p-'E[x]. 

The mean direction has the followiug quiwuu.iunce property andogous to 
that of the usuitl sample mean j2 on the linc and generalising property (2.2.1 1) 
of the meal t1irm:tiou on the circle. Let W be ai orthogoiial tramformation, 
i.e. a rot.ation or reflection. Thcn the mean direction of Uxl, . . . , Ux, is UZo. 
By contrast, the meim resilltarit length of Uxl, . . . , Ux,, is &': so that R is 
invariant under rotation and reflection. 

The mean resultant length has the following minimisation property, which 
was @veil for the circle in Section 2.3.2. For a ia SP- ' .  let S(a> be the 
arithmetic mean of the squared Euclidean distances between xi and a. Thcn 

(9.2.3) 

From the last line in (9.2.3), it follows that S(a) is minimised (subject to the 
coiistrhint aTa = 1) when a = j4, a i d  that 

*S(a) = 2(1- W ) .  (9.2.4) 

Bwii~ise of (9.2.4) arid (9.2.8) l)elow, the quantity 2( 1 - 8) is soInetimw called 
the sample spherical variance. However, in view of (9.2.11) below, the total 
variation 1 - R" mi%y he a more appropriatc ilnalogug: of the sample variance. 
Sote that R 2: o when XI, . . . , x, me widely tfisyersetf a i d  that R 'Y I wheii 
XI.. . . , x, are heavily concentrated. Thus R measures clustering around the 
mean dirm%ion. 

Let p be any unit vector and put 

(9.2.5) 

so that; C' is the sanple rrieai of the cc~~~ipo~ientu of XI, . . . , xn dong p. Since 
n 
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2n( 1 - C) can bc regarded as the total variat.ion of XI, . . . , x , ~  about p. As in 
the circular case (see (4.8.30)), this total variation cafi be decorripwed as 

2n(l - C) = 2n(l - R) + 2n(R - C). (9.2.6) 

To relate (9.2.6) to a more familiar decomposition, note that (by the tangent- 
Iiorrrial deco~nposition (9.1.2)) xi ma?; be written as 

with yi normal to p. If XI:. . . , xn &re close to p (as happens, for example, if 
XI,. . . ? x , ~  iue a sample from a concent.ratcd dist.ribiit.ion with mcian direction 
p )  then llyill is srnall mid a little algebra yields 

(9.2.9) 

Thus the tfecompositiori (9.2.6) is approximately the taugent-space part. of 
the familiar 'Euclidean' dccomposit.ion 

n n 

In (9.2.6) t.hc component 2n( 1 - R) is an approximii,ttc measure of the variation 
of XI,. . . ! x , ~  about X, whierem 2n(R - c) is mi approximate measure of the 
deviation of ji. from p. 

9.2.2 The Moment of Irrertiu 

.4n irnportait measure of diupersioxi is ttie scatter matrix T about ttie wighi, 
defined by . I 1  

(9.2.10) 

Readers familiar with mechanics mii,y find it helpful t.a intcrpret. T as the 
inertia tensor a h u t  the origin of particle of weight IA-' at eadi of the points 
XI,. . . ,xn. The use of T in exploratory data analysis will be considered in 
Section 10.2. 
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Let S denot.e the sample variance mst.rix given by 

Then n - 1  
la 

T=-S+i&&. 

Kotc t.hat. t.hc rest.ric:tion xTxi  = 1 leads to 

t r T = 1  

and so 71 - 1 
-trS -t R2 = 1, 

IL 
(9.2.1 1) 

gcncralising (4.7.2). 

coiinec t ioxi 
Simil;ul;y, thc restriction t.hat. a random vector x lies on SP-' leads t.a the 

t r X + $  = I (9.2.12) 

between p and the variance matrix X of x. Thus the singular nature of 
the smnple space for t1irm:tioual data rnieans that (in cc>xitrast to the usual 
unrestricted multivariate case} there is a connection between the mean E[xJ 
and the viiriimtnce matrix I= of the  random vwtor x. Sincc S is an iinbiascd 
estimator of C, taking the expectation of (9.2.11) yields 

(9.2.13) 
1 E[R2] = p' + --(1 - $), 

as in (4.7.3). 

Example 9.1 
The directions of remnant magnetisation in nine specimens of' Icelandic lava 
flows of 1947-1948 considered by R. A. Fisher (1953) arc given in Table 9.1. 

Table 9.1 Directiaucj of Iriagnetised lava flown in 1947 1948 in Iceland. 
(Hospers's data cited in R.. A. Fisher, 1953). 

Yorth West UP 
0.388 0.117 -0.914 
0.171 -0.321 -0.932 
0.272 -0.2U4 -0.940 
0.123 -0.062 -0.991 
0.182 0.003 -0.983 
0.291 -0.029 -0.956 
0.225 -0.272 -0.935 
0.518 0.022 -0.855 
0.449 -0.433 -0.782 
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Cdculi5tion shows tlii5t the sample mean vector of these nine directions is 

2 = (0.291, -0.131, -0.921)', 

and so the sample mean direction is 

Xi) = (0.299, -0.135, -0.945)T 

and the sample mean resultant length is R = 0.975. Since R EZ 1, the sample 
is highly conrentrated around its I I I P ~ ~  ciirtx.%ion. The scatter matrix T is 

0.101 -0.036 -0.261 
T = ( -0.036 0.047 0.116 

-0.261 0.116 0.852 

The eigenvalues f ~ , f & &  of are 0.950. 0.031 and 0.019. The facts that 
i?l 'v 1 and R 'v 1 suggest that the data come from a concentrated unimodal 
distribution (see Table 10.1 l)elow). 

9.3 MODELS FOR SPHERICAL DATA 

9.3.1 The Uniform Distribution 

The most basic probability distribution on SP-' is the .uniform d&?trib?stiun: 
in which the yrobabi1it.y of a set is proportional to its (p- l)-dirniensional area. 
The uniform distribution is the unique distribution which is invariant under 
rotation a id  rttflm%ion. It follows that E[x] = 0 for this distribution, arid so 
p = 0 and the mean direction p is not defined. 

Note that the intersection of 9-' with the hyperplane through t p  and 
riort~ia~ to p is a @ - 2)-dimeimioiia.I spliere of rhltiiis JCT. It follows that 
the density of t is 

(9.3.1) 

Some moments of the uniform distribution are considered in Section 9.6.1. 
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Thus im approprintc generalisation to SP-' c:onsists of t.hc? distributions with 
log-tfensities which are 1ixiea.r in x, i.e. which have damities f(.; p, ti) satisfying 

(9.3.3) log f(x; p, 6) = K p T X  + co1mtant. 

Thew are the v o ~ i  Mises-Fisher tlistril~utio~is. 

Definition 

-4 unit raridom vector x liar the (u - 1)-dimensional von Miseu-FiYher 
(or Lunyewin. in G. S. Watson's terminology) distributioii Mp(p,  K.) if its 
probability dcnsitp function with respect to the uniform distribution is 

(9.3.4) 

where K. 2 0, llpll = 1, and I ,  denotes the modified Bessel function of the first 
kind and order u, defined in (3.5.27) and (A.1) of Appendix 1. For reasons 
gisivexi below. the parameters p a i d  K me callecl the rrieun dirrctiun aid  the 
concentmtion parameter, respectively. 

In the care p 3= 3, the vou hlises-Fisher tiistributions are called Fisher 
distributions, because R. A. Fisher (1953) studied than in detail. We s l i d  
write F ( p ,  6) for Ms(p, K). In this case, the normalising constant simplifies 
aid the tfeiisity of the Fisher distribution F ( p ,  K )  with respect to the unifi~rm 
dist.ribut.ion is li 

exp {tcpTx}, 
sinh K 

If we write x and p in spherical polar coordinates as 

x = 

p = 

(cos 8. sin @ cos 0, sin B sin Q)~, 
(cos a, sin Q cos 8, sin Q sin / j ) T ,  

t.hm t.hc? density of (@,4)  is 
M 

exp{a[cosBcosa + sinBsinucos(c5 - fl)]}sinB. 
4n sinh K 

To verify that the tierlvity (9.3.4) integrate to 1, note that the intersection of 
SP-' with the hyperplane through tp and iiormal to p is a (p- 2)-dimeilsioiial 
sphere of radius d F F .  Since Z, satisfies 

(9.3.5) 

(see (A.3) of Appendix l ) ,  it. follows that 

(9.3.6) 

as required. 
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Mean Direction 
Because (9.3.4) is symme6ricaJ. about, p, the inearl t1irm:tiou of x is p. .41w, 

where 

(9.3.8) 

(9.3.9) 
1 

'43 (K) = coth K - -. 
rc 

As x r i iw through SP-', p T x  is rriaxirniud at  p mid Ininirriiseci at -p. 
Thus, (provided that K > 0) the density (9.3.4) has a mode at  p and an 
antimode at -p. 

Transformation Property 
If U is mi ort hogorial trarisforrriatiori tlieii the tltnisity (9.3.4) satisfies 

so that if x is distributed as :Wp(p, K) then Ux is distributed as Afp(Up, K). 
Thus for fixed M: the sct of .M&? li) distributions is a transformation model 
(see Section 3.5.1) under the g o u p  Oh>) of orthogod trmisforrriatioris of Htp.  

Shape of the Distribution 
For rc > 0, the dist.ribut.ion has a mode at the mean direction p, whereas 
when li = 0 t.he dist.ribut.ion is uniform. The huger the value of li, t.hc? greater 
is the clustering around the inearl direction. This 1,ehavionr expldris why IC 

is called the conccntration parameter. Since the density (9.3.4) depends on x 
only through x T p ,  the Fisher tiiiytribution Mp(p, K.) is rotationally syrnrnetrie 
about p. hrther ,  in the tangent-normal decomposition 

x = tp + (1 - t")iE, 

t is invariant under rotation about p while < is equivariant (any such rotation 
U takes ( to Ut).  Thus the (:ondit.ioxial distribution of (It is nnifonn on SP-a. 
It follows that 

( mid t are indepentient, ('33.10) 

and 
( is uriiforrri on Sp-2. ('33.11) 
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Furt.her, t.he cdcillation leading t.o (9.3.6) shows t.hat. the marginal density of 
t is 

on [-l,l]. 
In piwticuliw, when p = 3, if we use spherical polar coordini$ttcs (0, @) with 

p w the pole theii B arid 9 are indepeiident, the probability derivity fuiic:tion 
of8is 

f(elK) = - p"'osB sir1 8 (9.3.13) 
2 sin11 K, 

on [0,7r] arid Q is uriiforrri or1 the unit rircie with probal)ility tierlvity furiction 

1 
h(4) = -. 

2x 
(9.3.14) 

Figure 9.5 shows the density (9.3.13) for S O I I ~ ~  selected values o f  K. It illustrates 
t.hc way in which t.hc probability mass becomes more conccntrated about B = 
0 as lc inc:re;tyes. Selectcd qiiantiles of B iire giwn in Appendix 3.1. 

History 

Fishcr distributions (with p = 3) first appeared in statistical mechanics in the 
following context (Larigwin, 1905). Consider a collection of w&y iriterirc-ting 
dipoles of uouients m which are subject to an external electric field H. 
Thc energies l j  of the dipoles haw a hlaxwll-Boltzmmn distribution with 
probability density fuiictiou 

1 

where k is Boltemanii's coristant and T is the absolute temperature. Since 

L: = -HTm, 

t.hc directions ~ ~ m ~ ~ - l n i  of' the dipoles have a Fisher distribution. Arnold 
(1941) wrisidered rriaxirriurri likelihooti &imittiori ixi Fisher distribiitions arid 
gave a corresponding characterisation. Kuhn 8i Grun (1942) fowd Fisher 
distributions as approximate solutions to a problem associated with paths 
aid  chains of rmidorxi segneuts in t h e e  tiimeiisions. Sigruficarit advances in 
statistical applicat.ions were made by R. A. Fisher (1953), who used these 
distributions to investigak certain statistical problems in pdaeu?amagnt.tism. 
The exteidoii to p > 3 is due to Watson & Williams (1956). 

Charac terisat ions 
The characterisations of the von Mises distribution given in Section 3.5.4 
exteritf to vori Misea-Fiulier tiistributioris 011 spheres o f  arbitmry tiiriiensions. 
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Figure 9.5 Density of cola.titiide 0 for the Fisher distribution for 11 = 3 aud 
K = 1,5,10,30. 

Muximwna Likelihood Churacteuisatirrrr 
Let f(x; p )  be H probability density function on SP-' with mean direction 

p arld p > 0. If 

(i) for all random samples it0 is a maximum likelihood estimate of p, 
(ii) f ( x ; p )  = g(xTp)  for all x in SP--l, where the fiinctiori g is lower 

seiui-continuous from the left at 1, 

t.hc?n f(x; p )  is i5 von Mises-Fisher density. 
Iu the cast! p = 3 this result is due to Arrioltl (1941) a i d  was proved by 

Breitenherger (1963) by a simpler method. The general result was provcd by 
Bisigham & Mardia (1975). 
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MaximiLm Entropy Characterisation 
The tlerisity mi 9-' whidi ~nminiises the entropy (3.5.42) subject to the 

constraint that E[x] takes a given value is a von Mises-Fisher dcnsit.y. See 
R;ut (1973, pp. 172-174) mid Mardia (1975~). 

Simulation 

From (9.3.10) and (9.3,ll) it. follows that simulation of \-on Mises-Fisher 
distributioris is straightforward. If ( md t are generated irideperitieritly fro111 
the uuiform distribution on SP-2 and from the marginal distribution (9.3.12) 
respectively, theii x = tp + (1 - t2 )  is a pseudo-random unit vector with the 
Mp(p ,  K )  distribution. An algorithm implementing this was given bv Wood 
(1994). If y = 3, taking 4 iiniforiii mi the iiriit circle arid 0 with tkiisity (9.3.13) 
on [O, 7 4  yields a random point. (cos 8 cos $, cos 8 sin c3, cos 4)' on S2 from the 
Fisher distribution F((O, 0, l)', K ) .  

Concentrated von Mises-Fisher Distributions 

The approximation (3.5.22) of concentrated von Mises dist.ribut.ions by 
(wappcid) normal distributions genera.lises t.o von Mkcs-Fiuher distributions. 
Suppose that x - MJp, K ) .  Tlieii, for lasge K, the tangeutial part (I,, -ppT)x  
of x has approximately a (p - 1)-variate normal distribution. hifore precisely, 

&Ip - pp')x +J lv(O,I, - p p T ) ,  K -# 30. (9.3.15) 

To see this, notc that 

(a) since the intersection of S p - *  with the hyperplane through t p  and 
iioriiid to p is a @ - 2)-tfi11iexiuional sphere of radius JC3, tiit: 
projection I, - pp' of lRp onto the tangent space to SP-' at p maps 
the uniform divtribiition on SP-' t.o the distribution on the unit. disc 
{y : llyll < 1) which has deilsity (1 - ~lyll')h with respect to Lebesgue 
measure; 

2 0  - XTP)  = IIX - Pll' = IlYll' + ~(l lY1I4),  
(h) 

where y = ( I ~  - p p T ) x  is tiit: taxigentid part of x. 

It. follows thatt.: for large K, the density (9.3.4) is approxirnately proportional 
t.0 

Further, from (9.3.15), we find that 

(9.3.16) 
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generdising the approximiition (4.8.22) for (;onccntrat.d von Miws distribii- 
tions. 

When p = 3, we may write x = (cos8, sin8cosqjlsin8sin cb)'rl where (19, @) 
are spherical polar roorchates with 0 = 0 at p. Then (9.3.15) arid the 
approximations siu # N 8 and 2( 1 - cos 8 )  N O2 for 8 N 0 give 

,/Z(@cotjd,esiIld) + N(o,12), K + 00 (9.3.17) 

KO2 u', K -boO. (9.3.18) 

Furt,her, (9.3.16) gives 

1 - X"p & ( K )  li 30. (9.3.19) 

where &(n) denotes the exponential distribution with mean l/n, namely the 
distribution with probability tie1isit.y func%ion 

Genesis through Conditioning 

It was showii in Sectiou 3.5.4 that von Mises distributions cai be obtained 
by conditioning suitable bivariate normal distributions. This generaliscs to 
von hlises-Fisher distributions. Let x have mi N(p,  f i - l  Ip) distribiition with 
llpll = 1. Then the condit.ional distribution of x given that llxll = 1 is 
iMy(p, K,). Downs (1966) and Downs & Gould (1967) havc invwtigatcd this 
relationship much further. 

Let x have an Mp{p, K )  distribution. Put x = { X ! ' ~ X $ ) ~  and p = 
(p:, P;)~, with XI and p, in IR,''. Then it follows from tlie above that the 
conditional distributiou. of XI give11 that xp = 0 is MP(p2, 6). 

Idnite  Divisibility 

Hartman & Watwri (1974) showed that the voii Misea-Fisher tiiiytribution 
.Mp(p, K )  is a mixture over X of Brownian motion distributions SAfp(p, A) 
(defined below in Sertion 9.3.3). By showing the infinitc divisibility of the 
mixing distribution, &lit (1977) proved that MJp,  K) is illfinitely divisible. 
The 'mth roots' of Mp(p,n) can also bc expressed as a mixture over X of 
SAfp(P ,  4. 

9.3.3 Other Distributions 

Brownian Motion Distributions 

The Brownian motion distribution BMp(p? K) on 9 - l  is the distribution at 
time fi-l of a raridorn point which starts at p arid rrioves on S"-' uritier 
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an isotropic diffiision with infinitcsimd variance 1,- 1 (the identitv mat.rix on 
the appropriate t,axigetnt space of Sp-I) .  IU the case p = 2, BMz(p, K )  is the 
wrapped normal distribution W X ( p ,  A(K))  considered in Section 3.5.7 with 
p = ( c o ~ p , s i r i p ) ~ .  

In the casep = 3, the probability density function of BA&(p, K )  with respect 
t.o the uniform distribution is 

Dc. 

f(e,+) = C(2k + i)e-"("+i)/4"~k(cose), (9.320) 

where (8,oj) are spherical polar coordinates with @ = 0 at p (Perrin, 1928). 
Here denotes the Legendre polponlial of order E .  It can be shown that 
t.he mean resiiltant. length p is 

k=l 

p = (?sp{-(24-1}. (9.3.21) 

Roberts &. Lrsell (1960) showed that if the distributions BiMs(p,K) and 
~ ( p , ~ ; ' ( p ) )  have the same mean resultant length (i.e. p is given by 
(9.3.22)) then they are very close, as in the approximation (3.5.23) of M ( p ,  K) 
I>y W N ( p ,  A(K) ) .  Hence the methodology for Fisher distrilmtions will be 
approximately applicable to Brownian motion distributions. Roberts &L Ursell 
(1960) looked also at. random walks on spheres md more general compact 
Riarlarlrliarl manifolds. 

The result (3.5.24) on the closeness of the densities of A l ( p , ~ )  and 
W N ( p ,  A(K) )  extends to the corresponding distributions on 9-'. Kent (1978) 
showed that 

fv.dx;L1,4 - ftrn.l(x;P,4 - - ( J ( K o j - - s ) / ' L  1, K - + %  

where f l . , , ~ g  ( a ;  p, K )  and f o , ~  ( a ;  p, K )  denote t.hc densities of the \-on 
Mises-Fisher distribution iMp(p, K )  and the Brownian motion distribution 
BMp(p ,  I E ) ,  respectively. 

Fisher-Bingham Distributions 

The most important feature of the Fisher dist.ribut.ions (9.3.4) is thilt t.hc?ir 
log-densities are linear in the observation x. A natural generalisation (Beran, 
1979) is to replace x in the exponent in (9.34) by higher polynomials t(x) in 
x. In pnrticiilar, the use of gexieraJ qiiaciratic-s in x yields the Fisher-Bingharn 
model (Mardia, 1975a) with densities 

(9.3.22) 

where A is a symmetric p x p matrix and the constraint x'x = 1 allows us to 
~ S Y I I I I ~ ~  without loss of gerieralit.y that tr A = 0. Thee ciistri1)iitiorlu can also 
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bc ohtaincid by conditioning ptariat.e normd distributions on Ilxl[ = 1. Let x 
have ai N(-;,(A + CI~)-~/ .A,  -I(A 2 + cIp)-*) distribution, where c is such 
that A + cI, is negative definit.e. Then the conditional density of x given t.hat 
11x11 = 1 is (0.3.22). 
If A = 0 then (9.3.212) reduces to the von M i s  Fisher densit.y (9.3.4), 

while if K: = 0 then (9.3.22) reduces to t.he Bingham densitmy given below in 
(9.4.3). When p = 2, the Fisher Bisigham tlerivities (9.3.22) have the foriri 
(3.5.46). Furtlicr models with interesting gmmet.rical properties appropriate 
for modelihg phenorriena from varioiis fields can be obtained by suitable 
restriction of the parameters of the Fisher-Binghm model (9.3.22). 

The relationships between the various exponential models discussed in this 
section are shown in Table 9.2. 

Table 9.2 Sorne exponential frtrrrifitss of ditributioIiv on Sp- ’ , showing name, 
eqiietiou number in text, aud dimension. Arrows denote iucliision. 

Fier-Eiin ham (9.3.22) 
p@clj?2 + p l  , ( 9 . 3 . 2 6 3 ,  Kent ~,~~~ (9.3.23) Ap = 0 

P 

Bingham-Mardia (9.327) 
van Mises-Fisher (9.3.4) / 

Watson (9.4.1 ) 
P 

Although cqonential models hii,v(a many pleasant inferentid propcirties, the 
rieetf to evaluate the riorrrialisiiig coiistant (or at least the fiiut, derivative of 
its logarithm) can be a practical difficulty. For directional distributions, these 
Iiormalisirig wmt =its are o f t c a n  given in tenns o f  special furictioris si1c.h as 
Bessel functions. Some simplifications have been effected by de Wad (1979) 
and Wood (1988). 

Iu the gerieriil cc~itext of exyoriential rriodels mi sphierw, Berm] (1979) 
has developed a regression-based estimator (using non-parametric density 
estimation) which bypasses the rimd for calciilatiori of the rionnalisiiig 
constant. 
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Figure 9.6 Directioas of magnetism at 34 sit= on the Grciit Whin Sill 
projected by Lumbert's equd-area projection onto the tangent plane at the 

sample mean direction 20. (Data from Creer, Irving & Nairn, 1959. Plot after 
Kent, 1982). 

Because the model (9.3.22) has p(y+ 1)/2+p- 1 identiiiablc parameters, it is 
rather lnrge for gerisrd use arid YO interest liar writred on si1itat)le submodels. 
One of these consists of the Kent distributions. 

Kent Distributions 

Some data sets (such as that  plotted in Fig. 9.6) are not. fitted adeyiiately by 
Fisher distributions and appear to arise from distributions with oval density 
contours. In order to model these, Kent (1982) introduced the model with 
densities 

(9.3.23) 

where A is a symmetric p x p matrix with t rA  = 0 and A p  = 0. Putting 
1; = (1 - t2 )1 j2 (  in (9.1.2) mid iisixig the approximation t N l[zl12 giivcs the 
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approximat ion 

1 
exp { - -pT (I, - pp*) (61, - 2A) (I, - pp") z 

1 - 
(4~1, A) 

f ( x : p , ~ : A )  

(9.3.24) 
for large 6. Thus, for large 6. the tliutributioii of the taugeiitial part z of x is 
approximately 0, - 1)-variate normal. In particular, if K is large enough, the 
density (9.3.23) has a mode at p a id  tierlvity contours which are approxirnately 
ellipsoidal. This provides the main motivation for the Kent distributions. 

When p = 3, the parameter matrix A ran be written as 

where f l  2 0 arid e l ,  e2, p are ort.liogorid. Then (9.3.23) takw the fonn 

(9.3.25) 

where is the orthogoiial matrix I' = (p , ( ,  , e l )  nnd (q, zz,x3) = 

The Kent distributions (9.3.23) cari be obtained from the Fisher-Binghaxri 
distributions (9.3.22) by imposing the restrictiou Ap = 0. Relaxin(: the 
restriction A p  = 0 on the parameter of (9.3.23) to the condition that p 
be ari eigexivwtor of A, yields the one-parameter extensiou of the Keut rriodel 
suggested by Rivest (1984). This extension is a (d ,d)  exponential model with 
d = ~ ( I J  + 1)/2 (wx: Section 3.5.1). 

(py'x,&;x, &i'x). 

Fisher-Watson Distributions 

A smder  useful model is the 2pparameter Fisher Watson model int.roduced 
by Wood (1988), which is obtain4 from (9.3.22) by t.hc restriction that the 
matrix A has rank 1 (instead of t r A  = 0), so that the densities have the form 

Bingham-Mardia Distributions 

Certain problems in the cv~rth sciences require rotst.ioniilly-symmetric 
splierid distributions which liave a hodal ridge' alwig a small circle rather 
than a mode at a single point. One such problem is that of modelling plumes 
as a tectonic plate rotates over a volwxiic hot, spot,. Siiitable models bichide 
the ' s m d  circle' model of C. Bingham & hi'ardia (1978) which Iias probability 
densitmy functions 

1 
f(x; p, K ,  .) = - eXp{K(prx - Q} .  

4 6 )  
(9.3.27) 
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This is a (p+ l)-para.metcr curved exponential submodel of the Fisher-Watson 
model (9.3.26). Another iriodel coxisistiiig of 'small circle' distributions on 
t.hc sphere was introduced by Mardia & Gadsden (1977) and has densities 
pntportional to 

t!xp (ap5C + 9 [l - (p  T x) 2 ?  J } . 

Wood Distributions 

hi order to motiel birriotial data on SV-', Wood (1982) Iriodifid the Fisher 
distributions by 'doubling the longitude'. The density functions are 

(9.3.28) 

where pl .pz are ort.hogond unit vectors, K 3 0 and a is real. 
These distributions hii,v(? mean p1 and two modes of (?quid strength at 
cosa p, f sinu pq. Sote that (9.3.28) is not an exponential model. 

Projected Distributions 

Distxibiitions on SP-' can be obtained by rarlid projtxtion of distributions 
oii lRp. Given a a random vector x in lltp siidi that Pr(x = 0 )  = 0, the 
corresponding projected (or oflset) distribution on SP-' is that of ~ ~ x ~ ~ - ~ x .  
If x has the yvariate Iiorrnal distribution A$(p, E) then the (:orrespomiiIig 
projected dist.ribut.ion on SP-' is called the projected normal (or offset nortnal) 
dist.ribut.ion PAVv(p, X). The caw p = 2 was consider4 in %?tion 3.5.6. The 
density of PXp(p?  E) way given in ai infinite series by Bixighan (see Watson, 
1983a, pp. 226-231) and in simpler form by Pukkila & Rao (1988). 

Another iIiterevtirig class of projected ciist,riI)utiorlu wrisists of the @.set 
(or decentid) diwctional distrdbutzonu, which &re obtained by displacing a 
dist.ribut.ion on SP-' by il constant vector c imd then projtxting radi;tlly bitck 
oiito 5'P-l. so that y 011 SP-' is sent, to 

Y + C  x=- 
llY + 41. 

One way in which offset directional distributions arise is through directions 
hdng deta:tc!d by an obsenwr ii,t c, instead of at the origin. For cxmple, 
meteorites hit tiiig the earth's atniwphere are usually recorded by mi observer 
on t.hc earth's surface. Thc offset .uniform distributions arise by applying this 
procedure to the uriiforrn distribution on SJ'-' . They haw densities 

f(x; X,p) 3= .4(x, c)-l [xx"p + A(x ,  .)I"-' (9.3.29) 
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on Sp-' for A 5 1, and 

f(x; A, p)  = .qx, c)-l{ [Ax?'p + A ( x ,  =)]"-' + [Ax"p - A(x, c)]  p-l}  

(9.3.30) 
on {x : x T p  5 (A2 - 1) l l2 /X)  for X > 1. Here p E SP-', X 1 0  and 

with c = Xp. Formula (9.3.30) was derived by Kent & h1a.rdia (199$), who 
also .give i5 completc derivation for dl A. The density (9.3.29) in the case A 5 1 
was found hy Boulerice 8t DudiarrIie (1994). Formulae (9.3.29) (9.2.30) show 
that the offset uniform distributions are rotationally symmetric about p and 
(if X > 0) have xriotfe a id  xxieim dirm-tion p. 

Models with Rotational Symmetry 

A very important. property of the von Mises-Fisher distributions is that they 
are rotiitioually symInetric about their  nodal tfirer:tions. Saw (1978; 1983; 
1984) and Watson (1983a, pp. 92, 136-186) have abstracted this property by 
considering general distributions with such symmetry (see also Bingham & 
Mmdia, 1975). Aimrig sudi tfistributions, those which are continuous have 
probability density functions of the form 

f(x) = Y(P'X), (9.3.31) 

where g is a known furic%ion. Iri the taigent-iiorrrial decomposition 

x = tp + (1 - t')*< (9.3.32) 

(where py'c = 0), symmetry implies that the unit t.angent c at p to SP-l is 
uniformly dist.ribut.d on Sr'-2 and is independent of t. 

For distributions with rotational symmetry about a direction p. 

Ebl = EVIP (9.3.33) 

and 

(9.3.34) 

where t = x " ' ~ .  
Among the faxniliw of diytributions of the forrri (9.3.31) considered hy Saw 

(1983) is a pparameter model with the property that if x = (X;,X:')~ has 
a distribution in this model then 11x1 11-'x1 and Ilxzll-'x2 arc indtyendent 
with distributioiis in the corresyoding models on S*-' mid SP-9-l. Watson 
(1983s, Chapter 4) showed that many models of the form (9.3.32) have the 
sane asymptotic (l~ge-saxnple or 1ii~~i-com.eIitretion) Iwlinvioiir as the voxi 



180 DIR ECTIOlVAL STATISTICS 

Mises-Fisher model. For example, the liug+samplt. asgmptotic distribution of 
x is given by (9.6.5)-(9.6.6) below. Distributions with syrrirnetry of tlir form 
(9.3.31) can arise through (i) synimetrisation performed by the observation 
process. e.g. the rotation of the earth as in the motivating problem for the 
-rotating spherical cap' distribution of Mardia & Edwards (1982), or (ii) 
the inability of the obscnation proctdiire to dist.inguish between x and Ux. 
where U is a rotation about p ,  so that d y  the colatituck (or ecp.ide!itly 
x"p) is observed, as in Clark's (1983) motivation for the 'marginal Fisher' 
distributions introdiiced by hlardia 9c Edwards (1982). In the a y e  p = 3, the 
probability density function of the colatitude 8 is 

K, sin 8 
2n sinii K f ( B ;  Bo. n) = cxp{n cos B cos BO}Io(tc sin B sin 80), (9.3.35) 

where 0 5 BO 5 7r/2. 
Another useful model of the forrri (9.3.31) has densities 

f ( x ; p , / € )  = c(/E)exp {K.cos-'(xI'p)}. 

It was introduced by Purkayastha (1991), who showml that it is diaracterised 
by the property that the maximum likelihood estimate of p is the scample 
median dirm%ion. For lnrge K ,  the us(? of this distribution in data analysis was 
considered by Cabrera 8i Watson (1990). 

The rotational symmetry about the axis p p o w ? s s ~  by densit.ies of the 
forin (9.3.31) car1 be geiieralisecl to rotational syrriirietry about ~0l11e subspace 
V of lRp. The corresponding distributions have probabiiity density functions 
of the fonn 

f ( x )  = Y(XV), (9.3.36) 

where XI/ is the orthogonal projection of x onto 1.' (see Watson: 1983a, pp. !H- 
95; 198%). 

9.4 MODELS FOR AXIAL DATA 
9.4. I Introdebction 

Sometimes the ohscrvations are not dimtions hit   axe^; that is, t.he unit. 
vectors x mid -x me iritfistinguishable, so that it is fx whidi is observed. 111 
t.his context. it is appropriate to consider probability density functions for x 
on SP- '  which are mitipo(idy syrnirietric, i.e. 

f(-x) = fW. 
hi siidi cases the observations fx l  , . . . , fx,, man be regarded as being or1 the 
projective space IRP*-* which is obtained bv identifving opposite points on 
the sphere S1-' . 
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9.4.2 Watson Di.qtn'butions 

One of the simplest models for i 5 x i d  data is t.he (Dimrot.h-Scheidegger-)Watson 
model, which has deilsities 

(9.4.1) 

where M(1/2,p/2, .) den0t.w the Kummcr function 

obtained by taking (I = 1/2 and b = p/2 in (A.17) of Appendix 1. 
The distribution M-(p, K )  with density (9.4.1) is rotationally symmctrir: 

about p. For IC > 0, the damity liar rnaxima at fp, and so the distribution 
is bipolar. As K increases, t.hc distribution bccomcs more concentrated about 
fp. Thus the parameter K xrieasiires concwitriition. For K < 0, the distribution 
is coricentrated around the great circle orthogonal to p, and so the distribution 
is a symmetric girdle distribution. Thesc distributions w r e  studied and 
introduced indtrpeiidently hy Dirnroth (1962; 1963) arid Watson (1965). 

9.4.3 Bingh ana Distributions 

Because some axial data sets do not show the rotational symmetry of the 
Watmii tfistributions, it is useful to coimider the Biiighani distributions. Thew 
have densities 

(9.4.3) 

where the hypcrgcometric function (1/2, p/2, a )  of matrix argument is 
defined in (A.26) of Appendix 1. Because of the constraint xTx = 1, the 
matrices A arid A + cIp give the smne distribution. Tliw we may assuine 
without loss of generality that t r A  = 0. In applied work it is sometimes 
usefiil to ass~irne iIistead tliat the smallest eigenwlue of A is zero. 

Thc densities (9.4.3) form a transformation model under t.hc group O(p)  of 
rotations and reflections of lR". For U in O(u) we haw 

f(Ux; UAUT) = f(x; A). (9.4.4) 

It follows that 

 IF^ ( i ,$ ,UAUT) =lF1 (:,$,A). (9.4.5) 

Iu particular, if the spectral decomposition of A is A = U*KU with U 
orthogonal and K cliagond then 

(9.4.6) 
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In gencral, t.hc? larger the elements of K, t.hc? grmter t.he clustering around 
the principal axm of A (i.e. the axm giveri I)y the colulxinu of UT). Varying 
t.hc d u e s  of K in (9.4.3) gives a. wide range of distributional shapes, 
iriclutiirig the uriiforrri ciistxilmtion (K = nI,,) symmetric anti asymmetric 
girdle distributions (in which the probability mass is clustered around a great 
circlc) and bimodal dist.ributions. 

For p = 2, the tliutributioxis with density (9.4.3) reduce to the 2-wrapped 
von Mises dist.ribut.ions (considered in Section 3.6.1) obbained by 'doubling 
the angles'. Them is no simple mialogue of this process for p 2 3. 

In the case p = 3, the distributions with dexlsities (9.4.3) were proposed 
by Bingham { 1964; 1974), who investigated their statistical propertics 
extensively. 

The Watson distributions are precisely those Bingham dist.ribut.ions which 
have rotational syrnrnetry about WIIW axis. 

Biugliam distributions can be obtained by conditioning pvariate normal 
distributions on I[xll = 1. Let x have an N,(O,I=) distribution. Then the 
coiiditional tliutriButioxi of x givexi that llxll = 1 is Binghaxi with parameter 
matrix -3z-l. 

Asymptotic cxpnnsions for t.he normaliving constant. in varioiis types of 
coriceutrated Biugliam distribution have been developed by Kent (1987). 

An interesting submodel of the Bingham model (9.43) consists of the 
corrrplu Bani~hana cliutribution.~ (Kent, 1994), whidi are co:onsiderrnl in Sectiou 
14-6 and provide useful models for two-dimensional shapes. 

9.4.4 Arbplar Cmt7al Gausuz'urr Di.utrz'butions 

Because the riorrrialisirig constarit of the Bingharn ciistri1)ution i.1 rather 
complicated, maximum likelihood estimation in this model can be t.edious. 
This led Tyler (1987) to introducc the angdar c e n t d  Gaussian diutributions 
ACC(A) on SP-' with probability density functions 

f(x; A} = IAI-'/'((x~A-'x)-~/". (9.4.7) 

Here A is i5 symmctrir: p x p pauit.ive definit.e psramctcr mi5trix and is 
identifiable up to iIiultiplication by a positive scalar. Kote that 

j ( - ~  A) = f(x; A) 

and so (9.4.7) defines a distribution on R P - l .  The reason for the name 
wigular rentrid Ganssian' is that if x - Nl>(07A) then ~ ~ x ~ ~ - ~ x  - ACG(A). 
For p = 2, the distribution ACG(A) is thc angular central Gaussian 
distribution PAi2(0. A) considcred in Soct.ion 3.5.6. The transformation 
property (3.5.53) of the angular central Gauvsitui distributions or1 the 
circle generalises to the angular central Gaussian distributions on spheres. 
Each invertible linear transformation A of IRp gives rise to an ixivertible 
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t.ransformation WA of Sp-' by 

(9.4.8) 

Since A c) VA is scalehivariant, i.e. p c ~  = +A for all non-zero c, we may 
assume without loss of generality that IAl = 1, i.e. that A is a unimodular 
matrix. A sirnple calciilatiori shows that. 

x - .ACG(Z) * AX - ACG(AZAT). (9.4.9) 

Thus the angular central Gaussian distributions on S p - *  form a transfortna- 
tiori model under the tu.tion of the unirnotiiilar group SL,(R) on IR?. 

9.4.5 Other Ada1 Distributions 

Girdle distributions on S2 with probability density functions proportional to 

exp(-K~ cose1) 

and 
exp(KsinB), 

where cos9 = xTp, have been investigated by Arnold (1941) and Selby (1964). 
A out?-parameter wterisiori of the Bingharn rnodtrl was introduced by Kdker 

& Langenbcrg (1982) in order to model axes concentrated asymmetrically near 
a small circle. It, hiis density functions 

1 
Ax; PI? P,. K l ,  K2I Y) = ex~{-+~[sin(~-7)] '++~ c~s(e-Y)[sin d12}, 

(9.410) 
where pl. p1 are or thogod uiiit vectors, ~ 1 ,  K' > 0, y E [O, 2x1 a i d  (9, 4)  is 
defined by cos 9 = pFx and sin B cos c3 = &'x with B E [O,.] .  This model is a 
compcxuit.e t.ransformation model under the orthogond group O(p).  

a(%, K.3 )  

9.5 DISTRIBUTION THEORY 

We now generalise the principal distributional results of Sections 4.4 and 4.5 
t.a various distributions on spheres. In particular, we obtain thc distributions 
of the resultant length, the mean direction, and of some related statistics 
for random scamples from the uniform and von hifises-Fisher distributions. In 
Chapter 10 these rewilts will be applied to inferexice on spherical ciistribiitiorlu. 

9.5.1 The linifomt Distribution 

Let Ti0 and R he the mean direction and mean resultant length of a random 
sarnple from the unifonn tiistribiition or1 SP-'. 
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Becausc R is invariant under rotations of IRI' while En is cquim,ri;mt, the 
coIiditioxiaI distribution of jto lii is uiiiforrri (111 SP-'. It follows that 

xo is dist.ribut.d uniformly on SP-' (9.5.1) 

and 
and R are independent, (9.5.2) 

geiieralisiug (4.4.1) (4.4.2). Kent, Mardia &. R m  (1979) sbowetf that property 
(9.5.2) characterises the uniform distribution on SP-' (among distributions 
with positive wntinuoixs density). 

The marginal distribution of a can be found by inverting its characteristic 
fiinction (see bfardin, 1975a, Section 3.2; Jlardia, Kent & Bihby. 1979, Section 
15.4.1). Denote the resultant length d by R. Tlie tlnisity of R is 

order u (which is defined in (A.15) of Apperidh 1). 
For p = 3 and n = 2,3: this simplifies to 

hz(R) = R/2, 0 5 R 5 2: (9.5.4) 

and 

(9.5.5) 

The large-scample asymptotic distribution of I? will be given in Section 9.6.2. 

9.5.2 VWA hli.ues-Fisirer Distvdbutiuns 

Single-Sample Case 

The joint distribution of (R,%) for samples from a voii Mises-Fisher 
distribution can be obtained by straightforward extension of the arguments 
of Sectious 4.5.14.5.2. Suppose that xI, . . . , xn is a rarido~ri sample from 
itfp(p, K). The joint density of (XI,. . . , x n )  is 

f ( X 1 . .  . . , X,) = C(K)" eXY(TtKftGp}, (9.5.6) 

where C(K) is the normalising constant of the von Miscs-Fisher distribution 
(9.3.4). Integration over 

(9 -5.7) 
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where h,, is the marginal density (9.5.3) of R in the uniform caw. Integration 
over jlrt yields the marginal density of I? as 

f ( R ;  K )  = c ( ~ ) ~ c ( 7 t ~ B ) - ' h , , ( 7 t a ) .  (9.5.9) 

It follows that the conditional density of itolR is proportional to 

%YP{%5 (tl.&4lH 9 

and so 
XolR - hfp(p,7hKR), (95.10) 

generalising (4.5.5). As we shall see in Section 10.4.2. this result is very useful 
for inference on von Mises-Fisher distributions. 

Iutegating (9.5.8) over 

{ ( x * ' . - - , x ~ ~ ) : ~ ~ x z ~ ~ = l , ~ ' ~ = ~ }  

gives the joint density of ( R ,  C) as 

9* ( R Y  c; PY 
Thus the coxiditiorial tlerisity 

which does not depend on K .  

= c(471 cxp{nKc}g*(R, c; p, 0). 

of RIC is 

(9.5.11) 

This result is due to Watson & William (1956) 
and is the basis of a test considered in %!tion 10.4.2. See also Stephens (1962b) 
and Mwdia (197513). 

Multi-sample Case 

Let xtl , . . . , xtnl ; . . . : x q l , .  . . , xqn, be q independent random samples of sizes 
n1, . . . ! nyr from M&, 6). Thai the cox~ibiiiml smnple has siiie IA! where 
ra = n1 -t . . . + ~ 2 ~ .  Let. Ri be the resultant length of t.hc ith sample and R be 
t.hc? resiiltimt length of t.he combined sample. Put. 6 = ZTp? a.3 in (9.2.5). An 
argument andogous to that used to derive (9.5.8) shaws that the joint density 
of (R,C,& ,...! Rq)  is 

f(R, c, R,,  . . . , Rq; py K) = C ( 4 7 l  cxp{nKe}f(R, c, Rl, . . . , Rq; p,0). 
(9.5.12) 

Integrating out C gives the joint density of (RI, . . . , Rq) as 

f(R,iZ,, . . . , &;/.t,~) = c ( K ) ~ c ( w J ? ) ~ ( R ,  81,. . . , R,;p,O).  (9.5.13) 
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so, for any positive r, the conditional distribution of 11211-'Z given 11Z1[ = r 
is uiiiforrri 011 SP-'. It follows that 

where t = r2/2,  and so 

Pi ,  ... i. U P I 2 )  
25/2r((~ + p ) / 2 )  E[Xi, . . . Xi,] = 

wherethesum isovcrallpartitions {k1,k2}, ...,{ k s - l , k s }  of {il, ... ,is} into 
subsets of siiie 2, and d is the Kroudcer ddta (6,k = 1 if j = h, djk = 0 
if j # k). Alternatively, t.hcse moments can bc obtained by transforming to 
spherical polar coordinatcs and t.hc?n integrating o v r  the radius. 

9.6.2 Lave-Sariiple Aqrniptotacu 

Large-sample asymptot.ic results can be obtained by using the embedding 
approach and applying t.hc cent.ral limit thamm. First, we consider results for 
axially syrnrnietric densities. Let XI, . . . , xn be intlependait rmidom w i a b l a ~  
on SP-' with an axially symmetric density of t.he form (9.3.31). The tangent- 
Iiorrrial deco~nposition (9.1.2) can be rewritten as 

x = xp + X I  (9.6.4) 

where 

x p  = ( x T p ) p  = tp,  X I  3= (I,, - pp'")x = (1 - t *+x ,  

so thi%t XC( imd XI are t.he cwmponcnts of x parallel t.o p and orthogonal to 
it: respectively. Similar notation will be used for the analogous decomposition 
of the vector scample mean f. Put = f'"p, as in (9.2.5). Then it follows 
(Wat;.wn, 1983a, p. 137; 1983b; 1983~) froin the central h i t  theorein, 
symmetry of t.hc dist.ribut.ion, and (9.3.33)--(9.3.34) that, for large t t ,  
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and thilt j21  and ive i~sgmptotically independent. If E[t] # 0, it follows 
frorn (9.6.5) (9.6.6) arid the npproxirnations 

2(1- ros8) N e2, sin8 N 0 for8 ,N o 

(9.6.7) 

The special case of vori Miws-Fisher distributions is ccmsideretf in Watmri 
(1983b) and extensions to dist.ribut.ions symmetric about a subspace are given 
in Watson (1983~). The distribution of nllX~11~ tinder local altcrnittives to 
the hypothesis of given mean direction is a multiple of a noon-central xi-, 
distribution. Details are given in Watson (1983a, pp. 140-143). 

Large-sample wymptotic results 011 the distribution of the smriple 11iean 

direction % of almost any dist.ribut.ion on 9 - l  can be obtained by Taylor 
expansion of t.hc? radial project.ion map v H v/l[vll from lR” \ ( 0 )  to SP-’. 
Let jio be the sample mean direction of a random sample from a distribution 
on SP-l with mean direction p, mean resultant length p, and variance matrix 
X. Then, if p > 0, 

1 1  
E[%] = p - --v + -T + O(n-”/‘), 

where the norrrid co~nporient u arid the tmgexitial corriponent T of the 
asymptotic bias are given by 

n 11 

If p > 0 and I= is non-singular then 

1 
&i@” - p) + N (0, - (I, - ppl’) I: (I ,  - PPT))  n + Gc, 

d 
iuld so 

Y- 1 

2ut (1 - + CA,Z:, n -+ 30, (9.6.8) 

where Z1, . . . , Zp-l ive independent standard normal random variables and 
A1 , . . . , are the nori-zero eigeiivdues of y-2 ( I~> - p p T )  x (I, - ppT). 
See Hendriks, Landsman & Ruymgaart (1996). If the distribution on SP-’ 
has rot.atiorial syrrirrietry ahout p then (9.6.8) rtduc*es to (9.6.7). 

t= I 
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The Uniform Distribution 

If x is uniformly dist.ribut.d on SP-' then so is Ux, for my orthogonal 
matrix U. It follows that E(x] = 0 and (by (9.2.12)) that var(x) = p-'Ip. 
Alternativcly, the variance can be obtained from (9.6.1). By the centrd limit 
theorem, 

npR2 + x i .  (9.6.9) 

The a y e  p 3= 2 WE+ given in (4.8.14). The rtsult (9.6.9) was first. pntvd 
by Rayleigh (1919) and forms the basis of the Rayleigli test for uniformity 
considered in Section 10.41. 

Von Mises-Fisher Distributions 

Now suppose that x - Afp(p, K ) .  Then from (9.3.7), 

E[C] = A,,(K). (9.6.10) 

It follows t.hat (9.6.5) -(9.6.6) specialise to 

(9.6.12) 

and that arid C are asymptot8icdiy independent. 

9.6.3 High-Cancentmtion Asymptatics 

As the concentration of the  distribution of a random unit vwtor x incrcascs. 
x is 'distributed (111 a siridler portion of S*--I' arid the anbetfding, iiitriiisic 
and wrapped approaches bccomc indistinguishable. In many cases, high- 
concuritration asympt,otic results can he obtained either I,y straightsforward 
expansion of the density about the mean direction or as examples of the 
general rcsnlts of Jargensen (1987) on dispersion models. 

Von Mises-Fisher Distributions 

For von M i s  Fisher distributions, there are the following high-concentration 
asymptotic results which extend the high-concentration results on von Mises 
tfistributioris which were coimideretl in Sectioii 4.8.2. 

horn (9.3.16), it follows immediately that 

h K ( 1  - (?) (9.6.13) 

extending (4.8.23). For large K., l? N C rz 1, so that 

2 Y t K , ( j i  - C) 'v ILK(R2 - C2) 3= ntCII(I, - pp 1 ' - 2  )XI1 . ('3.6.14) 
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Combining this with (9.3.15) giwv 

271K.(R - C) + (9.6.15) 

extentfhig (4.8.28). 
From (9.6.13)? (9.6.15) and the 'analysis of variance' decomposition 

2?2K(1 - C) = 2 . ? Z M ( l -  iz) + 2?IK(R - C), 

we dexiucc: t.hat. 
2 7 4 1  - m + Y'fti-l)(p--l) (9.6.17) 

and that 2 ~ ( l  - R )  and 2 n ~ ( R  - C) are approximately independently 
distributed for large K. Hence, the two components (9.6.15) and (9.6.17) of 
(9.6.13) behave in the same way as the coriiponeiits in the m u d  ANOVA 
decomposition. These results me due to Watson (1956~; 1983a). In the rCw 
p = 3, Stephew (1967) has shown that these approztirnat.ions ace tolerable 
for )E as low as 3 and are accurate for K 2 5. These results form the basis of 
various F tcsts which will he considered in Sections 10.4-10.6. Watson (1983a, 
pp. 157- 165; 1984) Iias found the non-null distributions of numy of these F 
statistics. 

Another w r i ~ u c n c u  of (9.6.16) is that? for large K arid for t moderately 
small compared with PZ, 

(9.6.16) 

(9.6.18) 
( f a  - d - l)(t + Rn-t  - R,) 

q p - 1  )L,(p-l ) ( a - f  - l ) ,  t (n  - t - R,-t) 

where R, = 11x1 . . . + x,,JI. Fisher & Willcox (1978) derived (9.6.18) and 
showed by simulation thilt (for p = 2 , 3  and t = 1) this approximation to iln 
F tfistribution is rc3amiable for )E 2 3 arid 7i 2 5. 

The approximation (9.6.13) can be improved by multiplicative correction, 
i.e. 

(9.6.19) 

to a higher order of approximation, where y i.1 chosen to make the xxieim of 
2n7(1 - 6 )  close to the mean of 

- 2  2 w ( l -  0 y Xn(,-1) 

Taking 

(9.6.20) 

a1sures that 

Unless K is very lasge, it is sensible to replace K by -y in (9.6.13) (9.6.17). 

to (9.6.20) arid perforrnhig some manipdation gives (Stephens, 1992) 

E[hy(  1 - C)] = 2~,6> - 1). 

Applying the asymptotic expcuulsion for L(K) given in (A.4) of Appendix 1 

1 1 p - 3  p - 3  
7 )E 4& 4K3 
- + o(M-4). (9.6.21) 
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Thus no correction of order higher t.hm I/IC is available when p = 3. in the 
case p = 3, a good dioice of y is given I)y 

(9.6.22) 

It is found t.hat this approximation is quite satisfactory for f i  2 1.5 and is 
accrrptablc? for K 2 1. The choice (9.6.22) was obtained initi;rlly by studying the 
behaviour of the residuals after fitting the dii-squared spproximat;ioii (9.6.17) 
to the distribution of R. 

Von Mises-Fisher Distributions: The Multi-sample Case 

.4s in Sectiou 4.8.2, the liigh-coiit:eiitratioii approximatioxis man be applied in 
the multi-sample case. k t  XI I . . . xlnl : . . . ; xgl,.  . . xyn, be q independent 
rarit~om sarnples of sizw nl , . . . ny from Mp(p,  K) with r~iean resultiuit lengths 
RI, . . . ,Rpl respectively. Let R denote the u e a n  resultant Ieiigtii of the 
combined sample of length n = n1 + . . . + n,,. It follow from (9.6.17) that, if 
IC is large, 

Together with the decoi~ipositioii 

2tc(n-R)=2& (9.6.25) 

this implies that 

(9.6.26) 

anti that 2i%(71 - C'' R . )  arid 2 n ( ~ ~ = ,  Rj - R) are approxirnately 
independent. This re.sdt% die t.0 Watson (1956a) and extends (4.8.36). Unless 
K is very large, it. is sensible to repliw K, by 7 in (9.6.23)-(9.6.27). 

Note that in the decornpositioxi (9.6.%), the terms agaisin represent 
respectively ( K  times) the variation of the combined scample, the variation 
withixi samples, arid the variation between samples. 
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Bingham distributions 

If x has t.hc? Bingham distribution (9.4.3) with parameter matrix A, then 

2( l i l  - x ~ A x )  l i l  - l i2  -+ 30, (9.6.28) 

where are the eigenvalues of A. This follows 
from geiieral high-coiit:eiitratiori results 011 exyoIieiitia1 disyersiou rriodels (see 
Jorgensen, 1987, Section 4) or from 

. . M~ (with ~1 1 . . . 2 

P 

k 2  

where Ul'x = ( ~ 1 , .  . . , j y p )  with 

A = U diag ( ~ 1 , .  . . K ~ )  UT. 

-411 improveirieiit of the approximation (9.6.28) way given by Biugliarn, Chang 
k Richards (1992). 

9.6.4 Hiyh-Dinw~.~ iord  Aqrnptotics 

Asymptotic results are also available wheii the tlirniensiou p - 1 of the sphere 
tends to infinity. So far, these results have been almost entirely of theoretical 
interest, tilt.hough a possible application to lnrge-sarnple asymytotics of cert.ai1i 
permutation distributions was given in Watson (1988). Let x be a random 
vector in SP-' having a distribution which is symmctrir:al about some q- 
dimeiisioiial subspace I' of Itp, so that its tfeiisity is of the form f(x) = 
c;'g(x~), where xv denotes the orthogonal project.ion of x onto V, g is a 
given fiinc.tion on I' anti %, is a norrridiniIig constarit. Wa.tson (1!l83d) proved 
that, as p -+ oc with V fixed, 

p x\; N N(O,I,). (9.6.29) 

Further, if XI, . . . , x,. are indtrpeiident a i d  uniformly distributed 011 SP-' then 
the distribution of (p4x:'xj : 1 5 i 5 j 5 r} tends to F(O,I , .~ , .+ l~p~)  as 
p -+ oc (Stan, 1982). Generalisations of (9.6.29) for won hlises-Fiyher arid 
Watson distributions and for uniform distributions on Stiefel manifolds (see 
Sect.ion 13.2.1) were given by Wat.son (1983d: 1988). in particular, he showed 
that,, if x has a voii Mises-Fishier distribution 011 P-' with irieai dirm:tiou p 
in V and with concentration pin, t.hen for large p ,  

~ + P * x  + it-(n,l), 

p i  {XI' - {xTp)p} + N(0, I, - ppT) 

and x l 'p  and xv - ( p T x ) p  are asymptot.ically independent. 
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Inference on Spheres 

10.1 INTRODUCTION 

In this chapter we consider inference for distributions on spheres of arbitrary 
dimension. Exploratory data analysis 011 S2 is wrisidemd in Stxtion 10.2. In 
Section 10.3 we treat estimation for the von hfises-Fisher, Watson, Bingham, 
Kent and ;zngU:ulilr cent.ral Gaussian distributions. The nwt  three sections deal 
rnairily with hypothesis testing for voxi Mises-Fisher tlistributitms, alt-hough 
extensions to other distributions with rotational symmetry are considered. 
Single-sample, two-sample mid rmrlti-sarnple tests are discussed in Stx%ions 
10.4, 10.5 and 10.6, respectively. Many of the tests ase analogous to thase 
for the circular case. However, on spheres other than the circle inference has 
a special geometrical flavour arid that is eiripliasi~ecl here. Non-parametric 
techniques are almost non-existent on higher-dimensional spheres. Tests for 
axial distri1)utions are consider4 in Stx%ion 10.7. A general framework for 
testing uniformity is given in Section 10.8. 

10.2 EXPLORATORY DATA ANALYSIS 

Before nndertaking fond tests, it. is advisable t,o carry out exploratory data 
analysis. Because it is the case of greatest practical iniportance, we restrict 
the discussion here to data on the usual sphere 5’‘. 

When irispwting splierical data, it is usually uecwuary to rotate the sphere. 
Let a and b be points on the sphere with a # b. Then a convenient rotation 
which takes a to b is H(a, b), defined 1)y 

- Ip. (a + b)(a -t- b)T 
1 + a7b 

H(a, b) = (102.1) 

This is the rot.ation by n about the axis through a + b. It int.erchanges a 
and b. 

A useful impressit>ii of a splierical data set car1 usually be obtained by 
plotting suitable projections of t,he raw data (e-g- by Lambert’s equal-area 
projection which was giiven in (9.1.1)) or of contour plots or shade plots 
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of estimat.d densities. Contour plots can bc obtained from the comp\it.er 
program of Digle 8t Fishier (1985). -4 IIIOR tltrtailecl tlisctissiori of irietliods of 
displaying spherical data is given in Fisher, Lewis & Eniblet.on (1987, Section 
3.3). 

Further useful information can be obtained h n i  the mean resultant length 
R, t.hc? sample mean direction jiui and t.he scat.tc:r matrix T. In partiailnr, the 
eigeiivdues , t;, & of T give an iritficatioxi of the geiierd shape of the data 
set. A guide to such int.erpretation of these eigenvalues is given in Table 10.1. 

Table 10.1 

Relative niagnit.udes Type of Other features 

Descriptive interpretation of the shapes of spherical distributions 
in tenus of the eipmdues fl iz1 i a  of %' arid the ~iieaxi resultaxit length R 

of eis:nvalues distribution 

t; Inrge; f2, l 3  srridl 
li) b # 

(ii) F2 N & 

uni~iiodd if R N I, concentrated at one end of tl 
bimodal ot.hc?rwise concent.ratcd at both ends of t 1 

urihnodd if R N 1, rotatioxid symrnietry about tl 
bipolar otherwise 

i3 small; f l ,  t; large 
(i) t; # fz girdle concent.ratcd ilho1lt. great circle 

(ii) il N iz symmetric girdle rot.ational symmetry about t 3  

in plait: of tl! t z  

Probability plots for spherical data are particularly useful tools hi 
txplorat.ary data analysis. Consider first obscnations XI,. . . , x,, on S2 which 
iriight have come from a Fishier distribution. Let (q, 4:) thiote tlie spherical 
polar coordinatcs of xi in some coordinate system in which the sample 
mean ciirtx.%ion i.1 the pole 8' = 0. A corirwiierit choice of (t)i.d;} is its the 
spherical polar coordinates of H(S,n)xi, where H(j6,u) is the rotation 
given by (10.2.1) which takes the scwnple mean direction to the north pole 
11 = (0, 0. I ) ~ .  Similarly, let (q. 4:) denote the spherical polar coordinates 
of xi in the coordinate system in which the sample mean dircction 20 has 
spfierical polar coordinate (B", 9") = (x/Z, 0). More precisely, define the 
rotation matrix A by 

sin B cos ,a sin sin B cos d 

cos ii: cos B cos sin ,3 - sin 
A = ( sinij - cos ;l 
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where 
sin ii (:m fi 

so = ( sin;;ib ) . 
The spherical polar coordinates (@:, @:) are defined by 

sin e!,l cos c3: 
Axi = ( sin#?sin4: ) , (10.2.2) 

cos 9; 

with 4; in the range (-r, 7r]. The probability plots for Fisher distributions 
are const.ructed as follows. 

(i) The culotitude plot is the plot of thie order statistics 1 - c(~s#;~, against 
- log(1- (i - i) /n},  It follows from (9.3.19) that, if n is not too small 
(say K 2 21, this plot. should be close to a straight line through the 
origin with slope x-l. 

(ii) The Zorryitude plot is the plot of the order statistics 4&/27r aga.hist 
(i - $ ) / n .  It. follows from the symmetry of F ( ~ , K )  a.bout p t.hat this 
plot should be close t.o il stmight line through t.he origin with unit slopci. 
Note that this plot depends 011 thie choice of zero for the longitude 4'. 

(iii) The two-va~%ble plot is the plot. of the ordered values of rp:l(sin8!,')L/2 
against st.mida.rci norrnd quaxitiles. It follows ho~n the approximation 

that, if M is not too small (say K 2 2), this plot should be close to a 
straight, line through the origin with slope K - ' / ~ .  

These plots provide graphical tests of goodness-of-tit to a Fisher distribution, 
quick estimates of the concentration parameter n. aid  a irietliod of detecting 
outliers. Formal tests of goodness-of-fit based on these probability p1ot.s will 
bc considered in Section 12.3. The above probability plots were introduced by 
Lewis 8i Fisher (1982). 

Example 10.1 
Probability plots for the remnant.-niagnetisation data set of Example 9.1 are 
giwn in Fig. 10.1. 

MI three plots ase reasonably linear, so there is no suggestion that the data 
may not. be from a Fisher distribution. This impression will be confirmed 
in Exarnplt. 12.1 by forrnd test,s. The colatittitie arid two-variable plots give 
rough estiniates of 45 and 27, respectively, for the concentration parameter K .  

Probability plots are available also for axial data. For observations 
f x l  , . . . , fx, on IRP which might have come from a Watson distribution, 
colatittitie plots arid longitude plots are roristriirtd its follows. 
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Figure 10.1 Probability plots for the data of Example 9.1: (a) colatituck plot; 
(h) longitude plot; (c) two-variable plot. 
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Bipolar Case 
Let (f$, 4;) be splierical polar coordinates of xi about, the dominant 
eigcnvector tl of 3'. 
(i) The cokatitude plot is the plot of the ordered viihies of 1 -cot? 0: ilgninst 

- log{ 1 - (.i - i) /n}.  It follows from (10.7.25) that if --K is not ttx) small 
(say --IC 2 5 )  t.hen this plot should be close to a straight line through 
the origin with slope 1 ~ I - l .  

(ii) The longitude plut is the plot of the order statistics q5ii l /7r against 
(i - $) /n .  This plot should be dose to a straight l i e  through the 
origin with unit slope. Not(? that this plot depcinds on the choicc of 
zero for the Ioiigitude 9'. 

Girdle Case 
Let (O:, 4:) be spherical polar coordinates of xi about the eigeuvector t g  of 
corresponding to the smallest eigenvaluc. 

The rAfatitude plut is the plot of the ordercd vdiics of cai2 8: ilgninst 
F-I(i  - $)/n), where F dexiotes the tfistributiori functiou of the .u: 
distributi6n. It follows from (10.7.23) that if -IC is not too smalI (say 
K. 2 5 )  then this plot should be dose to a straight line through the 
origin with slope 

(ii) The longitude plot is the plot of the order statistics @ i i l / 7 r  ilgninst 
(i - f ) / n .  This plot should be closc t.a a straight line through the 
origin with iiriit slope. h t e  that this plot. depends 011 the choice of 
zero for the longitudc 4'. 

These probability plots for Watson distributions were introdud by Best, & 
Fisher (1986). 

10.3 POINT ESTIMATION 

10.3.1 Von Misea-Fiqher Di.stn'bistiom 

Lct XI,. . . , x,, be a random sample from the von Mises-Fishcir distribution 
with probability density function 

(10.3.1) 

with respect to the unifonn distribution. The vm%or rrieaxi of XI,. . . , x,, is 

It follows from the general theory of exponential models (see (3.5.6)) that f 
is sufficient for K. mid p. 
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Maximum Likelihood Estimation 

Bt~ause t.hc? model with densities (10.3.1) is a regular mponential model 
with canouical statistic x, the maximum likelihood cstiniate of the canonical 
parameter KP is obtained by putting the population mean equal to the scample 
mean, i.e. 

@Q = a 
(sw (3.5.7)). It follows that 

p = R, 
ji = ao, 

(10.32) 

(10.3.3) 

and so 
Al,(k) = R, i.e. k = A;'(&'), (10.3.4) 

where Ap is dehed by (9.3.8). The function -43' is tabulated in Appendix 
3.2. For large K, the asymptotic formula 

+ o ( K - : j )  

Hence. 
y-3 

k =  y - l  + - + O ( n ( l - R ) ) ,  R + 1 .  
2(1-12) 4 

This: for R N 1, 
Y - 1  

A 2  
2(1. - R)  . 

When p = 3, this approximation is satisfactory for R 2 0.9. 
From the series expansion 

it follows that, for s m d  IC: 

so that, for small R ,  

(10.3.5) 

(10.3.6) 

(10.3.7) 

(10.3.8) 

(10.3.9) 

(10.3.10) 
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When p = 3, taking just the first tcrm in (10.3.10) gives a sat.isfitc:t.ary 
approxiiuatiori for R < 0.05. 

Because (10.3.1) is a regular exponential model with ccznonical parameter 
8 = ~ p ,  it follows from general theory (see (3.5.4) a id  (ii) after (3.5.4)) that 
the Fisher information is a 

- 4  aeT- P (+. 

A calculation using 
-- allell 8 
BeT ll@ll 

- -  

anti 

(10.3.11) 

(10.3.12) 

shows t h t  t,he Fisher iriforriiathi matrix is 

He~i(:e, for large n (provided that. K. > 0), I arid j i  are asymptotmica.lly 
independeiitly normally distributed with xuea~is K and p. Also, 

Note that the limit of rrwr(fi) is sirigular, since pTp 3= 1. If x - MP(p, K )  

then the score based on x is 

(10.3.15) 

(where l ( 0 ; x )  denotes the log-likelihood), and so it follows from (10.3.13) that 
the variance matrix I: of x is 

( 10.3.16) I* 0 
x = ( =y /Ip(.) 

- ( Ip - PPT)  
(c 

Applying (9.2.12) gives the differential equation ((A.14) of Appendix 1) 

(10.3.17) P - 1  = 1 - -+$,(K.)~ - - A p ( ~ )  
M 

for A,. 
~aj7l0r expansion of A;’ ( R ) .  together with (9.3.7)-(9.3.8). the formula 

- - 
X=&(l()( l,O, ..., o p  
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and (10.3.16), shows that 

(10.3.18) 

for large YZ (ScIiou. 1978). Substituting (10.3.6) hi (10.3.18) gives the 
approximat ion 

(10.3.19) 

For the rriodel M p ( p , ~ )  in which p is known, the arialogies of (10.3.18) arid 
(10.3.19) are 

(10.3.20) 

aJld 2 K  K. 

n(p - 1) ’ P 
E [ k p  - K] N n + m ,  - + w ,  (10.3.22) 

rc?spect.ively (Mardia, Southworth & Taylor, 1999). 
When K is large, (9.6.17) give% 

2rm(l - R) + ~ & - l ) ( p - l ) .  (10.3.23) 

Combining this with (10.3.7) gives 

K. 
n@ - 1)E + x ; , 4 ) ( p - * )  (103.24) 

for large K. 

The above expressions for the bias of R can bc used to produce bias-corrected 
t3timators of li. For example, since E[I/x;] = l/(f - 2) for f > 2, it follows 
from (10.3.23) that the estirriator K* give11 t)y 

(n - I ) @ -  1) - 2 
2n(1- ti) 

K* = (10.3.2s) 

is approxirnately iinbiased. In the a y e  p = 3, B e t  & Fisher (1981) rdculnted 
t.hc approximate bias of the estimator given by the right-hand side of (10.3.7) 
and showed by simulation that the t3timator 

2 p- 1 
( 1 -  :) 2 ( 1 4  

is approxirnately uri1hw.i iiriless both ‘rr. arid K. arc) small. 
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Example 10.2 
.4ssuxui1ig that the Icelandic reirixi~it-ma~ielisatiori data of ExaJq.de 9.1 cane  
from a Fisher dist.ribut.ion F ( p ,  K ) ,  we estimate the parameters p and K .  

F'rorri Example 9.1, 

Ro = (0.298: -0.135, -0.945)T, R = 0.975. 

horn Appendix 3.2, Ai'(O.975) = 39.53. Thus 

j i  = (0.298, -0.135, -0.945)", rZ = 39.53. 

The estimate givexi by (10.3.25) is K* = 30.75. The values of both k and n* 
indicate high concentration. 

Marginal Maximum Likelihood Estimation 

As in the case p = 2 considered in Section 5.3.2, R is G-sufficient for rc, 
where G = O(p) ,  the group of orthogonal transformations of IRp. Accordingly, 
Schou ( 1978) corisidemd estimation o f  n by ri,  the rriaxirnurn likelihood 
estimator bascd on the marginal distribution of 8. The corresponding estimate 
maximives the marginal likelihood 

L(n) = .%(K)n 
A,, (nnR) 

and is givexi by 

k = 0, R < n-h 
Ap(R) = RAp{nkR), R ~ t a - ? .  (10.3.26) 

For the rase p 3= 3, a table giving ii: in terrris of R is given in Appendix 3.3. 

ii 5 ii and = R + OP(n-'). 
The relationship between R and k is that 

Exp;uisioii of (10.326) for R 21 1 yields 

p - l l - l / n  p - 3 1 - 1 / n 2 R  
k=---- + O(n(1 - I?)), R 3 1. 

2 1 - R  4 1 -  l /n  

The largcsample and high-concentration asymptotic distributions of' ri- are 

f i ( k  - K*) + X ( 0 :  A t , ( K ) - 1 ) ,  K + Gc, (10.327) 

(10.3.28) 

In the case p = 3, simulations by Schou (1978) indicate that R tends to haw 
a smaller bias t h m  2. 

K .  2 
and 

( n  - W P  - 1); 5, x( ,c- l ) (p- l )?  K, 3 m* 
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10.3.2 Watson Di$tributiom 

Lct &XI, . . . , fx,& he il random sample from the Watson distribution (9.4.1) 
with probability density function 

-1  

(10.3.29) 

where M(1/2,p/2, .} denotes a Kummer function (see (A.17) of Appendix 1). 
The 1oglikt:lihood funct.ion is 

Afx; Pl.) = (i, $6) exp{a(x T ’ d  C L )  1 ,  

= n ~ p ~ T p - l o g ~ 1 . 1  ( f ? $ , f i ) } ,  (10.3.30) 

where T is the scatter matrix of XI, . . . , x,, given by (9.2.10). Differentiation 
of (10.3.30) with respect to 6, together with (A.17) and (A.20) of Appendix 
I, gives 

Dp(k) = jFTji. (10.3.31) 

I 

where 

Let {I,  . . . rP be the eigenvalues of T with 

i1 r...rf-a, 
arid let f t l ,  . . . , f t ,  be the (:orrespomiiIig unit eigexivec.torY. Since pTp = 1, 
it follows from (10.3.30) that 

f t l ,  k > 0, 
& i i =  { rtt,, ii. <o. (10.3.33) 

The expansions (A.23)-(A.25) of D, in Appendix 1 yield the approxima- 
tiom 

1 - (p - 1)/2K + O(n-’d)>, K + OG, 

Dp(fi)  = P-’(1 d- 2 0  - 1)K/p(p f 2)) -k o ( K ’ ) ,  K N 0, (10.3.34) { 1/(21K1) + O(n-”), K - +  -cc. 

For p = 3, thew approxirnatious are adequate for K 2 10, 1.1 5 0.2 arid 
K 5 -10, respectively. The function is tabulated in Appendices 3.4 and 
3.5. 



INFERENCE OX SPHERES 203 

Example 10.3 
For 30 measured tfirectioiis 011 the eaxis of calcite gr ins  froin the Twonic 
mountains of New York (Bingham, 1964), t.hc scatter matrix is 

0.000 0.353 0.057 . 
0.471 0.000 0.085 

0.085 0.057 0.176 1 T =  ( 
W e  fit, a \Vatson distribution to this data set.. 

The eigenvalues and unit eigenvectors of T are 

= 0.495, *ti = (0.934,0.114,0.276)T 
Fz = 0.365, 
fs = 0.139, 

f t z  = (-0.17G,O.961,0.212)”’ 
f t 3  = (-0.241, -0.251,0.938)T. 

Since t; N 62 > 63% it is appropriate to fit, a girdle Wat.wn tfistributiori with 
rotational symmetry about t 3 .  The assumption of such symmetry will be 
justified by a forrnal test in Exmnple 10.13. 

The maximum likelihood estimate st$ of stp is 

Itji = kt3 = &(-0.241, -0.251,0.938)T. 

Fkom Appendix 3.4, 

indicating t.h;tt. 1.1 is moderately large. 

k = 03’ (0.139) = -3.33, 

10.3, ,? Binyhum Distrihtirrrrs 

Let &XI,. . . , fx, be a random sample from t.hc Bingham distribution with 
prohahi1it.y density fiinction 

(10.3.35) 

where A is a syrnrnetrie matrix. The log-likelihood fiinc.tion is 

I(A; *XI,. . . , kxn)  = 12 log tr(AT) - log (I, $,A)} . 2 2  

Write A and T in polar form as 

A = UKUT, 
T = VAVT, 

with U and V orthogonal, K = diag(lc1,. . . , lcp) and A = (fl,. . . ,&), where 
I C ~  2 . . . 2 K ~ ,  mid fl 2 . . . 2 fp. Then it. follows (e.g. from a result of 
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Theobald, 1975) t ha t  the miucimum of tr AT with respcict of A occurs when 
u = v. Thus 

U = V ,  (10.3.36) 

Since the Birighiun distributions with tiermities (10.3.35) form a rtyplar 
exponential model with canouicd statistic xxT, generd results on exponentid 
models (see (3.5.7) and (3.5.3)) show t.hat. 

- dlog 1F1(1/2,p/2,K) 
t i  = aK. j > i = l ,  ...,p. (10.3.37) 

K=K 
Sote that & I , .  . . , np are estimable only up to an additive constant, because 
A and A + cI, define the sCme distribution, for any real c. 

For p = 3, solution of (10.3.37) ca i  often be expedited I>y using Kexit's 
(1987) high-concentration asymptotic expansions for 1/1F1( i, $, K). For p = 
3, the iii can he obtained from the tables of Mardia &. Zemroch (1977). 

If p = 3 and the eigenvalues f1,. . . , f3 of T indicate that the distribution 
is nearly rotationally symmetric, i.e. either bipolar or symmetric girdle, the 
followiiig approximation (suggested by C. Bingharn) cafi be used. In the 
bipolar case, define 

- -  
d = l 2  - 23, s = tl + t a ,  ka = -Dil(f1). (10.3.38) 

Then 
R,  N 0,  k.L N R* + 6, Izy 'v 2" - 5, (10.3.39) 

where 
2 d h  

s(k0 - 1.5) -t 1 
6 =  (10.3.40) 

hi the girdle case, tiefine 

(1 = t; - & >  Y = t; + t;. k$) = D;t(&).  (10.3.81) 

(10.3.42) 
Then 

where h i.1 given by (10.3.40). 

It1 2 0, k2 z -26, k.3 z It0 - 6, 

Example 10.4 
Asswriiiig that the calcite grairi data set of Example 10.3 canit? from a 
Binghani dist.ribut.ion, let us cstimatc the parameter matrix A. 

From the unit eigenvectoru of T given in Example 10.3, the maximum 
iikeliiiood estimate 6 of thic orthogonal matrix u in the parameter matrix 
A = UKUI' is 

0.114 0.961 -0.251 
0.954 -0.176 -0.241 

0.276 0.212 0.938 
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From Example 10.3, the c>igmvdiics of T arc 

fl = 0.495, f 2  = 0.365, f 3  = 0.139. 

Numerical solution of the likelihood tquations (10.3.37) gives 
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ki = 0, k;^.~ = -0.68, ks = -3.62. (10.3.43) 

Since Example 10.3 suggests that the calcite grain distribution is 
approximately girdle in form, we could avoid solving (10.3.37) numerically 
by using instead the approximation (10.3.42). Simple calculations give 

d = 0.130, s = 0.860, 120 = 0,'(0.139) = -3.33, b = 0.336 

and so 
ki = 0, k;^.~ = -0.67, Rs = -3.67. (10.3.4) 

These approximations to 121, 122, and (23 are very close to the estimates in 
(10.3.43). 

10.3.4 Kent Distributions 

In the case p = 3, convenient. cst.imators of t.hc parameters of a Kent 
dist.ribut.ion are the following moment estimators, which were proposed by 
Kent (1982). Let. H be any rotatiori (such as H(xo,n), given by (10.2.1)) 
which takes the scample mean direction j i o  to the north polc n = (070, l)'r. 
Put 

612 613 

632 b33 

0 0 1  

Then the moment estimate of the parmeter matrix I' of (9.3.25) is f ,  where 

r = HK. 

Let 11 and I2 be the eigenvalues of 

( ::: ;: ) 
and put 

Q = 11 - 12. 
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The momcnt. est.imatcs R and 3 of K imd j? iue given implicitly by 

Wheii K is large, the limiting bivariate iiormal approxirnatiou (9.3.24) gives 
the high-concentration approximations 

l +  1 
K ' v  

2(1- R.) - Q 2(1 - R )  -I- Q '  

Kent (1982) showed that the rrioirient estirnat.ors arc) consistent 
reasonably efficient cornpaxed with maxiniwi likelihood estimators. 

mid are 

10.3.5 Angdar Central Gaussian Distributions 

The rriaxirriurri iikelihooti t&mate A o f  the parameter rriatrk A in the angular 
central Gaussian distributions with probability density functions 

f(x;A) 3= IAI-'/'(xTA-'x)-"/" (10.3.45) 

cwnot be fowd explicitly. However, A (with t r A  = p) can be f o u d  
itcratively from t.hc? equat.ion 

(10.3.46) 
1 

t= 1 

Furt.her details can bc found in Tyler (1987). 

10.4 SINGLESAMPLE TESTS 

10.4.1 Tests of Uniformity 

Bccause of the central role played by the uniform distribution, one of the most 
important hiypothe.qes ilho1lt. a dist.rihut.ion on a sphere is  t.hat. of uniformity, 
as in the circular case. 

The Rayleigh Test 

Perhaps the simplest. tcst of uniformity is Fhyleigh's test. This gencra1iw.q the 
Rayleigh test 011 the circle, which was coxiuiderml in Section 6.3.1. Because 
EEx] = 0 when x has the uniform distribution on 9'-', it is intuitively 
reasoriable to reject iiriiforrriity when the vector sa~nple mean 7.1-l (XI +. . .+x,,) 
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is fw from 0, i.e. when R is large. For p = 3 t.his test is due t.o byleigh (1919) 
and was fimt formulated explicitly by Wat.wn (1956b). .4s shown in the next 
paragraph, it is useful t.0 take the test statistic as 

p R 2 .  

A more formd justification for the Rayleigh test is t.hat. it. is t.hc? score teHt 
of uniformity within the von hiises-Fisher model (10.3.1). Let 8 = lip be the 
canonical parameter of the exponential model (10.3.1). Then the log-likelihood 
based 01111 XI,. . . , xn is 

qe; x, , .. . ? X,J = { eTw - ? (10.4.1) 

The score is 

where A, is tlefiried by (9.3.8). 

u = nx - rAAp(n), 

At li = 0, U = ?z%, while (9.6.1) gives 

iavartr(ji) = p - ' ~ , .  

s = p r n R 2 .  

Then the score stat.istic is 

(10.4.3) 

(10.4.4) 

Under uuiformity, the asymptotic large-sample distribution of pnR2 is 

p,.p + x i .  (10.4.5) 

The error in the approximation (10.4.5) is of order O(n,- l ) .  The modified 
Rayleigh statistic S* given by 

(10.4.6) 

has a $ distribution with error of order 0 tn- l )  (Jupp, 2001). The practical 
irriporta.wu of this i.1 that , for all exsxc:ept, the smallest sax~iple sizes, there is 
negligible error in the significance levels if the observed S' is compared to the 
usuid upper quantiles of the ~5 distribution. A more rcfincd approximat.ion 
to the tail probability is given by the .smltllepoint approximation 
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(cf. Jenscn, 1995, pp. 162-165), where 

i(. = . ~ ; ' ( z ) ~  t = { 2 [ ~ z  - a,,(ii)]}1/27 

dp3 = 1 if p = 3 and is zero othcrwise, and @ denotes the cuniulative 
distribution fimction of the X(0, l )  distribution. The approximat.ion (10.4.7) 
holds uniformly in 6. 

The Rczyleigh test is also the likelihood ratio test of uniformity within the 
vo~ i  Mises-Fisher motiel. Let 111 be the likelihood ratio statistic. Then 

'11) = Zn(iCR - ap(i i ) )  

= 2n(kZilp(k) - up(k) ) ,  

where a,, i.1 (iefiried in (10.4.2). Differentiation with respect to k pjvw 

d,al 
dk 
- = 2n[A,(k) + rZAb(k) - Ap(k)] 

= 2nkAI,(k), 

and so 
dw - dth 12 

- = 21ak 2 0. s-- 
Thus 711 is im increasing fiinct.ion of R, imd so the likelihood ratio test is 
ecluimlent to the Rayleigh test2. 

can be written as a function of R, it is clear that w is invariant 
under rotations anti reflections o f  SP-'  . F'rorri the Neyman-Pearson lemma, 
t.hc Rayleigh test is also the (uniformly) most powerful invariant t.est for 
testing unif0rmit.y against the altc?rnat.ive of a von hiises-Fisher distribution. 

Since 

Example 10.5 
Benioulli ( 1735) disciissed the qrietion whether the close coiIicitience o f  the 
orbital planes of the seven planets (the11 known) could have arisen 'by chance'. 
Although there iue conceptiiid problems in considering a populatic>n from 
which the plariets might be a raid0111 sample, Bernoulli's cpaqtiori provides 
a nice illustration of the Rayleigh test (Watson, 1970). Each planetary orbit 
deterrnhie a direction - the directed unit riorrrial to the orbital plane. Ewli 
orbit is specified by ( i , Q ) ,  where i is the ivsclinatzori of the orbital plane to 
the wlipt.ic., and R is the Zongikde of the ascending node. The corresponding 
directed unit nor~iial is 

x = (sin Q sin i ,  - cos R sin i, COY i IT .  

The dnt.n (for the nine p1;mtnet.s now known) arc' shown in Table 10.2. Do the 
data lcmk like a raid0111 smnple fro111 the uniform distributioii on S2? 

Calculation shows that R = 0.996. Then 3nR2 = 26.77 and S' = 33.24. 
Since x&o,  = 11.345, the hypothesis of uriiforrnity is rejetted strongly. 
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Table 10.2 Orbits of the nine planets (Watson. 1970, reproduced by 
perxnivvion of Uypsalrr Universitet) 

Planet. Tnc*lination B Longitude st 
Mercury 7'0' 47"OB' 
M?nus 3023' 75O.17' 
Earth 0" 0" 
Jlars l"51' 48"47' 

Saturn 2"30' 112'47' 
IJraxiiis 0'46' 73'29' 
Neptune l"47' 130" 41' 
Pluto 17"IO' 109"O' 

Jupiter l"19' 99O26' 
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Some Other Tests of Uniformity 

A disadvantage of the Fhyleigh test is tlii%t it is not consistent ilgninst 
alternatives with zero irieari resultant lerigtli. A test of uniformity (111 S2 which 
is consistent against all alternatives is Gin6.s (1975) Fn test. which rejects 
uriiforrriity for large values of 

where 

(10.4.8) 

(10.43) 

is the suider of the two arigles l)c:twexi x, arid xI . In the large-sample limiting 
distribution of Fn, the lo%, 5% and 1% quautiles are 2.355, 2.743 and 3.633, 
respectively (Keilson et d., 1983). 

Ajrie's .4,, statistic (6.3.46) for testing uniformity 011 the circle geueralises 
(Beran, 1968) t.0 9 - l  as 

(10.4.10) 

where * a ,  is given by (10.4.9). For p 3= 3, selm%ed qimitiles o f  4A,, are given 
by Keilson et ul. (1983). In particular, the limiting large-sample 10%: 5% 
and 1% qumtiles of 4*4, are 1.816, 2.207 and 3.090. respectively. For p = 3, 
Prentitx (1978) derived the npproxirnatioIi 

J! 
Pr (A,, > 16) 'Y 1.652 [Pr(xg > x )  - 0.516Pr(,<: > x)]  , (10.4.11) 

for large n and z. The test which rejects uniformity for luge values of A,, 
is locally most powerfiil invariant against the dteniat.ives with prot)ahilit8y 
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density fimction f on SP-' defined by 

c i f x ' p > ~ !  
0 otherwise, (10.4.12) 

where p is aa unknown unit vector and 0 < c < 1. 
Other useful t.est.s of uniformity on SP-' include those which rejcct 

uniformity for large values of Binghasn's statistic (10.7.1) or of GintS's G, 
statistic (10.7.5) for the axes &XI,. . . , fx, determined by the observed 
dirw-tiow XI, . . . , x,. 

General machinery for constructing tests of uniformity on SP-' (and more 
general manifolds) is wnsidered in Sertion 10.8. 

A ccmpiwative power study of the Rayleigh test, Gin& (1975) F,, test, 
(10.48) and a third test (based on the number of pairs of data points less than 
a certain tiii.itaric*e apart) was canitd out I>y Dig& Fisher & Lee (1985). They 
found that, against equal mixtures of Fisher distributions with the modes 
not too far apcart, the Rayleigh test was most powerful in small samples but 
was dominated by the F, test in larger sanplaq. .4gainst mkturt?u of Fisher 
distributions in which the modes were 180" apart, the third test was most 
powerfill. 

10.4.2 Tests for the Mean Direction 

A common problem is that of testing 

Ho : p = po against H I  : p # h. (10.4.13) 

The iriaiii tests for this are the likelihood ratio mid score tests. We give 
these (and some variants), together with modifications which bring the (small- 
sample or lo~-coiicuritrtiori) nid1 distributions close to their asymptot.ic chi- 
squared distributions. Geometrical interpretations of these tests are hdicated 
in Fig. 10.2. 

Except where otherwise stated, we shall assume in the reixiaindtrr of Sectiou 
10.4 that XI,. . . , x, is a random sample of size tt from the von hlises-Fisher 
distribution with probability derdty fundion (10.3.1). 

Concentration Parameter Known 

The Likelihood Ratio Test 
The 1ikeIiIiooti ratio statistic is 

111 = 2nK.{llnll - pi'x} = 2 n 4  - C), 

where C = a"po denotes the component along po of the vector mean ji. HO 
is rejw:td for large va.111~ of M. 'Cnder Ho, the asymptotic (1argesaInple or 
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Modified 
Wald 

P O  * T T  
Lik&hood / 
ratio 

Figure 10.2 Geometrical interpretation.. of the likelihood ratio, score and 
modified Wild tests d HO : p = po (after Yamarnoto &L Yanagimoto, 1995). The 
tests are b& on the lengths of the vectors sliown, all of which me in the plaue 

Of  po a d  Zo. 

high-coiiceiitration) distribution of w is x; with error of order O(n-l). The 
Bartiett-corrected version 

,-={1+1 p-3 } w  
'1% 4r;'4,(rc) 

(10.4.14 

o f  w (Larived I>y Hay&wa (1990) h a y  a x; tiiiytribution with error of order 
O(11-2). 

A ConGtional Teat 
As in the circular case considered in Section 7.2.1, i? is G-ancillary for p, 

/L (BarrviorEKielsen, 1978a, Scwtion 4.4), where G = O(p) iy the orthogonal 
group of Kip. By the ancillarity principle, it is appropriate to test (10.4.13) 
using the conditional distribution of x" IR, iL5 first suggested by Mardin. (1972a, 
p. 259). From (9.5.10), under Ho. has ai M,(po, nfi) distribution. In 
the case p = 3, some selected quantiles of c o ~ - ~ ( Z ~ p ~ )  can he obtained from 
Appendix 3.1. 

The Score Test 
The score at po is 

(10.4.15) 

so that the geometrical interpretation of the score test is that HO is rejected 
when the tangential part (I, - popz)x of x - po iy large. The score test 
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(10.4.16) 

a id  HO is rejected for large values of S. Under HO the asymptotic Iarge-.sunple 

(10.4.17) dist.ribut.ion of S is 

with error of order O ( T Z - ' / ~ ) .  The approximation (10.4.17) holds also for large 
K ( H a y h w a ,  1990). from Chou (1986) it follows that 

s + &, 

has a ciistri1)ution with error of order 0 ( n - : ' F 2 ) .  For p = 3 a id  n = 20, a 
siniulatiori by Hayakawa (1990) found that w and S have comparable power 
against a Pitman alternative. 

Concentration Parameter Unknown 

The Likelihood Batdo Test The likelihood ratio statistic is 

w = ta{r;llall - k&i - up@} f ap(k ) ) .  

Under H o ,  w 
of w, given by Hayakan;a (1990), is 

xE with error of order O(n- ' ) .  A Bart1et.t-corrected version 

This has a ,yg tfistributiori with error of order O(n-*) .  

The Scum Test arid Varitmt.~ 
The score t.est. statistic is 

(10.4.18) 

where k denotcs the restrict.ed maximum likelihood estimator calculated under 
H U  . 

Frorii Hayakawa (1990) it follows that, under Ho, 

(301 - 1) + S)  + + 
l )  '""'"'I A,(.)2 1 S ' = S  { 1+- 4nn [ ( ~ - ~  1 1 

ha a 

obtain 

distribution with crror of order O(nw3I2). 
Wat,wn (1983a) modifitvi the score teHt by replacing B in (10.4.18) by ii to 
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Under HO the asgmptotic liug+Yample distribution of W is 
of order O(n-'I2). Chou (1986) showed that 

with mror 

(p + l ) l iAL(~)  5 p  + 9 4 ( p  + 2) ~ A ; ( K )  
-- +-+- 

A,(&) &Ab(lE) .4Z(n)2 

1 3Kd4 ' (K) )  W}} (10.4.19) ) (4- .Ap(&) 

liar a 
Whereas the score test and modified score test measure the discrepancy 

bctnwn t.hc? sample and t.he hypot hesisccd distribution by the difference 
( I ~  - pLop$)ji in means, the ~ d t f  rest uses the differewe - p,, in ruaxirriuiri 
likelihood estimates. It is convenient to use the modified version 

distribution with error o f  ortier r ) ( r ~ - ~ f / " ) .  

of the Wald test introduced by H a y i h w s  & Piiri (1985). Ho is rejected for 
large valuev of W',~[W.  IIayihaa (1990) showed that 

has a dist.ribut.ion with error of order O(n-:'f2).  

and iVMw had comparable power against a Pitman alternative. 
For p = 3 a i d  ri = 20, a simulatio~~ by Hayakawa (1990) fourid that w, S 

For large K arid under Ho: the approxirnations 

1 
w + n(p- 1)log 1 + - ( . - 1 +  

F 
TL - 1 + F' 

s + tab- 1) 

( 10.4.20) 

(10.4.21) 

(10.4.22) 

So7ne Other. Tests 

usefill tests which rejjeit Ho for large values of R compared with c. 
Under Ho, R N c, where G = Z"'p. This is the intuitive basis of three 
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(i) The twt propostd by Watson & Williams (1956) iisw the  result (9.5.11) 
that the distribution of R gisivrii does not drpeiid 011 K. The hypothesis Ho 
is rejected for large values of 8. For p = 3, nomograms were given by Stephens 
(1962b). 

(ii) For concentratcd von Jlisw-Fisher distributions, il suitable tost, is the 
one which rejects Ho for large values of (n - 1)(R - C)/(l - R). The higli- 
concentration approximations (9.6.1;) and (9.6.17) give 

(10.4.23) ( R  - C ) / ( p  - 1) 
(1 - R) / (n  - l)(p - 1) 

* 

N Fp-~,(~-ij(p-i)~ + 

Wlien p = 2, (10.4.23) rtduc:es to (7.2.22). Wlien p = 3, (10.4.23) is exwt in 
the regioii R > 1 - 2/n. both conditiondy on C and unconditionally. When 
p = 3, the approximiition (10.4.23) is r ~ ~ n i h l e  for R > 0.6. 

(iii) For von hifises-Fisher distributions with small concentrations, a suitable 
test is the m e  whidi rejects Ho for large vdnes of pr(Ra - P). It follows 
from (9.6.1) and (9.6.5) that 

pn(R2 -C2) + K + O .  (10.4.24) 

Wheii p = 2, (10.4.24) reduces to (7.2.25). Wlieri p = 3, npproxirnation 
(10-4.21) is reasonable for i? < 0.25. 

Coddence Regions for the M e a n  Directiou 

Coiifide~its regions for the ineari direction p car1 obtained from ttie usual 
connection betweeen tests and confidence regions. 

A Confidence Region Obtained from a Gondational Distrabution 

confidence region for p is 
From (9.5.10), XolR - Mp(p, r i d ) .  Then mi approximate lOO(1 - a)% 

{ p : pT%, 2 CQS d} (10.4.25) 

(10.4.26) 

with x - MP(p, n R R ) .  When p = 3, values of S can be found from Appendix 
3.1. The confidence region (10.4.25) is the intersection of the unit. sphcire S p - '  

with ttie coxie liaving vertex at  ttie origin, axis the sanple 11iean direction ji.u 
and semi-vertical angle d (see Fig. 10.3). 

A Larye-Sample Confidence Region 
It follows from (9.6.10)-('3.ti.I1), the litrge-sarnple approxirnations 

T IlnM Ilnlll' 2 4 1  - z,, p)  N n 2  N ?2- IlXll R2 ' (10.4.27) 
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Figure 10.3 Confidence region (shaded) for thc mean direction. 

and (10.3.4) thi%t, for large n, an approximate lOO(1 - a)% confidence region 
for p is 

More gerierally, it follows from ('3.6.7) that, for large 7h anti ariy tiiiytribution 
which is symmetrical about. 1.1, an approximate lOO(1- a)% confidence region 
for p is given by 

(10.429) 

where $[t] and are my consistent estimates of E[t] imd E,[t2] with 
t = xTp.  (See Watson, 1983a, pp. 13$--138; 1983b, 1983c.) When p = 3, 
a useful form of (10.4.21)) is 

{ p  : pTEo > C O S 6 ) :  (10.4.30) 

where 
(- logcr)(l - aTTao) J na* 

CC)Sd = (10.4.31) 

(see Fisher & Lewis? 1983; Fisher, Lewis I Embleton, 1987, pp. 115-116). 
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A High- Concentration Confidence Rqion 

dist.ribut.ions an approximate lOO(1 - a)% confidence region for p is 
It follows fro111 (l(1.4.23) that for coi1t:eiitrated von Mises-Fisher 

(10.4.32) 

Example 10.6 
-4 set of 45 tlirectioris of magnetisation in lava flows in western Iceland 
(Hospers's data cited in R. A. Fisher: 1953) had resultant vector 
(-11.612,0.671, -37.219)T, wit.h the coordinate axes a.l nort.liward, eastward 
and downward, respectively. Find a 95% confidence region for the population 
mcian direction p. The simple dipole field approprintc to t.hc location has  
direction (0.233,0,0.9~)'. IS p equd to the direction po of the rewerseddipoIe 
field? (For furt.her discussion of the geological significance of this problem, see 
Hospers, 1955.) 

The sample 1uea11 direction is 270 = (-0.298,0.01$, -0.955)" and the 
mcian result.ant length is R = 0.867. From Appendix 3.2, k = 7.51. 
(The approximation 2 2 1/(1 - R) gives i 2 7.3.) Siritz i is large, we 
may use (10.4.32). Thus an approximate 95% confidence region for p is 
(p : p T G  2 0.989). This is the spheric:al cap with axis j4, arid semi-vertical 
angle c0s-~(O.989) = 85'. 

Since plftl = 0.998, where po = (-0.233,O: -0.972)T, po lies in the 
coiifide1m reghi arid the null hypothesis is accepted at the 5% sig1iifica11t:e 
level. 

10.4.3 

Sornietima~ the 111111 hypothesis specifies 11ot the rriea~i direction p itself but a 
subspace V in which p lies. Thus we need to t.est 

HO : p E V against H I  : p $ V. 

Most of t.hc? tests of Scct.ion 10.4.2 generaliw to this context, by replacing 
by Pv%, where Pv dexiotes the orthogo~ial projection of lRp oiito V. Let n 
denote the dimension of V. Note that Pt. is idempotent of rank s and that 
I, - Pi,- is the ort liogorial projection of EX'' onto the o r t h q p d  co~nplerrient 
of V. 1r1 ~natrix terms, pi,- 3= v~(vv~) - 'v ,  w11ere vT is any y x s ~natrix 
with columns that span V .  

M a n  Direction in u Given Subspuce 

Concentration Parameter Known 

The Likelihood Rutio Test 
The likelihood ratio statistic is 

111 = 'Lnlc(((ji(( - IIPVXll). 
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Rijikoshi & Watamori (1992) showed that: for large K,, both to* and the slight.ly 
simder statistic 

have &8 dist.ribut.ions with error O ( K - ~ ) ) .  

The Scon: Test 
The score t.est. st.atist.ic is 

which gexierdisw (10.4.16). The intuitive idea is that Ho is rejeded for large 
values of (I, - P~)jt ,  t.hc component of j t  normal to \*. Under HO the 
wympt.atic large-sample distribution of S is Wittsmori (1992) showed 
that 

( p - s + 2  - S) } (10.4.33) 

liar a $-, tiistribution with error O(n-”l”). 
For large K it is useful t.0 consider the a.pproximation 

T = TAK~~(I,  - Pii)Zl12 

to S .  Fujikoshi k Wataniori (1992) showed t.hat 

liar a tiistribution with error O(K. -~) .  

Concentration Parameter Unknown 

The Likelihood Ratio Test 
The likelihood ratio statistic is 

= 2n{iqliill - kllPyXll - ctp(k) + 
Wataniori (1992) calculated the Bartlett-corrected statistic as 

which tias a xX.-, distribution with error O ( T ~ - ~ ) .  
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The Score Test and Variants 
The scc3re test, statistic is 

(10.4.34) 

Under Ho, the asymptotic large-sample distribution of S is &,. Watamori 
(1992) s11owed that 

KA;(n} - A P ( K )  s*=s 1 + -  - (p + 3.y - 6 + S)] } { h i K  [.::(!!' + - A P ( 4 2  

1 1 s  a .&# distribution with error ~ ( n - " l ' ) .  

get 
Watson (1983a) m o d ~ c d  the score t.est. by replacing k in (10.4.34) by k to 

Under HO the asymptotic largosample distribution of' 11' is &, with error 
of order O ( ~ I - ' / ~ } .  

For liuge K md to order O(6-I) the score tcst is more powcrful i5ggdnst 
local alternatives tiiari the likelihood ratio test, which is more powerful thai 
Watson's test. 

10.4.4 

Coiisider the problem of testing 

A T a t  for the Conwntrutiurr Purnnieter 

Ho : K. = KO against HL : K. # KO (10.4.35) 

on the basis of a random samplc XI,. . . . xn  from M&,K), where p is 
ur I kr iown. 

I s  in the circulas case, discussed in Section 7.2.2, the likelihood ratio test 
of M = MO against K > Q rejects HO for large values of R, while the test of 
K = rcg against K < Q) rejects Ho for s111al1 values of R. It follows froin (9.5.6) 
t.hat % and R are sufficient statistics for p and K. Since R is a maximal 
invariant (under rotation) after this sufficient reduction, invariant t r s t v  of 
K = IQ depend ouly 0x1 R. As in Section 7.2.2, consideration of the masgind 
probability density function (9.5.9) shows that the abovc oncsided tests are 
uriiforuily most powerful irivariaxit tests under rotations. 

For p = 3, some selected quantiles of & are given in Appendix 3.6. For large 
K ,  we can use the i5pproximation (9.6.17) 

2 ~ ~ 1 ( 1  - 8) ~ ~ ~ - ~ ~ + 1 ~  (10.4.36) 

or the refhiemerit 
2wo( l  - a) + xf,,-,)(p-I)7 (10.4.37) 

where 70 is given by replaxing K by KO in (9.6.21). For p = 3, a suitable choice 
of qo is obtained by replacing K by KO in (0.6.22). 
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10.5 TWO-SAMPLE TESTS 

Siippose that ~ 1 1 ~ .  . . , xlrrl  imd xzl,. . . , xprrz iue two independent random 
samples of sizes rzl aid 112 frorii Afp(pl, & I )  and .Mp(p2: K Z ) ,  respectively. Let 
R I ,  R2 and R be the lengths of the resultants of the first scwnple, the second 
sarnple arid the combined snrriple!, respectively. 

10.5.1 

We assume that ~1 = ~ 2 .  We wish to test HO : p1 = p2 against HI : pl # pz. 

Tests for Equalitg, of Menn Directions 

The Two-Sample Watson-Williams Test 

It follows from (9.5.14) that the ccmlitioual distribution of R1, R.t give~i R 
does not depend on K when HO is true. Hence, as in the circular case, an 
appropriate test. rejet%s Ho for Inrge  dues of R1 + R2 given R (Watson 9c 
Willianis, 1956). For the case p = 3, selected quantiles of (R1 -i- R2)/n given 
R are t i i h l i ~ t d  in Appendices 3.7ia-3.7b. 

A High-Concentration F Test 

The high-concentration approximations (9.6.26)-(9.6.27) give the F- 
approximat ion 

for large M. The null hypothesis is rejected for large values of this statistic. 

Example 10.7 
Table 10.3 shows the ciirtx.%ions of needle-shaped cryst i d s  in two exposiirttu 
frorii the Yukspor Mountain, Kola Peninsula (Vitelius, 1966, p. 92). Do the 
two populations have the s c a t ?  mean direction'? 

Here 

111 = 10, R1 = 7.76, 
n2 = 10: 8 2  = (-0.642, -0.191,0.207)", R2 = 7.01. 

21 = (-0.723, -0.140, 0.247)T, 

The resiiltimt length R of the combined sitmple is 14.75. These talucs give 
the observed vdue  of (10.5.1) as 0.07. since the 5% vdue of F2.36 is 3.26, 
the null hypothesis is accepted. The hypothesis of equality of conccntrntion 
parameters will be tested in Exnrriple 10.8. 



220 DIR ECTIOlVAL STATISTICS 

Table 10.3 Directions of crystals in two exposures from the Yukspor 
Mountain, Kola Peninsula (Vitelius, 1966). 

Exposure I Exposure II 
Azimuth (degrees) Dip (degrees) Azimuth (degrees) Dip (degrees) 

18 26 5 1 
34 
64 

265 
314 
334 
340 
342 
345 
355 

22 
10 
6 
8 
6 

24 
20 
14 
8 

31 
145 
279 
3 w  
325 
342 
344 
350 
359 

10 
20 
10 
8 

2 0 
8 

1 0 
12 
18 

Confidence Intervals for the Angle between Two Mean Directions 

Lct jiul and %(,a be the mean directions of samples of sizes nl md n.2 

from tlistriButioiis with rrieai dirtx:t.ioris p1 mid p2. An intuitively appealing 
cstimatc of p:'pp is Z& E02. In the case where p = 3 and the distributions are 
rotationally syrri~~ietric (so that the density fiiIic.tiorlu have the fonn (9.3.31)) 
large-sample approximate confidence intervals for pTp2 were obtained by 
Lewis &. Fisher (1995). They showed that, for large samples, the distribution 
of 1 - p r p 2  is npproxirnately s d m l  beta. They showed dm that if p1 2: pz, 
t.hcn the approximate large-sample distribution of 1 - pTp2 is exponentrial 
with 111mx1 

1 - E[COS 26'11 1 - E[cos~&] 
4TZzp; 

+ 
4n,$ 

, 

where case, = x;pa mid p z  cienotes the mean resultant length of the ith 
distribution for i = 1,2. 

In the caws p = 2 and p = 3, nonpitrametric confidence rclgions for rot.ations 
taking p1 to p2 were introduced by Berm & Fishier (1998). 

10.5.2 

Consider the problem of tcsthg 

Tests for Equality of Concentration Parametera 

(10.5.2) 

where the mean tiiiectioris p,  anti p2 are unkntmii. 
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A High-Concentration F Test 

If Ho is truc then R1 N R 2 ,  so it is intiiit.ively re;twn;zble to rejcct Ho if 
(I - &)/(I - &) is not dose to I. It is more appropriate to use the statistic 

(10.5.3) 

in this t w o - t d d  test. It. follows frcun (9.6.17) that, under Hu, 

F ,? ~ ( ~ ~ - ' ) ( ~ - l ) , [ ~ ~ ~ - l ) ~ ~ - ' ) ~  /f, -+ 03- (103.4) 

For p = 3, approximation (10.3.4) is reasonable for R 2 0.67. 

Example 10.8 
We tcst the hypothesis of cqiiality of concentration psramctcrs for the crystd 
direction data of Example 10.7. 

= 0.776, l& = 0.702, R = 0.74, so 
it is appropriate to iisf! (10.53). Hare F = 1.33. Since F I ~ , I X ; ~ . O ~ ~  3= 2.63, the 
null hypothesis of equal concentrations is accepted at t.hc 5% level. 

Rom Example 10.7, nl = n 2  = 10. 

Tests Based on Variance-Stabilising Transformations 

When the ciistri1)iitiorlu are riot wricexitrated, tests car1 be constnicted using 
suitable variancostabilising transformations of the mean resultant length. We 
now .give appropriate transformst.ions for p = 3. 

Case I .  iz < 0.4. Put 

where 

Case II. 0.44 5 R 5 0.67. Piit 

where 

(10.5.5) 

(10.5.6) 

(103.7) 

(10.5.8) 

(10.3.9) 
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Then, under Ho, 

u2 + N(0, l), 
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(10.5.10) 

for 7ht, 7t.L lnrge. 

10.6 MULTI-SAMPLE TESTS 

Suppose that xi1 , . . . , xini (i = I,.  . . , q)  are q independent random samples 
of sizes n t  , . . . , n,, ho~n MP(p i ,  r ; j ) ,  for i = 1, . . . , q. Put 'rr. = ~ t 1  + . . . + n,,. Let 
Rj and R denote the resultant length of the ith sample and of the combined 
samplc!, rc?spect.ively. 

10.6.1 0 7 ~ -  Wap Closuification 

We wish to test 

Ho : p l  = ... = h (10.6.1) 

against the alternative that at least one of the equalitics is not. satisfied. The 
tests considered in Scwtion 7.4.1 for the rirciilar case extend readily to the 
spherical case. In this subsection we slid assume that 6 1  = . . . = Icq:  where 
the common c:oncc!ntrat.ion K, is unknown. 

The Multi-sample Watson-Williams Test 

The multi-sample analogue of the two-sample Watson Williams test is the 
conditional t.est. which rc?jwtu HO for large values of 

R, + ... + R, (10.6.2) 

given 8. Rom (9.5.14), the probability density furictiori of R1, . . . , R,l given 8 
does not depend on IC. Thus, for given R, this test is a similar test. However, 
its quantilw arc' not. yet available (cxccpt in the two-sample caw which was 
considered in Section 10.5.1). As hi the circular case, we shall consider some 
alternative procedures which are equivalent to the above test for large or 

The Watson Wiiiams test and the tests given by (10.6.4) and (10.6.10) have 
the fokming geomet.rical intrqmtation. Under (10.6.1). the w!ct.or sample 
ineans 21 , . . . X,, are almost parallel, M) that RI + . . . + R, N R. (See Fig. 
7.3.) Thus it is intuitively reasonable to reject (10-6.1) for large values of 

lnrge r;. 

R1 + . . . + R, - R.  



INFERENCE OX SPHERES 223 

A High-Concentration F Test 

It follows fron t.hc high-c:onccmtrat.ion approximiitions (9.6.27) and (9.6.26) to 
the distributions of 

that, under Ho, 

for large K .  An improved approximation is 

where k = Ap'(R) and 3 is obtained by replacing K: by kin (9.6.21). For p = 3, 
a good choice of is obtained by replacing K by ri. in (9.6.22). In this case. 
approximation {10.6.5) is found to he adequate for A 2 I, and approximation 
(10.6.4) tulcquate for R 1: 0.67. The relevant dctllations can be displayed in 
an analysis of variance table as was done in the circular case in Section 7.4.1. 
This procedure is illiivtratcd in Example 10.9. 

Example 10.9 
Dirt?%ions at  three sites in the Torridonimi Sandstone Series are summarid 
in Table 10.4 (E. Irving's data analysed hi Watson, 195Ga). Are the population 
meam directions t.hc sitme at all three vitcs? 

Table 10.4 Directions from three sites in the Torridonian Sandstone Series 
(E. Irving's data analywieci in Watsoii 1956a, reprodnced by peniiissioii of 

B)ackwt?U Science Ltd) 

Sample riurnber Size 5 0  R 
1 10 (0.637, -0.289, O.lO1)T 6.990 
2 11 (0,649, -0.154, 0.336)T 8.212 
3 15 (0.795, -0.158, 0.059)T 12.194 

We assiirne that the three sm~iples come from populatiorlu with the same 
concent.ration parameter (see Example 10.10). For the combined sample of' 36 
obscnations, the resultant length R is 26.902. Sincc R = 0.747. wc can iise 
the F test gi iw by (10.6.4). Further calculatio~iis me displayed in Table 10.5. 

Since the 5% value of F4.66 is 2.52, we accept the null hypothesis that the 
111ea1 clirec%ions for the three sites are t h t  A . sm11e. 
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Table 10.5 Analysis of variance for Example 10.9. 

Source d.f. SS hican square F 
Between sites 4 0.494 0.123 0.95 
Within sitcs 66 8.604 0.130 

Total 70 9.098 

The Likelihood Ratio Test 

The likelihood ratio statistic for (10.6-1) is 

(10.6.6) 

where k arid R are the rnaxirnurri likelihood estirriatw of K. iirider Ho aid N1 
respectively and are given by 

0 

R, - k~ - n a , ( ~ )  + na,(,t) 

Under H,-, 
(10.6.8) 

for large n. Fkom (10.4.2), (10.3.8) and (10.3.9) we have that, for s~iiall values 
of IE, 

. 2  
7’1 x ( q - t ) ( p - t ) ,  

I2 K 
A,)( K.) N - . 

2P’ P 
up@) N - 

Using (10.6.9) in (10.6.6) gives 

say, for suid K. Thexi, iiritfer Ho, 

(10.6.9) 

(10.6.10) 

(10.6.11) 

for small K a id  large 7~ -4s in the circular case, this approximation can be 
improved using a multiplicative correction. It follows fronl (9.2.13) that 

E[@] = nj + ni(ai - 1)Ar,(~)*. (10.6.12) 

The approxiriiation 

R z t { l + p y }  



INFERENCE OX SPHERES 

(whcw t = jiTp imd 21 = ( I p  - ppT)%) imd (10.3.16) ~ V C  
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P - 1  
2nlc 

E[ii] = A J K )  + - + o(n-'), 
and so 

E[&] = niA&) + '5 + 0(q1). (10.6.13) 
2n 

(10.6.14) 

By (10.3.9), if 

(10.6.15) - = I - -  1 E2 P ( P  - 1)q 
C p e , + 2 )  + 4nK.2 

t.hcm 
(10.6.16) 

For p = 3 ,  this npproxirnation is found to be ,satisfactory for smdi values of 
11, provided that K is not wry near 0 or 1. In practice, we replace K by its 
Inaxirriiirn likeliiiood estimate k given in (10.3.4) aid rejm% No wtiexi cLi is 
laxge . 

* 2  d' ?-' X ( * - - l ) ( p - - l ) '  

ANOVA Based on the Embedding Approach 

4 s  in the rircirlnr t'ase, analysis of vitrimice proredtires cmi also be obtained by 
taking the embeddig approach and considering the observations as elements 
of IRv. Recall that, for a single sample XI, .  . . , x,, on SP-', 

71 c llxs - 2112 = n(l  - P). 
i= 1 

Similarly, for y sa~nples  XI^ l .  . . , xlnt J . . . ; xpl !. . . xyn, the basic ANOVA 
decomposition 

which is reminiscent of (9.6.25). In (10.6.18) the terms represent respectively 
the total variation, the variation between smriples arid tlie variation within 
samples. This leads to the test which rejects Ho for large values of 

(c;=' 7haRf - P ) / ( y  - l )@ - 1)  
( n  - c:.-l n&)/(n - q)(p - 1) 

(10.6.19) 
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10.62 

Because the tests of Section 10.6.1 are based 011 the asyurnption of eclual 
concentrations, it is often necessary to test the hypothesis 

Testu for the Homogeneity of Corrmntrationa 

Ho : = ... = K ~ .  (10.6.20) 

Following the circular multi-sample case of Section 7.4.2, the two-sample tests 
for eqiiality of wricexitration pasiuneters of Section 10.5.2 ran be extend4 
easily to the multi-sample situation. The results are as follows. 

For concentrated von Mises-Fisher dist.rihut.ions, we can approximate them 
by ( p  - 1)-diiensional normal distributious using (9.3.15) and then apply 
Bartlett's test of homogeneity (Stuart & Ord, 1991, pp. 875-876). Thus we 
rejet% homogeneity for Inrge values of 

(10.6.21) (ai - Ri) Q 
T& - C:==, Rj. - 

ui log u log 
1 

1 + d 
B =  - { 

v ui i= 1 

where 

(10.6.Z) 

for ? E ~ ,  . . . , nq large. When p = 3, this approximation is satisfactory for 
R 2 0.67. 

Wlieri the tfistributioris are not; coiitmtratecl, hornogendty cai be tested 
using suitable variancestabilising transformations of the mean resultant 
length. We tiow give appropriate trimsfonnations for p = 3. 
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Case I .  R < 0.44. P I I ~  
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where 

- 3 g1 = sin-‘ (5) . 1 - -  
Wi 5(7Zi - 5 ) ’  

Then, under Ho, 

for nl , . . . , ng liuge. 

- 2  UI 

Case If. 0.44 5 R 5 0.67. Put. 

(10.623) 

( 10.6.24) 

( 10.6.25) 

where now 

Then? under Ho, 

for 111, .  . . ,ng large. 

cz + . 2  
Y q - l ?  

(10.627) 

(10.6.28) 

Example 10.10 
We test the homogeneity of the concentration parameters for the Torridonian 
Sandstone Series data of Example 10.9. 

From Example 10.9, we have R > 0.67. Tlius it is appropriate to use the 
statistic B of (10.6.21). Wc have q = 3 and 

VI = 18, 7ti - R1 = 3.010, uz = 20, n z  - R2 = 2.788, 
‘I 

vd = 28, ~ 1 3  - R3 = 2.806, v = 66, YI - Z& = 8.604, 
i= l  

so that 

Then d = 0.021, and so B = 1.51. Since ~$;o.,lci = 5.99, the null hypothesis of 
equal wricexitrittiorlu is accepted at the 5% level. 

Two-way and multi-way ANOVA for sphc?ric;rl dnt.n can he carried out by 
the methods of Steplieiis (1982) or I)y straiglitforwartf generalisation of the 
methods suggested by Harrison, Kanji & Gadsden (1986), Harrison & Kanji 
(1988) anti Anderson & LVii (1995) for the circular case. 
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10.6.3 The Heterogeneous Case 

then it is not appropriate to use the methods of Section 10.6.1 to test 
If it is not reasonable to make the homogeneity wumpt.ion ICI = . . . - - Ky 

H(, : p1 = . . . = p9 (10.6.29) 

against the alternative that at least one of the equalities does not hold. We 
now consider tcsts of (10.6.29) in the hetcrogeneous caw. 

If 61, . . . , n9 me knowxi then the likelihood ratio statistic for (10.629) is 

(10.6.30) 

and its largesample asymptotic distribution under (10.6.29) is xt9-l)(p-,l (see 
Watson, 1'383a, p. 155: 19831)). Wiien p = 2, the statistic (10.6.30) reduces to 

The gcwmetrid intcrprcttst.ion tinderlying the test based on t.he stat.istic 
(10.6.30) is the smut? as that underlying the ~Vatso~Ii-Willi~ns test2: uxider 
(10.6.1), the vector sample means % I , .  . .%, tend to be almost parallel, so 
that the length 11 EL1 K i n i x i I I  of the weighted ~11111 of the sarriple I I I P ~ I S  is 
almost eyud to the weighted sum EL1 ~ i n , l l ~ i l l  of their lengths. 

If 61,. . . , ciq are not. known then they can be replaced by their maximum 
likelihood mtimates to give 

(7.4.27). 

(10.6.31) 

where ka = A;'(&). I'nder (10.6.29), the largesample asymptotic 
distribution of (l(1.6.31) is <tq- A simulation study by IVatwii & 
Debiche (1992) in the case p = 3 and q = 2 showed that this is a good 
approximation imd that when nl N ns t.hc? twt bawd on (10.6.31) performs 
well corripared with various competitors. 

In the cases p = 2 and p = 3, nonparametric simultaneous confidence 
regions for rotations takirig p, to p, (for 1 5 i < j 5 y) were int,rotiuc*ed by 
Beran fli. Fisher (1998). 

10.64 

Soxnetimw the riull hypothesis specifies that the popdation mean ciirtx.%ions 
p l ,  . . . , p,, of q \-on Mises Fisher distributions lie in an s-dimensional subspace 
V of RP. In some cascs V is prescribed; in others it is unknown. An example 
of the latter occurs iii geornagietisru, in whidi a certairi geophysical model 
suggests that the mean directions of natural remnant magnetism at various 
associated sites should be coplarinr. 

Tab for Mmn Directiuw i7t u Subspuce 
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Prescribed Subspace 

we w*h t.0 test 

HO : pi E V, i = 1 , .  . . , y. against HI : pz 4 V, for some i. (10.6.32) 

Let Pt. denote orthogonal projection onto V .  For d = 1,. . . ,q, the vector 
meal x, of the i th saInyle can be decoInposed as 

g.  1 = j z . .  av +%L, (10.6.33) 

where 

are the components of j z i  along 1.'- and orthogonal to V ,  respectively. 

%# = PV%i nnd xi1 = (Ip - Pv)X;. (10.6.34) 

(10.6.37) 

Further details are given in Wat.wn (1983a, p. 156; 1983,). In particular, it2 is 
shown that the non-null asymptotic distribution of (10.6.37) is a non-cent.ral 

If the concentrations I E ~ ,  . . . , I E ~  are unknown then suitable statistics are 
obtained by replacing the ~i in (10.6.35) and (10.6.37) by their maximum 
likelihood estiinates A;* (R,) .  

Y'L . 

A Hagh-Concentmtion F Test 

leading to (10.6.4) yields 
If IEI = . . . = IE* = K then a straightforward extension of the argument 

(Watson, 1983n, pp. 157-165; 1981). 
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Unspecified Subspace 

We wish t.a test 

Ho : pi E V, a’ = l! . . . , y for Soirie n-climeiisiorial subspace V (10.639) 

against. 

HI : pli. . . p,, do not. lie in any s-dimensic.)nal subspace. (10.6.40) 

Suitable statistics cai be obtained from (10.6.37) mid (10.6.38) I>y inixii~iiisi~ig 
over V as follows. 

A Luuye-Sumpie Test 
Since (10.6.37) cram be written as 

the iiifixnurri over V o f  (10.6.37) or (10.6.41) is 

P 

(10.6.41) 

(10.6.42) 

where 

are the eigenvalues of 

211 2 - . . L: Z’JJ 

Under Ho, the largesample asymptotic distribution of (10.6.42) is x?~-,,, , ,).  
If the concentrations & I , .  . . , IC,, iue unknown t.hc?n a suitable statwtir 

is obtained by replacing the IC, in (l(1.6.41) by their inaximuxxi likelihood 
estimates kt = A;‘(&). This gives 

D 

i=a+l 

where 

are the eigeiivdues of 

W l >  . . .?  w, 

(10.6.43) 

(10.6.44) 
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Under Ho, the liug+Yamplt! isymptotir: distribution of (10.6.43) is ~ ~ p - 8 1 ~ q - 8 1 ,  

as showu by Watson (19831). 

A High- Concentrution F Test 
If K I  = . . . = K~ = K then the approximation 

together with the argument leading to (10.6.&), gives 

i=l i= 1 era+  I 

It follows that 

(10.6.45) 

Example 10.11 
Table 10.6 suxumarises the t1irm:tious of samples taken fr(m three populatious 
{Wmon, 1960, deding with some data of K. M. Creer). {A sign in sample 
2 of Watson, 1960, has bee11 corrected.) Certain geophysical considerations 
suggest that the mean directions of the three populations should be coplanar. 
Do the data siipport this hypothesis? 

Table 10.8 Siimmaries of directions in thee samples (data of K. M. Creer 
considered by Watson, 1960) 

Smplc number size ji R 
1 35 (-0.070, -0.959, -0.275)” 33.172 
2 9 (-O.857,0.258, -0.446)T 8.567 
3 6 (0.547, -0.730, -0.410)T 5.786 

By Ayperitfix 3.2, rZ1 = 19.1, kz 3= 20.8, = 28.0, which are Fairly large. 011 

usiug the test given by (10.6.21), it is found that the samples may be regaxded 
as drawn from popillations having the same concentration parameter K. For 
this data set, the matrix W defined in (10.6.44) is 

2.640 34.154 9.494 
8.187 2.6M 3.208 

5.208 9.494 5.183 
w =  ( 
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The cigenvalucs and unit cigenvectors of W are 

IQ = 37.545, 
wz = 9.950, 

= 0.027, 

f v l  = f(0.138,0.944, 0.299)T, 
I ~ V Z  = st(0.866, -0.262, 0.426)T, 
f ~ g  = f(-O-480, -0.200,0.854)". 

Hare p = 3, y 3= 3, mid Y = 2, since the subspace V mwtioried in (10.6.39) 
is a plane. Calculation gives the F statistic of (10.6.45) as 0.509. Since 
F I , ~ ~ ; O . O S  = 3.95, t.hc? hypothesis of coplanitrity of the threw popiilations is 
accepted at the 5% level. 

10.7 TESTS ON AXIAL DISTRIBUTIONS 

10.7.1 Tests of ilniformitg 

The Bingham Test 

Perhaps the sixnplest twt o f  iiniforrriity of axial data is the Bingharn test 
introduced by Biugliam (1974). The intuitive idea behind the Biugham test 
is thi%t uniformity is reject4 if the sitmple scatt.er mat.rix 

i= 1 

is far from its expected value p-'I,. More precisely, uniformity is rejected for 

(10.7.1) 

This test is a1.w the score test of Uniformity in the angular central Gaussian 
model with probability ckx1sit.y fiiwtions (10.3.45). lJrider uniformity, 

(10.7.2) 

with error of order O(n- '). This approximation can bc improved by using the 
modified Bisighaxn test statistic 

where 

2$ + 3p+ 4 
6(p+4) ' Bo = 

B1 = 
-(4pZ + 3p - 4) 

3(p + 4)09 + p + 2) ' 

3(p + 4)v + p +  2)(I;L + p  + 6)'  
4cp2 - 4) 

Bz = 

(10.7.3) 
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(10.7.4) 

with error of order O(n-2) (Jupp, 2001). 
In the case p = 2, the Bingliani st,atistic of fx l  , . . . , &xu is the Rayleigh sta- 

tistic (6.3.3) of the points (cos 281, sin 2 4  ) T , .  . . , (cos 20n, sin 2t),)‘‘ obtained 
by ‘do~lblhg the mlgld e l , .  . . B,, d d i d  by xi = (cos~$, 

Example 10.12 
For the calcite gains data of Example 10.3, we test the hiypot.hiesk of 
uniformity. 

F’rorri Example 10.3, 7h 3= 30 anti the dgenvdues of T arc! 

The Bingham statistic (10.7.1) is S = 14.62 and the modified statistic (10.7.3) 
is S’ = 14.87. Since the 5% vdne of xg is 11.07, the hypothesis of uriiforrriity 
is rejected at  the 5% significance level. 

The Bingliarn test, is lmetf  0x1 the ‘squared distance’ (l(1.7.1) between T a i d  
p-lIP. Anderson k Stephens (1972) used an alternative approach, in which 
the distmice between T arid p-IIp i.1 meamred by fl - l/p or 1/p - &, where 
& and i?’ are the largest and smallest eigenvalues of T. For testing against 
t.hc? alternst.ive of a bipolax distribution, their tcst rejccts uniformity for large 
values of t;; for testirig against the alternative of a girdle distribution, their 
test rejects uniformity for small values of fp. In the case p = 3, some quantiles 
o f  these statistics are given in Anderson & Stqhens (1972). 

GinB’s G,, Test 

A disadvantage of the Bingham test is that it is not consistent against 
alterriatives with E[xx’] = p-’I,,. -4 test of uriiforrriity ON IR.P’’-’ which 
is consistent against all alternatives is GinC’s G, test. This rejects uniformity 
for large valuta of 

where is the srnaller of the two tuigles between x, anti xI a id  is giiven by 
(10.4.9). This test was introduced for p = 3 by Gin6 (1975) and cxtendcd to 
t.he general casc by Prclntice (1978). The largesample wymptot.ic distribution 
of G,& is that of an irifiriite weiglited H U I I ~  of iridepeiidexit x 2  variables (see 
Prentice, 1978, pp. 172-173). For p = 3, selected quantiles of G, are given by 
Keilsori et al. (1983). hi particular, the limiting large-sarnple lo%, 5% aud 1% 
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quantilw of G, arc 1.816, 2.207, and 3 . W ,  respectively. For p = 3, Prentice 
(1978) derived the approxiination 

Pr G, > - N 4.638 [Pr(x; > c) - 1.593Pr(ii > x )  + 1.323Pr(,<i > c)] , 
(10.7.6) 

for large n and t. 
For testing uniformity of axial data against Watson alternatives, Bingham’s 

(1974) test of urlifort~iity and Gin6’s (1975) G, have comparable power arid 
are preferable to a third test (based on the number of pairs of’ axes less than 
a certain tiiiytaxic*e apart) giivexi in Dig& Fisher & Let! (1985). 

( 2 

10.7.2 Testing Rotational Sytnntetry 

The Watson distributions are precisely those Bingham distributions which 
haw rotational symmetry about .some axis. Thus it is often of interest. to t.est. 
that a Biugham distribution is indeed a Watson distribution, i.e. to test 

HO : rkA = 1, (10.7.7) 

where A is the parameter matrix of the Binghcam distribution (without the 
restriction tr A = 0). It, follows from staxitfard rwiilts on regular exxponeritial 
models that the likelihood ratio statistic w for (10.7.7) satisifies the large- 
samplt. approxim il t’ Ion 

w ‘v ntr { (A - A) (T - En[xxT])}, (10.7.8) 

where A and A are the mimimum likelihood eHt.imatw of A in t.hc Bingham 
and Watson models, and E*[xxT] refers to the expectation in the f i t t .4  
Watson distribution. Under (10.7.7), 

w +  2 
XtPfl)(P---2)/1 

for large 7~ The case p = 3 was considerctd by BisighaIn (1974). For more 
explicit versions of (10.7.8) we consider separately the cases ii > 0 (the bipolar 
caw) md and k c 0 (the girdle caw), where 2, denotes the concc:ntrat.ion of 
the fitted Watson tliutriButit>ii. 

If k > 0 then (10.7.8) can be expressed as 

11! N llfbi (10.7.9) 

where 
P 

(10.7.10) 
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fl ? .  . . , f p  hdng the eigenvdues of T and k l ? . .  . , kp hdng given by (10.3.37) 
with El 2 . . . 2 F,,. a id  kl 2 . . . 2 k,,. 

Similarly, if ii < 0 then (10.7.8) can be cxpresscd as 

w N 'U$, (10.7.12) 

where 

and now 

(10.7.14) 

Ewduation of k l ,  . . . R, in Mb mid w,, can be avoidcd by using the lnrge-sarnple 
approxiriiations 

- 1)  { tr (T2)  - ff - (1 - Ei)/(p - 1))  
W'b (10.7.15) 

2(1 - 2t; + 211) 
PZ(P* - 1) {tr(T*) - t2p - (I - t",)/(y - I )}  

71!11 N , (10.7.16) 
2(1 - 2Ep + Em) 

tl and t, being unit eigenvectors corresponding to the eigenvalues l 1  and lp of 
T. Indeed, as pointed out by Prentice (1984), no distributional assumptions 
are required for the large-sample asymptotic results 

which provide tests of rotational symmetry in the bipolar and girdle cases, 
respectively. 

Example 10.13 
For the calcite grains data of Example 10.3, we test the hypothesis of rotational 
symmetry. 

J?rorn ExaJnples 10.3 arid 10.4, 

= 0.495, $2 = 0.365, & = 0.139 (10.7.19) 
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and 
21 == 0, k. .~ 3= -0.68, k:s 3= -3.62. ( 10.7.20) 

Substituting thew values into (10.7.10) arid (10.7.13) givw 

Bccause f ,  N r.;l > f.3, it is appropriate to use wg. Since )cq;o,05 = 5.99, the 
hypothesis of rotzitiorial symmetry is accepted at the 5% level. 

Use of the approximate mauirnum likelihood estimates given in (10.3.44) 
yields 

giving the same (:onclusion as above. 

wy 'v 1.31, 

Another test of rotational symmetry is given in Jupp & Spurr (1983). 

10.7.5 

Consider the probleiu of testing 

One-Surnple Tests on Watson Distvdbutions 

for the axis of the Wat.wn distribution M - ( ~ , K ) ,  whcw fh is a prw(*ribed 
axis. We slid give tests which are suitable when the distribution is 
concentrated, i.e. when K is either very large (the bipolar case) or very negative 
(the girdle case). The following high-coxicentratiori apprcmirnations will be 
required. 

Suppose thilt x IY b V ( p , ~ ) .  If t = xTp then t has density function 
proportional to 

(1 - t 2 ) ( ~ - 3 ) / 2 & '  (10.7.22) 

214t2 + u'4, K -+ -0G. (10.7.23) 
on [-1, I]. Hence 

Similarly, (10.7.22) is proportional to 

(1  - t 2 ) ( " - 3 ) / 2 e - " ( l - ' 2 )  (10.7.24) 

so t.hat. 
2 4 l - t 9  + xi-,, K - + o c .  ( 10.7.25) 

The Girdle Case 

Assume that K < 0, so that the N'atmn distribution is of girdle type. k t  
&XI,. . . , fx, be a riuidoIn sample from W ( p ,  K.). It follows ho~n (10.7.23) 
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t.hat., under Ho, 
n 

2n(nlpt,7Tpo = 21.1 c(p;xi )a + x;&, 

The likelihood ratio statistic for testing fp = fp,, is 

K + - X I .  ( 10.7.26) 
i=l 

2nr; { j i ' ~ ~  - p l ~ p ~ }  = 2nlnl ( p l ~ p ~  - t;> , (10.727) 

where &, is the smallest eigenvalue of T. General high-concentration results 
OII exyoiieiitial tlispersiori models (see Jorgeriwn, 1987, Section 4) show that 

2nlnl(plTpo - t;) + ,yp-l! 2 r; --t -30, (10.7.28) 

There is an 'analysis of variance' decomposition 

2nllclpg'Tpo = 'L.nl&lfT,, + 2nllcl (pgTTpo - 4) , (10.7.29) 

which is andogous to (9.6.16). The terms in (10-7.29) represent the dispersion 
of the data about the hyperplane riorrrial to po, the tfispemiori of the 
data about the hyperplane normal to 8, and the deviation of fi  from pol 
rwpect.ivdy. We dediice from (10.7.26) and (10.7.28) t.hat. 

2n[lclf,J + &+,, K* + -m. (10.7.30) 

anti that 'Lutlrclf,, arid 2~r~1r;l( plTpo - f,,) arc) apprcmirriateiy indepentierit. This 
gives the approximation 

The appropriate test reje& HO for large t-aluw of the statistic in (10.7.31). 
An approximate lOO(1 - a)% confidence region for p based on (10.7.31) is 

This region is the intcrscxt.ion of SP-' and t.he (double) cone with axis ft , .  
This c(iiie is nearly rotationally symmet.ric, siIice f~ 21 . . . 2: &-I in the girdle 
cease. 

The Bipolar Case 

.4suume that IC > 0, so that the \Vatson tfistributiori is of bipolar type. Let 
*XI,. . . , fx, be a random samplc from W(p,  K.). It follows from (10.7.25) 
that, wider Ho, 

f1 

i= 1 
(10.7.32) 
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The likttlihood rat.io statistic for teHting fpl  = . . . = fpn in the sat.urat4 
model with xi - W ( p 8 , ~ )  (with K kriowri) is 

2 K  {n - n$'Tfi} = 2nn (1 - p'Tii) = 2fbK (1 - t;) . 
where f1 i.1 the largest dgenvdue of T. General ~ii~l;h-com.eIItretion rtsults 0 x 1  
exponential dispersion models (see Jwgeilsen, 1987, Section 4) show that 

2nn(1- fl)  + ~ ~ n - l l ~ p - l ) .  K 3 m, (10.7.33) 

hi the 'analysis of variance' decomposition 

the terms represent the dispersion of t.he data about po, the dispersion about 
ji, anti the deviation of ji from pO, respec.tively. We tidrtce from (10.7.32) 
and (10.7.33) that 

291K (f1 - p;Tp,) - 2  AP-,. K 3 m (10.7.35) 

and that 2 n ~ ( 1  - fl) and ~ n ~ ~ ( f 1  - d T p , , )  are approximately independent. 
This gives the npproxirnation 

(10.7.36) (El - PoTTPo)/cr, - 1) 
(1 - t ;) /(n - l)(p - 1) ~p-l,(tl-l)(p-l)7 + 

The appropriate test rejects HO for large values of the statistic in (10.7.36). 
-411 approximate 10()(1 - a)!% c011fi(ie11~e region for p based 011 (10.7.36) is 

This region is the intersection of SP-' a id  the (double) cone with axis f t l .  

This cone is nearly rotationally symmetric, since fz N . . . 2 fp in the bipolar 
CtLYC. 

10.7.4 

Suppose that kxil,. . . &xin, (i = 1:. . . ,y)  are q independeiit random 
samples of sizes nl,. . . ?n,, from W ( p i ,  Kj). i = 1,. . . , q. Put n = nl +. . .+n,. 
The dth sasriple and the combined sample me suruiriarisetf I>y their respective 
scatter matrices Ti and T. Let f,t 2 . . . L: tip and f l  2 . . . L: denote the 
eigenvdues o f  Ti arid T, respectively. 

Multi-sample Tests on Watson Distributions 

We wish to test 
Ho : fpl = . . . = fpp (10.7.37) 
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against t.hc? alternative tha t  at. least one of the qiialities is not sat.isfitui. 
For simplicity, we shall assur~ie that K J  = . . . = K,,, where the coxrimon 
concent.ration K is unknown. 

Intuition suggests that it i.1 reasonable to reject Ho when so111e appropriate 
weighted swi of the eigenvalues of the Tz is very different from a similar 
fiinction of the cigenvalues of T. We present two tests of this form: one siiit.able 
for large samples, the other for cc>iiceiitrated (girdle or bipolar) distributiorlu. 

A Large-Sample Test 

The following test is a special case of the multi-sample test introduced by 
Watson (1983~) for testing equality of q tfistributioriv on SP-’ with tlerisity 
functions (9.3.36). 

The Girdle Cave 
If K < 0 then application of the (matrix) central limit theorem to the Ti 

and to T, together with the rotatioiial syriiirietry of Watson distributions, 
leads eventually to the result 

where 

t ,  being a unit eigeiivwtor corresponding to the smallest dgenvdue Ep o f  T. 
The null hypothesis is rejected for large \dues of the statistic in (10.7.38). 

The Biplur Caw 
If IC > 0 then an argument similar to that used in the girdle c C w  yields 

where 

(10.7.40) 
is;l j=l 

t 1 being a unit eigenvector corresponding to the largest eigenvalue tl of T. 
The riull hypotheis is rejected for lmge values o f  the statistic in (10.7.40). 

A High-Concentration F Test 

Among the multi-sample tests for q von hifises-Fisher distributions which were 
corisidertxt in Section 10.6.1 was a high-(:onceIitration F test, I,ased on (10.6.4). 
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We now give ;zn i~nalogu~: for Watson distributions. 

The G i d e  Case 

deconiposi t ion 
If K. < 0 then it follows from (10.7.30) mid the 'andysis of variii~lce' 

that 

The appropriate test rejects Ho for large rnluaq of the statistic in (10.7.82). 

The Bipolar Cuw 

decomposition 
If tc > 0 then it follows from (10.7.33) and the 'analysis of variance' 

v 
2nK (1 - f 1 )  = 2 ~ C n i  (I - f i I )  + 2~ (10.7.43) 

i= 1 

t.hat 

The appropriate test rejects Ho for large values of the statistic in (10.7.4).' 

In the cc?ses p = 2 and p = 3, nonparametric simultaneous confidence 
regions for rotst.ions taking &pi to stpj (for 1 5 i < j 5 q)  wttre introduced 
by Beran & Fisher (1998). 

10.8 

hlany tests of uniformity on 9-' fit into the geueral framework established 
by Gin6 (1975) on more general sample spaces (such as the Sticfel 
manifolds a id  GrassIriarixi mariifolcis considerttd in Sections 13.2 arid 13.3). 
This framework extends the embedding approach described in Section 9.1 
by transforming direct.iona1 problems into infinit.e-dimensions1 mu1tiva.riat.e 
problems w follows. 

Katurally associated with the sphere Sp-' is the Hilbert space L2(SP-I) 
of sqiiarct-integrable functions on SI'--l. Any suitable mapping t of 9 - l  into 

A GENERAL FRAMEWORK FOR TESTING 
UNIFORMITY 



INFERENCE OX SPHERES 24 1 

L2((s”-’ ) trmsforms dist.ribut.ions on S“-’ into distributions on L2(S7’-‘). 
Since the Hilbert space L2((sP-’ behaves just like the fmniliar Euclidean 
spaces! infinitcdiinensional versions of’ ordinary (non-normal) mult.ivariat.e 
methods mi then be applied. Desirable properties o f  t are continuity a id  
equivariance. Equiwuu.iunce means that for every rotation U of SP-’ 

t(Ux) = Ut(x), x E 9 - 1 ,  

where on the right-hand side U denotes the corresponding rotation of 
L 2 ( ( s p - ’ )  given by f c) fu, where fu(xC, = f(Uz). Note that if t is 
equivariant theu Ilt(x)ll is constant as x runs through SP-’: so that t(x) 
is il point in ;zn infinite-dimensional sphere. 

One way of constructing such mappings t is the fnllowiiig method due to 
Gin6 (1975) and based on the eigenfunctions of the Laplacian on SP-’. (See 
also Jiipp I Spurr, 1985, for the Hilbert space approach given here.) Let Ek 

denote the space of eigeidunctions corresponding to the kth eigenvalue, for 
k 2 1. Then there is il well-defind mapping tr: of S”-‘ into Ek given by 

(10.8.1) 
i= 1 

where { j i  : 1 5 i 5 n k }  is any orthonormal base of Ek. If {ah} is a sequence 
which converges sufficiently rapidly to 0 then 

X 

x t+ t(x) = xa.ktk(x) 
kr= 1 

(10.82) 

defines an cqiiivwiant mapping t of S”-’ into L’(S”-’). For cxmple, on the 
circle, provided that 

x 

x u :  < cx, 

to(z) 3= c a g  cos k(d - 0). 

k= 1 

the angle 8 is transformed into the function t(d) = to dchicd by 

oci 

k=l 

Under mild conditions on the sequence {Qk}, t.hc mapping t defined by 
(10.8.2) is continuous. Then t gives rise t.o H mapping r of the yet P(SP-’) of 
all probability tfistributioris on SP-’ into L’(5’P-l) defined by 

If all the coefficients ak are non-zero then I is a oncto-one function (indeed, a 
topological ernbdddiig) anti so gives rise to tests which are comsistent against, 
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all altcrnittives. Another way of looking at t.hc? t.ransformation t given by 
(10.8.2) is to regard it w a 'weiglited diaracterirtic fuiictioii', sending a 
dist.ribut.ion on SP-' into t.he sequence {akE[tt(x)]}kr1,2... . of' its -Fourier 
coefficie11ts'. 

Any suitable mapping t as above gives a test for uniformity whidi rejects 
uniformity for large d u c s  of the 'resultant length' I(t(x1) +. . . +t(x,t)ll of the 
trarisfortIied observations, where 11 - 11 denotes the Lz norm on L2(S'-*). Thus 
such a test is an infinite-dimensional version of Raylcigb's test. Kote t.hat the 
tquivariaice o f t  ensures that. the test is iIit-ariait iiritier rotzitions. Note also 
that the test rejects uniformity for large values of 

i a  n 

where ( . , a )  denotes the inner product on L2(SP-I) given by 

the integration being with respect to the uniform distributhi 011 S"" . Under 
uniformity, the distribution of T, t.ends as n -+ .xs to that of 

03 

xfl;r/ik, 
k l  

where the Uk have independent ,&) distributions 
In the case p = 2, the statistic T,, defined by 

corresponding statistic Bn in Beran's class by 

where 

Bit T, = -, 
n 

with d(E) = dim Eh. 

(10.8.3) is related to the 

(10.8.4) 

(10.8.5) 

as in (6.3.52), and R k  is the mean resultant length of k&, . . . , k0, with 
01 . . . ' 8 ,  being the observations 0x1 S' . 

As we h a w  Seen in Section 6.3.7 for the circular case, appropriate choices of 
the coefficients fLk in (10.8.2) yield tests with suitahlc! pntpertiw of corisistency, 
case of' computation, etc. 

The construction of t.est.s of uniformity using mii,ppings t into L'((S"-') as 
above geiierdises readily t,o sample spaces whidi are cornpact Riernainiau 
manifolds. Gin& (1975) presentation of these tests in this general case is 
tquivalent to that above Imt used Sobolev spxw of gexierali.ied functions 
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with sqiiarcLintr?grable derivatives of appropriatc order (see Gini., 1975, pp. 
1246- 1247). Herits thew tests are .winetirries called 'Sobolev tests'. 

In the case of sample spaces (such as spheres} which are compact 
lior~iogeneous spares (Iwing u%ed on txrdtively I>y a group G), Baran (1968) 
obtained these tests using statistics of the form 

(10.8.6) 

as l ~ c d l g  most. powerful invariant tcsts of uniformity against the itltt?milti\re 
of a density {(yx), where y is an unknown element of G, 

k=I (=I 

and {.fi : 1 5 i 5 n p }  are iL5 in (10.8.1). If t.hc? sample space is t.hc? circle t.hc?n 
(10.8.6) reduces to (6.3.70). 

The Framework for testing uniformity which has been described in this 
ax%ion dso forrris the basis of permutation test,s of (i) equality of two 
distributions (Welher, 1979}, (ii) symmetry (Jupp & Spurr, 19831, and (ii) 
independence (Jupp & Spurr, 1985). 



11 

Correlation and Regression 

11.1 INTRODUCTION 

This chapter is concerned with the relationships between directional random 
variables. hiany correlation coefficients have been propostxt for Inemuring the 
strengths of such relationships. The most important correlation coefficients 
are presented in Section 1 1.2. Various regression models for dwcribing these 
relatioiisbips are given in Sectioii 11.3. Section 11.4 provides soxne bivariate 
models. Directional time series are discussed briefly in Section 11.5. 

11.2 MEASURES OF CORRELATION 

11.2.1 L i ? i ~ ~ ~ - C d t c ~ l ~  Coireiiition 

A cornion problem is that of measuring the association between a h e a r  
random variable X and a circular random variable 0 on the basis of a 
raridom sarnple (q ,el ), . . . , (x,, , &) of observations on (X, 0). In a typicd 
meteorological cxample, X is ozone concent.ration and (3 is wind direction. 

A Correlation Coefficient Based on the Embedding Approach 

The embedding approach described in Section 9.1 suggests that 0 shoixld 
be regarded as t.he random vector u = ( cos8 ,~ inb) )~  in the plane. 
An appropriate mewtire of dependence bctnwn X and u bawd on 
(z1,61), . . . , (q, 6,) iii the sanple multiple correlation coefficient R,, of X 
and u, i.e. the maximum sample correlation between X and linear functions 
aTu of u (see k i d i a ,  Kent & Bibby, 1979, Sw%ion 6.5.2.) A straightforward 
calculation shows that 

where 

(1 1.2.1) 

Directional Statistics 
Kanti V. Mardia,Peter E. Jupp 

Copyright 0 2000 John Wiley & Sons, Inc 
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are t.hc? sample corrclat.ion cocfficients. The linear-circuliir corrclat.ion 
coefficient R,e was introduced by Mxdia (1976) a id  .Jolirluon 8t Wehrly 
(1977). If ,Y and 8 are independent and ,Y is normalIy distributed then 

(11.2.2) 

The exact distribution of this statistic under a spa:ific alternative to 
uniformity h a  been derived by Liddcll & Ord (1978). 

Example 11.1 
In studies of atmospheric pollution, it is often of interest to know whether or 
iiot the concentration of a pollutruit depeiids (111 the wind t1irm:tion. hadings 
of ozonc concentration and wind direction at. 4-day intervals at a weather 
station in Milwaukw are given in Table 11.1. Are ozone concentration and 
wind direction independeiit3 

Table 11.1 

x: 28.0 85.2 80.5 4.7 45.9 12.7 72.5 56.6 31.5 112.0 
8: 327 91 88 305 344 270 67 21 281 8 

Measurements of ozone cowrutration x and wind direction (in 
degrees) B (dohrrsou & Wehrly, 1977) 

2: 20.0 12.5 16.0 45.9 32.6 56.6 52.6 91.8 55.2 
8: 204 86 333 18 57 6 11 27 84 

Calculation gives R;e = 0.532, and so (n - 3)R;e/(1 - R:,) = 17.47. Thc 
ohscrvtd significance Iewl of the Anderson-Darling tcst of normality applied 
to the observations of ozone coriceutratioii is 0.88. Thus normality can be 
assumed and it is appropriate to use (11.2.2). Since Pr(F2.16 2 17.47) < 0.001, 
the hypothesis of iIdependence is rejected at the 1% level. 

Distribution-Fkee Correlation Coefficients 

A Lirmir-Circutlar Rank. Gorrdatiori Coeficderit 
The construction of Spearman's rho as the product moment correlation 
cocfficient app1ic.d to ranks suggests that R:o should he calculated for the 
data obtahiml by replacing the observatioiis (zI. .el), . . . , (xnr 19,) by their 
'ranks'. More precisely, we reorder the obscrvations so that 5 1  5 . . . 5 .rn. 
Let rl , . . . , T,, be the corresponding circiilar ranks of 8, , . . . , 8,. The nnifonn 
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scores ;?I ? .  . . , are defined by 

as in (8.3.2). Then t.hc? valiie of nRqe for ( l ,$) ,  . . . , (a,&) is l jn? where 

n 
with 

(11.2.3) 

is; 1 i= I 

The rank correlation coefficient Url was introdiiced by Mardia ( 1976). The 
coefficient Un has the followi~ig geometrical interpretation. Since 

C’,, is proportional to the squared modulus of a weighted siir~i of the unit. 
complex numbers represented by the uniform scores. 

Because Un is b;tuexi on ranks and uniform scow, it is invariant. under 
hioi~i~morphisrlls (continuous trarluformatioiis with coiitiiiuons inverses) of 
the line and of the circle. An important consequence is that, under 
indepentfent:e of X arid 0, the distribution of does not. tieperid 0x1 the 
marginal distributions of X and 0. The test of independence based on Lin 
rejects independence for livge ~ i i h i e ~  of Url. 

Standard results 011 rank statistics (eg. HAjek 8t Siddc, 1967, pp. 57-58, 
16.3-164) show that, under independcnce, 

provided that X and 8 have continuous distributions. Some quantiles of Ci, 
are talxdated in -4ppe1idi.x 2.17. 

Sometimes it is hclpful to scale Un, in order to have a correlation coclficient 
which l i e  in the range [O: 11. This st:dd rorrelation coefficient D,& is 

D, = a,@: + T:), 

where 

(1  1.2.4) 
1/(1 3- jcot2(7r/n) + .Icot4((x/n)}, raeven, 
2sin4~(nT1)/{i 3- Cos(r/n)}3,  ra odd. 
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Example 11.2 
For the data set mi wind direction mid ozoiie coiicentxation whidi was 
considered in Example 11.1, n = 19 and Lin = 0.398. Since (from Appendix 
2.17) the upper 10%8 qiimitiles of LTn for n = 15 mid n = 20 are 4.59 mid 4.6, 
respectively, the hypothesis of independence is accepted at the 10% level. 

A Coirehtion Ciwficient Bcs.wd orr C-cssuociation 
An alt.ernative approach, due to Fisher & Lee (1981), is based on considering 

alternatives to indepentie1ic:e o f  X mid 0 for which the red-vahied furiction 
E[Xl@ = 6,] of 6, is uuiruodal 0x1 the circle. Such association between X and 
0 is called C-association or cgllindrieal association. One scwnplt! measure of 
C-asYociatiou is the proportion of Ctuples of the points (a1 ,01 1, . . . , (xn, 0,) 
on the cylinder R x S1 which have a 'zigzag' configuration. More precisely, 
put 

1 ifxi - xj, zj - x k ,  z k  - x t , q  - xi alternate in sign 
when0 5 Oi 5 6, 5 6,k 5 01 5 2n, 

0 otherwise, 
(11.2.5) 

Vji , j ,k, l  = 

arid 

(112.6) 

where the siixxi i.1 over all subsets {i, j ,  k , l i  of size 4 o f  (1 , .  . . , n } .  Under 
independence, the population mitlogue of A, is 2/3. Thus an appropriate 
twt rvject.s inciependencc if A,' is far from 2/3. Some quimtiles of i,, for 

5 8 are gisivrii in Fisher (1993. Appendix A l l ) .  For inodrrate ,wiiple sixes, a 
randoinisation test bayed oil i,l is appropriate. For the txeatmeiit of ties arid 
thc use of random subsets to calculate in, see Fisher & Lee (1981) and Fisher 
(1993, Scct.ion 6.2.2). 

11 .%.2 Circulm-Circular Correlation 

Oft.en we are int.erested in measuring the association between two 
circular random variables 8 iind CP on the basis of a ra.ndom sitmple 
(@I, 411,. . . ( H n ,  &). A wide variety of correlation coefficieiits have been 
proposed for this purpose. 

Correlation Coefficients Based 0x1 the Embedduig Approach 

The einbtrddhig approdi tlescribed in Section 9.1 suggests that 8 axid 3 
should be regarded as the random vectors u = (cos8,sinO)T and v = 
(cos a, sin in the plans. 
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A Correlation Coeficient Based on Canonical Correlations 

( B l , & ) ,  . . . , ( B n , & j  is the the sum 
An appropriate Iiieasiire of tlepeiidence between u a i d  v based on 

+* = tr(S;'SlzS;'~21) (1 1.2.7) 

of the squared canonical correlation coefticicnts (see Mardia, Kent & Bibby, 
1979, Stxtion 102.1). A straightforward (:nl(:iilation shows that 

,r2 - 2 2 - [(pee 4- T,, 4- TSlC 4- TS18) + 2[rcJm + rc.J.Yc)Tl T2 

-2(rccrce + recrBS)r.2 - 2(rCCp'8C + ~ca~s8)d/ 
[(l - r;)(l - $1, (11.2.8) 

where rcc = corr(cos 8, cos c$j etc., rl = corr(cos 8, sin 8) ,  1'2 = corr(cos 4, sin 6) 
are t.hc? ordiniw sample correlation c:oeffir:ients. The correlat.ion coefficient 
r2 was introduced by Jupp & Mardia (1980) in a more general context. 
Independence of 8 and 4? is rejected for large values of r2.  Under 
indepeiidexice, 

PW2 + >I:, n 3 m, (1 1.2.9) 

provided that the mriaice iriatrix of (cm 0. siii Q, cm 8, sin 4?) is non-singular. 

Example 11.3 
In a medical experiment, various measurements were taken on 10 medical 
st.udents several times daily for a period o f  several weeks (Dowris, 1974). 
The estimated peak times (converted into angles B and 9) for two successive 
mewuremcnts of diastolic blood pressure we given in Table 11.2. Is there 
tfeyendeiice between the two peak times (as is plausible mi xnedicd grounds)? 

Table 11.2 Angles (6,4) in degrees reprewentirig estireated peak birries for two 
successive measurements of diastolic blood pressure (Downs, 1974, reprodiiced 

by permission of John Wley & Sons, Inc.) 

0: 30 15 11 4 348 347 341 333 332 285 
9: 25 5 349 338 340 347 345 331 329 287 

Caldi%tion gives r,, = 0.993, rrna = 0.646, rsc = 0.719, rsS = 0.960, 
rl = 0.661, r2 = 0.713, so that r2 = 1.87. Although the sample size of 
10 is rather small, the large-scample result (11.2.9) should give a reasonable 
indication of the sigiifiaice of the obsctrved value of r2.  Sirice nr2 = 13.7 axid 
yi:o.o, = 13.3, there is strong evidence for dependence. 

A Mecwure of Rututionul Deperi&rm 
The strongest form of dependence between the circular random variables 0 

anti a occ~ix~ wtieri a = 0 + (1 or 9 3= -0 + u, for sorxie wrist,aIit angle a. In 
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t.his casc, one of t.he mean resnltant. lengt.hu p+ i d  p- of t.he circular random 
vtlriabks 8 - 8 aid  8 + 8 is 1. Consideration of 2 ( p i  - p!.) led Fishier SC Lee 
(1982) t.0 introduce the sample version 

An dternative formiila for computing b~ is 

(1 1.2.11) 

where 

sin & cos c j i  sin I9i sir1 dj ) ’ s;, = L q  cos 8i cos bj. CQS 0i sin Qi 

i=l 

) (11.2.12) cos Oi cos 0i cos Oi sin Bi 
siri 19i cos Bi sin 19i sin 0i ’ 

siri Qi (:os Qi sin dj i  siri Q, ) ’ 

s;, = q 
” i-1 

SG2 = Lk( cos chi cos chi cos @i sin chi 

” i=l 

The corr~~po~iding test rejects indepeiidence for large values of lhl. For 
small values of ‘1% a randomisation test is appropriate. Largesample normal 
approztirn~t.ions are giivcn in Fisher I Lee (1983) anti Fisher (1993, Sw%ion 
6.3.3). 

Distribution-Fkee Correlation CoefRcients 

A Cimder- Circdur Rank Correlution Coeficient 
A very strong form of ;tusociiition between the circular random vari;rhles 
Q a i d  8 occiirs wlien 8 = y(8), for Some htuiieornoryhism (continiioiis 
t.ransformation with cont.inuous inverse} g of t.hc circle into it.self. In this 
caw, the circular raridorn variable - ~(43) has xxieim resultant length 1, arid 
for all random samples (81: Gjl), . . . , (&, d,,), the circular ranks of dl, . . . , d,, 
are either the same as t.hose of 01 . . . ,B,, (if g is orientation-prwenring) 
or the sane as those of en.. . . ,191 (if y is (Hietitat~ion-reuersirlg). Then two 
intuit.ive1y reasonable nicasurcs of correlation based on ( 1 9 1 ,  @I) ,  . . . , (en, &) 
are the rriean resiiltaIit lengths n2Ri mid d R 5  of !?I - ~ 1 ,  . . . , i?,, - T,, arid 
,$I + 71,. . . , D,, + -yn, where &: . . . , f i n  and 71:. . . , T~ are the uniform scores 
of 81,. . . ,en and 41,. . . ,on respecxively, defined bv 

(11.2.13) 
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with r1 , .. . ? r,, imd SI , .. . , cr, the circular ranks of 01 . . . ? B,, md 
Thus 

, .. . ? 4,,. 

(1 1.2.14) 

Note that i?$ 5 1 and that Rz = 1 when 41,. . . ,6 ,  can be obt.ained 
from 191 . . . ,8,, by mi orieritation-pre.~rving t,rrisformat.ion of the circle, while 
R?. = 1 whcn 91,. . . , s,, can be obtained from 81 . .  . ,&, by an orientation- 
reversing t.rmsformation. The quantities g$ were introduced by hlardia 
(1975a). 

Because E$ is based on uniform scores, it is invariant under separate 
continuous iIivertible t,rrisformat.ions of the two copies of the circle. An 
important consequence is that, under independeiice of @ and 0 ,  the 
dist.ribution of Ri  doe^ not. depend on the marginal distributions of 8 and ck. 

Mmiipulation of (11.2.14) shows that 

R: = 0-m f m2 + @w F GJ2, 

. n where 

etc. Since T,,, T,,, T,, arid T,, arc) linear rank statiutim, it follows ho~n general 
results (e.g., Hcijek fli. SidAk, 19G7, pp. 57- 58, 163- 164) that 

2(7& - 1)”2(T,,,T,,,T,,,T,,)“ .N,~(0,1~)? .fh -+ W .  (11.2.15) 

Hence, for large la, 2(n - 1)R: and 2(n - l)R? are approximately 
indepentfently distributed its ,ti:. 

The circular -circular rank correlation coefficient 

ru = ~riax(R:, R: ) (1 1.2.16) 

was introduced by Mardia (1975a). Since, under independence, 

R: N Rf N 0, 
-. 

n -+ oc, 
independence is rejected for large values of 9-0. Some quantiles of 9-0 for 
5 5 n 5 10 are givexi in Apperidix 2.18. For 7~ > 10, the apprcmirriation 

~ r ( 2 ( n  - 1)t .O > u)  cz 1 - (I - e--’/2)2 n -+ m, (1 1.2.17) 

(which follows from (11.2.15)) is adequate. 



252 DIR ECTIOlVAL STATISTICS 

Example 11.4 
For the data of Exarnple 11.3, calculatioii gives R$ = 0.731, R!. = 0.004, 
and so ro = 0.731. Since the 5% value of ro is 0.41, the null hypot.hcsis of 
independenc*e is rejeded at the 5% level. The high valiie of & iIidicates 
positive deepeiidence. Inspection of the individual differelices i - ~ ' i  reinforces 
this indication. 

A Sagtied Rank Correlation Coefficient 

gives the signed correlation coefficient 
Taking the difference of R: arid Rf (instead of their xnaxiIniim, as in T U )  

- 2  fin = R: - R,, (1 1.2.18) 

which was iritroduc:d by Fisher & L e  (1982). The statistic fin takes w . 1 1 1 ~  

in [-1: 11 and can be regarded as an analogue of Spearman's rho. Values of 
fin near 1 indicat.e positive dependence, while viiies of fin new -1 indicat.e 
negative dependeiits. Uxitler independence, fI, N 0. However, srnall values of 
fl, need not indicate independence, since fI, 2 0 whenever R$ 2 @.. For 
example, for n = 6 arid ( ~ 1 , r ~ , r y , r ~ , r ~ , r ~ )  3= (4,1,6,5,2,3), we find that 
R: = R1 = 0.25, so the data exhibit both positive and negative dependence 
but a,% = 0. 

Fisher k Lee (1983) showcd that 0, can he written as 

(1 1.2.19) 

where ,$I, .  . . .,El,, arid 71,. . . , T ~  me the wiiform scc3res of 81,. ..,On arid 
~ 5 1 , .  . . , (6, respectively, defined by (11.2.13). Thus fin is calculated for 
the uniform scores (;?I, T I ) ,  . . . ? (;?v,?y,t). A uscfiil formiila for computing fi, 
is 

(11.2.20) 
4 ii - - (AB -CD), - r12 

where 
?I 

The test based on f i n  rejects independence for large values of $Inl. Further 
details axe given in Fisher ,k L e  (1982; 1983) mid Fisher (1993, Section 6.3.2). 
Some quantiles of fin are tabulated in Fisher (1993, Appendix A13). 
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A Test of Independence Cowistent against all Alternatives 
A natural way of measurhig the dependeiits between circ:ular raridoiri 

variables 8 and + on the basis of a sample (61, Sl), . . . (&. &) is by some 
suitable distance between the ernpiric:al tiistribution function arid the protiucf 
of its marginals. One such distance is C,,, where 

(11.2.21) 

with 
T , ,  = n xnin(r*, Y,) - T ~ Y ~ ,  i, j = 1, . . . , n, ( 1  1.2.22) 

r1,. . . , r,, md 31%. . . R,, being the circwlar ranks of 191 . . . ,8,& and @ I , .  . . , ~5,~. 
Rothinau (1971) introdutxd the test which rejects indepeiidence for large 
values of C,. Rothman's test is consistent against all alternative to 
indepentfenre. For large n arid .c, the approxirnation (Jnpp & Spurr, 1985) 

Pr (16?r4Cn > x )  N (1.466~ - 0.322)e-"/2 (1 1.2.23) 

can be used. 

A General Class of Correlation Coefficients Based on Uniform Swms 
We haw scwi in Sections 6.3.7 arid 10.8 that. each sc~uar~siimirial~le seqiienre 

{ak)k=1.2, . . .  determines a function t : S' + L2(S') and a corresponding test 
of uniformity. Such functions t also give rise to correlation coeficicnts, as 
follows. The tlefiriitioii (11.2.14) generalisaq (Jupp &. Spurr, 1985) to 

(11.2.24) 

and ap1)ropriat.e correlation cocfficients we Ri + R L  and ii: - R:: . Piwtieular 
cases of this coiistructioii me: 

(i) if U I  = 1 and ~k = 0 for k > 1 then t can be regarded as the usual 
embedding of the circle in the plane, (11.2.24) reduces to {11.2.14), and 
R: + RL = 21.'~, where r2 is mlcdatetf for the iiriiforrii scores; 

(ii) if a k  = l / k  (so that the corresponding test of uniformity is Watson's 
Uz tcst hascd on (6.3.31)) t.hcm R: + g< = 16?r4C,8, whcw C,, is 
R,othnlail's (1971) statistic defined by (11.2.21). 

An Analogzls of Kendall's Tau 
For pain (z1. yl), . . . . (z,. ytl) of points on the line, Kendali's tail mi be 

constructed from the proportion of pairs { z i , . ~ ~ ) ,  (sJ,gj) for which the sign 
o f  I, - x, is the sane as that of yJ - yr. TIih siiggestu that for points 
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(01 , @ I ) ,  . . . ? (@,,,@,&) on t.hc? t.anis S' x S ' ,  it. would he useful to consider the 
proportion of triples (&, &), ( f l j  dj), (&, &) for which the circular ordering of 
(&, @j,@k)  is t.he same as that of ( r j i ,  @,,&.). The following signed correlation 
coefficient, ixitrotluced by Fisher & Let! (1982), is bastd 011 this idea. Put 

di , j ,k  = sign(& - e j )  - OR) sign(& - ei) 
x sign(4i - &) sign(9j - &) sign(& - q+) (11.2.25) 

and 

(11.2.26) 

where the sum is over all subsets { i , j , k }  of size 3 of { 1,. . . , T I } .  (Xote 
thc similarity between A,, and in, which was defined in (11.2.6).} Under 
indepentfenc*e, the population mialogue of A,, is zero. Thus ai appropriate test 
rejects independence for large vdues of &I. For further details, including the 
treatment of tic's and the iise of random subsets to calculate i,,, ww Fisher & 
Let! (1982) mid Fisher (1993, Section 6.32). Some quaritilm of 8, for < 8 
are given in Fisher (1993, Appendix A12). 

11.2.3 Spherirul-Syheri'cnl Cormhtiuri 

Correlation coefficients for spherical raridoin wiablaq mi be obtained 
by simple generalisations of t.hose circular circular correlation coclficients 
of Sectitm 11.2.2 which are based ON the e,rnlwdctding approach. k t  
(XI, yl), . . . (x,~, y,J be independent observations on random vectors X and 
Y on SP-' and SQ-', respectively. Let 

denote the sarnple variance matrix arid the sarnple 111ea11 of products matrict3u 
of (X,Y>, both partitioned in t.hc usual way. 

The circtilar-circnlar correlation roefficient r2 ci&ned in ( 1 1.2.7) extends 
to 

r2 = tr(S;$S12S;:SS31) (11.2.27) 

(provided that S11 and S22 are non-singular). Under independence, 

(11.2.28) 

(provided that the variance matrix of (x, y) is non-singular). For large ' I ) ,  the 
statistic: nr2 iu asymptot.ical1y eqiiivalexit to the score statistic (and so the 
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likelihood rat.io statistic) for tcsting independence of 8 and 9 in t.hc himriate 
voxi hlises Fishier iiiodel (11.4.1). For large 'n, w2 is also asymptotically 
equivalent to a case of' Kent's (1983b) general correlation coefficient, which 
Irirmures the inforrnation gain 011 modelling x a id  y its ciqwndent rather than 
independeiit. 

When p = q,  (1 1.2.1 1) generdises t.a 

(1 1.2.29) 

(see Fisher 8i Lee, 1986). The corresponding test rejects hidependence for 
lilrge values of lhl. Fisher &. Lcx (1986) also gcneraliscd t.hc form (11.2.10) 
of (11.2.11) to a U-statistic based on determinants. 

The circular- circular correlation coefficient 4, defined in (11.2.26) 
generalises rttadily to the spheritd case when p = y. For pairs 
1x1, yl), . . . , ( x ~ ,  Y n )  of points 0 x 1  SP-', defiue 

(11.2.30) 

where the sum is over all si1bset.s {il, . . . , i,,+l} of size p + 1 of { 1,. . . , n} md 

(11.2.31) 

The geometrical interpretation of (11.2.31) is that &,,.. . , ip+, is 1 if the 
(oriented) siruplex with (ordered) vertices xi,, . . . , xi,+, has the same 
orientation as the (oriented) simplex with (ordermi) vertices y i l , .  . . , 
and is -1 ot.hcrwise. The statistic A, is resistant (in that large changes to a 
small part of the di5tta have 1itt.k effect.) and robust (in thi5t smdl changes to 
the data have little effect), as shown in Jupp (1987). Independeiice is rejected 
for large values of [ A n / .  Since A, is not distribution-free under uniformity 
(for y 2 3)) permutathi tests are appropriate. 

Various correlation coefficients based on S and S* are listed in Table 11.3. 
All these correlation coefficients iue invariant under sepsrat.e rotations of x 

The idea behind the correlation coefficient of Stephens (1979) is to match 

. n  

&, *..., iptL = sig+i, . - xiptl I x signlyi, .Yip+l I -  

and y. 

XI, . . . ,x,, to y1) . . . , yn hy rotation, i.e. to Irirmurc) correlation by 

(11.2.32) 

(see also Mackenzie, 1937). 4 straightforward raldation shows that a signed 
versioii of (11.2.32) is 
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Table 11.3 Some correlatiou mefficieuts for directional data. 
(a) Coefficients based on the sample variance matrix S 

Downs (1974); 
Mardia (1975a) 

.Jdirisoxi & Wehrly 
(1977) 

Mardin. & Pnri (1978) 

Mardia & Puri (1978) 

Hanson et al. (1992) 

(b) Coefficients based on the means of products matrix S* (for p = q) 

tr SY2 Watson & Berm 
(1967) 

hlackenzie (1957); 
Stephens (1979) 

smallest singular value of Si2, suitably normalised Rivet (1982) 

* -1/2s* S’ -1/2 
IS,, 12 22 I Fisher k Lee 

(1983; 1986) 
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where 1, is the smallest singular valiic of S ; ,  (we Riwut, 1982; Fisher & Lee, 
1986). 

h r t l c r  correlation coefficients can be obtained by using the machinery 
described in Section 10.8. Given contimous eqiiivariant func%ions t : SP-l --t 
L2(SP-’) and u : S 4 - l  + L2(Sq-’), corresponding correlation coefficients are 
defined iL5 in Table 11.3, where now S and S’ are t.hc sample variancc mat.rix 
and the sample irieai of products matrix of (t(X), u(Y)). For further details. 
see Jupp &. Spur (1985). 

11.3 REGRESSION MODELS 

11.9.1 Lineur Respnue 

.4 natural rnodel for regression of a linear variable X 011 a11 arigular variable 
0 is 

as introduced by Mardia (1976). Since (11.3.1) is niultiple linear regression 
of X on (cos 0, sin e),  maximiim likctlitiood c?st.imatcs can he obtained living 
almost any standard statistical package. Note that the cylindrical model 
(3.7.2) of Mardia & Sutton (1978) has regression functions of the form 

xle - I V ( ~  +al rose + 3, sin8,cr2), ( 1  1.3.1) 

i. = Q + 31 cos 0 + 32 sin 8, 

as in (11.3.1). 

given in Johnson &. Wehrly (1978). 
A slight extension of (11.3.1) and i ~ n  application to air pollution studies are 

11.3.6 Circdur Reuprrse 

Consider a circular response variable 8 which is measured at values XI . . . , x,, 
of il k-dimenuic.)nal (xplanittory variable X. 

Helical Regression Functions 

In the case where k = 1, the idea of wrapping the line onto the circle leads to 
Gould’s (1969) regression model in which 

8i - M ( p  + r’32i,/c). i = 1 , .  . . ,n,  (11.3.2) 

with 01, . . . ,8,, independent anti with p, !3 arid K. unknown pnrauieteru (see 
also Laycock, 1975). Because the regression curves given by (11.3.2) are 
helical, this model is sometimes known w the ‘barber’s pole’ model. A major 
tiisadvantage of (11.3.2) is that the likelihood function has irifiiiitely iriariy 
maxima of comparable sine. Further, if 5 1 . .  . . , xn me equally spaced then /3 
is riot identifiable. 
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Regression Using Link F'unctions 

The problems with (11.3.2) arc due to the f i t .  thilt the helical regression 
function T c) ,3r (mod 271) wraps the real line infinitely many times round the 
circle. One way (suggested by Fisher &L Lee, 1992) of avoiding these problems 
is to rttI,lwe this func%ion by a suitable one-to-one function. It i.1 useful to 
define a Zink function as a one-to-one function g which maps the line onto 
(-T, T )  and sat.isfit.u g(0) = 0. Two useful link functions are the inverse ton 
lirlk 

g(a)  = 2 tan-l z (11.3.3) 

a id  the .waled prubit link 

y ( a )  = ~s(@(z) - 0.5). (1 1.3.8) 

L i d s  of the form 
g(z) = S;rF(s), (11.3.5) 

where F is a cumulative tliutriButio~i funct.iori, were used by Johnson 8t Wehrly 
(1978). 

Given a link func%ion g. a corresponding regrttysiori motiel with romt axit 
coriceutratioxi is 

8i JIf(IAz>&), (11.35) 

where 
P8 = g ( P T X i ) ,  ( 1 1 3.7) 

with p 8 k-diiiensional parameter vector. A variant of (11.3.G) hi which the 
mean direction is constant is 

8i JIf(IA, K i ) ,  (113.8) 

(1 1.3.9) 

with 7 a k-dimensional parameter vector. Models (11.3-6} and (11.3.8) can he 
coinbinetl into the mixed rriodel 

0, - M(p, ,  &), (11.3.10) 

where pa mid 6, are give11 by (11.3.7) arid (11.3.9), respectively. Details of 
maximum likelihood estimation in models (11.3.G), (11.3.8) and (11.3.10) can 
I)e fourid in Fisher & Lee (1992) arid Fisher (1993, Stxtion 6.4). 

11.3.3 Spherical Response 

Regression Using Rotation 

Regression of a spherical variate y in 9 - l  on a spherical predictor x in 
Sj'-l orciirs in various fields. The following five exaxnples give some idea 
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of the variety of these contrxts. An important crystallographir: problem 
(Mackerlzie, 1957) is to relate ari axis y of a crystal to mi axis x of a 
st.andard coordinate system. Determination of the orientation of' a sat.ellit.e 
(iV&I)a, 1966) irivolvw corriparirig directioris y of shrv  in the satellite's 
coordinate system with corresponding directions x in a terrestrial coordinate 
systcm. Assessing 'gwmetric intrgrity' in industrial quality control (Chiqxnan, 
Clieu & Kim, 1995) is achieved by coinparing t1irm:tious y riort~ial to a 
machined part with the corresponding directions x in a computcr-aided design 
spt~:ificatiori. Maiy applicatioIis o f  Iriachirre vision (Kanatnrii, 1993, Chapter 
5) involve comparison of directions y of objects detected by one sensor with 
the corresponding directions x detected by another sensor. An important 
problem in geophysics is to estimate the rotatiou of orie tectonic plate relative 
to another. This is done by comparing the positions y on the earth's surface of' 
points (interuwt.iorlu of fracturtt zo~ies with xriagxietitic anoInalias) on orie plate 
with the positions x of the corresponding positions of poiiits on the other 
plate (see Chang, 1993). 

The simplestst, regrwsiou functions for regessiug a splierical variate y in 9-' 
on a. sphcricd predictor x in SP-' are t.hose of the form 

$ = A x  (1 1.3.11) 

for somc rotation A in SO(p) .  A simple class of regression models with 
regression functions of the form (11.3.11) are Chmg's (1986) models in which 
the conditional distribution of y gi\Vc.cn x is circularly symmetric with mean 
tfirectiori Ax, so that the ccmlitioual daisity lias the form 

f(y; Alx) = g(yTAx). ( 1 1.3.12) 

Given paired observations ( x l ,  yi), . . . , (xn, yn), put 

(11.3.13) 

and let UAV" be the modified singular value decomposition of Si2, i.e. 
Si, = UAVT, with U a id  V in SO(p), arid A = diag(A1,. . . ,A,,-, , A,) 
with A1 2 . . . 1 IX,l. Ifg in (11.3.12) is an increasing function on [-11 11 then 
t.hc? It?aSt-squilrcts cstimat.e of A, i.e. the value of A which minimises 

is 
A = vuT. (11.3.14) 

This is one type of Procrustes matching {see hifardia, Kent & Bibby, 1979. 
Section 14.7). In particular, if the contfitional distribution is vo~ i  Mi.ses-Fisher 
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with const rn t wncentra.t ion, 

YlX 2 ! f p ( A . X ,  K): (11.3.15) 

then the maximum likelihood cistimate A of A is given by (11.3.14). Large- 
sample wympt.atic results on the distribution of A under (1 1.3.12) were given 
by C h u g  (1986). hi particular, lie showed that, under (11.3.15), 

(1 1.3.16) 

where 
r = tr   AS^^) 

is the h~ac:kenzit-St.ephens correlation coefficient (1 1.2.32). High-coricentrittioxi 
asymptotic results on the distribution o f  A iiritfer (11.3.15) were given by 
Rivest (1989). Iu patticular, he showed that 

2nlc.t~ - tr(AS;,)) xp(,,-t)/2, 2 lc. + oc, (1 1.3.1 7) 

h K ( 1  - I‘) 4 ; Y n ( p - l ) - - p ( p - l ) ~ 2 t  K + m, (11.3.18) 

and that the statist.ics on t.hc left-hand sides of (11.3.17) and (11.3.18) are 
asymptoticaJly inciependent for lnrge K.. These results are axlalogous to (9.6.15) 
and (9.6.17) and can be obtained using the decomposition 

2n41  - tr(AS1,)) = 2 m ( l  - r) + 2 n ~ ( r  - tr(AS;,)), 

which is iuialogow to (9.6.16). When p = 2 mid u1 = . . . = u,, = p, (11.3.17) 
and (1 1.3.18) reduce to (4.8.28) and (4.8.31), respectively. The approximation 
(11.3.17) was improved by Bingharn, Charig & Richards (1992, pp. 319, 330), 
using the fact that the distribution of A wriditional 0x1 (U, A) is matrix Fisher 
(13.2.15) with parameter matrix nlcAUAU’, where URV’ is the modified 
singiilar vaiiie dwomposit.ion of Si2. 

The spherical regeusioii model (11.3.12) extends readily to a model for 
regressing a p x r random matrix Y in t.hc Stiefel manifold t G ( l R p )  (defined in 
(13.2.1)) on a predir.tor X in kZ(lR”). The contfitional distritxition of Y given 
X has the form 

with A1 in SO@} anti A2 in SO(r) .  Many of the distributional results for A 
in (11.3.12) extend to results for (A,, A,} in (11.3.19). For further details, see 
Prentice (1989). 

In various contexts (in particular for the problem in platc t.wtonics) a more 
appropriate model (Chang, 1987; 1989) is the associated errors-in-variable9 
model in which (xi,yJ ( i  = I,.  . . , n) me independent with densitiw 

f(y; A], A ~ I X ) =  S ( Y ~ A T X A A ,  (1 1.3.19) 

f(xi,yi; Ci,  A) s(x:‘Cii)y(yTA€i). 
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Hare g is a known function, while the rotst.ion A and t.he unit vectors el, . . . ? & 
are u~iluiown. Chmig provided asymptotic tests mid confidexice regions for 
A in the cases in which either the sample size is large or xi and yi have 
concentrated Fisher distrihtioris. Detailed consideration of a related problem 
in plate tectonics led Chang (1988) to the model in whidi the spherical 
random viiriablcs xij and yik (1 5 j 5 mi, 1 5 k 5 nj; 1 5 i 5 3) hi$v(? 
certd~i independelit cc>iiceiitrated Fishier- Biriglimn or wrapped multivariate 
normal dist.ribut.ions with respective means ay and Pdk, where a'&qi = 0 
and /3ZAqj = 0 for some unkown unit. vectors ql,. . . ,qa. He obtained 
high-coiiceiitration asymptotic confidence regions for the rotation A. See also 
Chang (1993). 

Residuds for spheric:al data mi be wrist,ructd using the wrappirig 
approach described in Section 9.1. When points y 1 , .  . . , pn are fitted to 
ohsenations y1, . . . , y,, on Sf'-' ? t.hci corresponding crude residuals are the 
tangent vectors yi - (yTyi)yi to SP-l at yj. These and more refined residuals 
were considered by Jupp (1988) and Kivest (1989). 

Regression Models for Fizlding a Ceutre 

111 sox~ie contexts, such as hidiiig the source a of a sigrlal or the centre of 
an explosion, directions yc in SP-' me observed at positions x1 in R". A 
convenient motiel for this is 

(11.3.20) 

so that ylx has a von Mises-Fisher distribution with mean direction pointing 
towards the iinkriowri 'ceiitre' a. Various particular cases of (1 1.320) with 
KO = 0 have been applied by Lent11 (1981b) (who also considers robust 
estimation in t.his context), Jiipp ct af. (1987) and Jiipp & Spurr (1989). 
A useful extension of (11.3.20) is the niodel hi which the conditional density 
of y given x has the form 

ylx - :ti,((tx - all-'(x - a) , tcO + tcllx - allr). 

where g(.; p}  is a density function with mean direction 1.1 and A is in SO(p) .  
In the rase p = 2, R,ivcst, (1997) considered the large-sample behavioixr of the 
estimates of A whidi maxirnise tr (ASf2), where S;, is defiued by (11.3.13). 

Other Regression Models 

A wide vwiety of regression models are obtained ils gencralid linciar models 
with error distributions in an appropriate exponential model, so that the 
conditional density of y gi\Vc.cn x has the form 

f(y; Alx) = .XPW + A"'t(X)l'"4Y)), (1 1.3.21) 
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for suitable fiinctions t imd u. In partkular, if the joint distribution of (x. y) 
lias deiisity (1  1.4.2) tlieii ylx has tlnisity of the form (11.3.21). Some examples 
of (11.3.21) were given by Johnson & Wehrly (1978). 

For regrttysirig a spherical wriate y iri S2 on a rirciilar predir.tor 8. a rlavs 
of simple regression functions consists of those of the form (.Jupp & Mardia, 
1980) 

y = A x + b ,  (11.3.22) 

where x = (cos8.sinO)", A"A = (1 - [lb1[2)12, A% = 0 and llbll 5 1. 

11.4 BIVARIATE MODELS 

-4 natural model for bivariate spherical data is the gexieraliuatioxi to S*-' x 
SP-' of the bivariat.e von Mises model (3.7.1}. This gcncralisation is the 
exponentid model wit.11 densities 

f (x ,  Y; K I  t 62 ,  pi: ~ 1 2 ,  A) = 4.1 : ~ 2 ,  PI  t ~ 2 ,  A) ~XP{~ICL:'X+~~~~TY+X~AY}, 
(1 1 A. 1) 

introduced by Mardia (197Sa; 197Sc). Although the conditional distributions 
of x given y mid y given x are voii hlises-Fisher! the Inarrgirial tiiiytributions 
are more complicated. For the special case in which the depeiidency matrix 
A is a multiple of a rotation matrix, Jupp & Mardia (1980) found an 
exyaisioii in terms of products of Bessel furictioris for tlie riorrriiiig coxistaxit 

The model (11.4.1) has p ( p  + 2) parametcrs, so it can be useful to consider 
submodels with fewer parameters. Sometimes it is appropriate to consider 
submodels of (11.4.1) for which the densities have some symmetry. Rivest 
(1988) introduceti the (0;" + p + 6)/2)-yarameter submodel of (1 1.4.1) for 
which the densities have rotational symmetry, in t.hat t.hcy are invariant under 
(x,y) H (Ux,RUR-'y), for rot.ations U about pl ,  where R is a rotation 
such that Rpl = pq. Thus the matrix A Iias the form 

A 3= HTdiag(a, i?Q)Hz, 

where Q E O(p - l) ,  a and 9 iue real numbcrs, imd Hi rotates pi to 
( l , ~ ,  . . . , o ) ~  for .i = 1,2. 

The model (11.4.1) can be generalised to models with densities of the form 

4nl,n2,P1lE12). 

f ( x ,  Y; 61, ~ 2 1 ~ 1 1 ,  ~ 2 ,  A) = 
a ( m r u p I , p 2 ,  A ) e x p ( ~ w T t ( x )  + ~ 2 ~ 5 4 ~ )  + ~(x )~Au(Y) } ,  (11.4-2) 

where t and u are suitable vector-valued functions. For example, in the case 
where x is s(:dar and y is circuliu (.so that the sample space is a cylinder), a 
submodel of (11.4.2) with t(z) = ( z , x 2 ) ,  u(y) = y a id  coxivenient restxictioiis 
on A gives the model (3.7.2) of Mardia & Sutton (1978). Other models of the 
form (1 1 A.2) were obtdxid by Johnson & Wehriy (1978). 
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in the circular caw t.hc?re is a speciil mcithod of constructing himriatt! 
models with give11 marginalu. Let. f1 and 52 be probability tleiisity fwictions 
on t.he circle with cuniulative distribution functions Fl and F2. Johnson fli. 
\Vehrly (1978) showed that m y  probability density function g 0x1 the circle 
gives rise to a distribution on the torus with probabiiity density function 

(1 1.4.3) 

The marginal probability density functions of 191 imd & are f1 imd f2. 

11.5 DIRECTIONAL TIME SERIES 
Data (XI, t l ) ,  . . . , (Xn) t,,) which consist. of’ directions XI,. . . , xn a.t tyimes 
t l ? .  . . , t,, omir frequent.ly in various fields. For example, timci .wries of wind 
tfirectioiis are import.ait in rnieteorology. .4 major application of directioiid 
time series to wind direct.ions was given by Breckling (1989). For some 
data sets o f  the fonn (XI, t l ) ,  . . . , (xn?t ,J ,  the observatioris XI,. . . ?x,& are 
directions but t l ) .  . . , tn are positions on a line, rather than times. In a typical 
pdmmltgnet.ie example, t.he xi art! direct.ions of pdmmltgnet.ism and the ti 
are depths. 

11.5.1 Assessing Serial Dependenct! 

A sensible first stcp when imalysing directional time series is to test the 
null hypothesit of iiidepe~ide~im against the alternative of serial depeiidexice. 
This can be done using any of the correlation coefficients described in 
Sections 11.2.2-11.2.3. If the observed tiiiectituis are XI,. . . ,x,, the lag-1 
correlation coefficient is the correlation coefficient calculated for the pairs 
(XI , XZ), . . . , ( ~ ~ - 1 ,  x,~). independence is rc>jectcd for large absoliitc values 
of the lag -1 cc~rrellation coefficient. The observed sigxiifi(:a~im level cai be 
obtained from (sampling from) the permutation distribution of t.he correlation 
coefficieiit,. A correlation roefficient which is calciilated easily is that of Watson 
& Berm (1967) (see Table 11.3). Use of their coefficient is equivalent to that 
of the statistic 

n-1 

u = c XTXi+l.  (11.5.1) 
r = l  

A largcsample normal approximation to the distribution of c‘ was given by 
Epl), Tiikey “k WatsoIl (1971). 

11.5.2 Time Series Models 

Models for Time Series on the Circle 

There me several ways of constructing time series models on the circle from 
time series Inodeis 0x1 the lime. The following brief description is baed on those 
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in Fisher (1993, Sertion 7.2) and in Fisher & Lee (1994). Details of model 
selectioii, model identification and fitting ca~i be fouiid in tliese referentes. 

Pvvjecttd Normal P m e s s a  
The cmbeddiig approach described hi Section 9.1 suggests the following 
construction. Let {(Xt, f i ) } t = 1 , 2 , .  .. be a proccss on the plane. Then radial 
projection to the wiit circle produces a correqmiding process (8 t } t=1  ;z.... oil 
t.he circle, defined by 

Xt = RtcosOt, 1; = Rtsin8t. (11.5.2) 

If {(Xt, &)} t=1 ,2 ,  ... is a stationary bivariate Gaussian process then Ot has a 
projected riorrnal distribution. hi particular, if { X t } t = l , . . , . . .  mid {K)l=,,..,... are 
independent realisations of a stationary zero-mean Gaussian process then 8 t  

has t.hc uniform distribution. Sincc the radial part {&},=I *z,... of H projected 
iiorrrial process is not observrd, fitting such proceses can be regardrd as a 
missing data problem, and cam be c'mied out using the EM algorithm. 

wrapped P1wes:Yueu 
The wrapping approitch dtwribcd in Scct.ion 9.1 Iwds to the following 

coiistructioii. Let {Xt)t=~;z,... be a pro(:es on the line. Then wrapping the line 
onto the unit circle by (3.5.54) produces a corresponding process {Ot}t=l,*,.. . 
on the circle, defined by 

et = & (1nod2?r). (11.5.3) 

Useful processes constructed this way include the wrupped uutowgtwsiae 
pmce,sses tt-AR(p) obtain4 when (Xt}t=,  .2.... is an AR(p)  proccss. As pointed 
out by BrmMing (1989), the liiiear process {X~}L=I;~,... whidi gives rise to a 
wrapped process {Ot}t=1,2,.,. can bc decomposed as 

.Yt = G)t + 2;rkt, (11.5.4) 

where kt is an unobserved integer. Thus fitting such processes can be regarded 
as a missing data prohiern, arid cmi I)e carried out using the EM algorithm. 
Cola (1998) showed how Markov chain Monte Car10 met.hods can be used to 
fit U'AR(p) modcls. 

Direct Linked Processes 
Proresues can he transferred from the line to the circle by using a link 

function (a one-to-one function y which maps the l i e  onto (-?r,?r) and 
sat.isfics g(0) = 0) instead of the wrapping map (3.5.54). Useful link fiinct.ions 
incluck (11.33) arid (11.3.8). If { X t } L = l , ~ , . . .  is a process OII the line, g is a 
link, and p is a point on the circle then the corresponding direct linked process 
{ @ t } l = 1 ; . , . . .  on the circle is defined by 

01 3= y(Xt) + / I .  (11.5.5) 
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Useful processes constructcd this way include the direct linked autoregressive 
mouiny-avenrye pruces.w.q LARMA(p, y) obtairieti by taking {,YL}t=l ,z,... to be 
an MMA@, 4) process. Thcse processes (with the scaled probit link (11.3.4)) 
are useful for andysirig wncentratd wries. 

Circular Awtoregressive Proce.qses 
Circular mialogim of aut80regreusive proceses oii the lirie cai be coxiutructecl 

by using conditional distributions. If g is a link function, p is a point on the 
circle, K 2 0, anti 01 , . . . , up are real-valued coefficients then the rorrespontfixig 
circulw uutoreyiesuive process (or inverse linked pracess) CAR@) is defined 
by 

Otl(flt-I, ..., hr) M ( p t , l i ) ,  (11.5.6) 

where 

/it = + (aly-l(et-l - P) + . . . + upS-l(et-,, - 1 1 ) ) -  ( 1  15.7) 

These processes ase useful for analysing dispersed series (6 < 2). When a1 = 1 
t.hc CAR(1) model reduces t.o 

as considered by Accardi, Cabrera fli. FVat.son (1987). 

Other Pmcesses 

Wehrly & Johnsori (1980) with tmmitiori densities 
Taking fi = fi in (11.43) leads to the stationary Markov processes of 

where 

for some point yo on the circle and some KO,. . . , K,, 2 0. 

Models for Time Series on Spheres 

Sorrie discrete-t,ime ~t~atioriary hiarkov prot:essses on spheres were proposed by 
Accardi, Cabrera & Watson (1987). Their models are based on the generalised 
lixiear motiel (:onstriic.tion (11.3.21), YO that xt contfitional 011 xt-1 liar a 
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von Miws-Fisher or Watson distribution with canonir:al parameter which 
is mi affirie function of xl-1. In particular, they coimidered processes with 
conditional distributions 

and 

They explored the behaviour of sox~ie of these processes using sirnulation. 

f Xl1 f Xl-1 - W'(X&~,K). (1 1.5.13) 



12 

Modern Methodology 

12.1 INTRODUCTION 

This chapter is concerned with various topics outside the mainstream 
o f  likelihood-bmed inference for vosi Mi.ses-Fisher, Watson a id  Birigharn 
distributions. Sections 12.2, 12.3 and 12.4 consider respectively outliers, 
goodncss-rf-fit tcsts md robust. methods for these distributions. Bootstrap 
methods for t1irm:tioual data me useful when (large-sample or high- 
concentration) asymptotic results me not appropriate. These methods me 
described very briefly in Section 12.5. In Stx%ion 12.6 we prwtsit w111e methotis 
of densit.y estimation. Bayesian inference is discussed very briefly in Section 
12.7. Ciirw! fitting md smoothing on spheres iue important in iq)plicat.ions to 
the earth science2 mid are not quite as straightforward as (111 the plaie. Some 
methods for fitting and smoothing curvcs on spheres me considered in Section 
12.8. 

12.2 OUTLIERS 

Since observations which are far from the main body of a sample may have 
an iiridrie ixifliience on irifemrices made, it is sensible to try to detect such 
outliers and to investigate them. Note that in the spherical case, the effect of 
out.liers on estimates of location may not be as great as the effect on estimates 
of variability. Thiq coxitrasts with the effects of outliers osi data 0x1 the hie. 

For data on the sphere S2, an informal method of detecting outliers is to use 
the plots described in Section 10.2. Forrrid tests of discordancy o f  observatiorlu 
frorii a von Mises-Fisher distribution fall into three main groups. 

12.2.1 

Lct XI,. . . , x , ~  be observations on SP-' with mean resultant length R. An 
intuitively appealing approach to the detection of outliers is to consider as a 
potential outlier the observation most influential on the mean resultant length. 

Tests Based on Mean Resultant Length 

Directional Statistics 
Kanti V. Mardia,Peter E. Jupp 

Copyright 0 2000 John Wiley & Sons, Inc 
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Thus t.wo appropriate statistics are 

1 - R(-Z) 
E = mixi 

l<i<n 1 - R  ' 

where fl(-i) tienot.es the mean rwiiltmit length of the n - 1 observations 
obtained by omitting xi. The statistics E and C on the circle were introduced 
by Mardia (1975n, p. 390) and Collett (1980). respectively. The wruions for 
S2 are due to Fisher, Lewis & Willcox (1981). For the circular case, Some 
upper quantiles of C are given by Collett (1980). For the case of S2, the 
approxirnat.ion 

(where I is the appropriate indicator function) was given by Fisher, Lewis 8i 
Willcox (1981). Simulation comparisons by Collett ( 1980) and Fisher, Lewis 
& Willcox (1981) of various tests for a single outlier fourid coimistexitly good 
performance from E and C. 

For the a y e  of several oixtliers, tests o f  this type based on (9.6.18) were 
proposed by Fisher, Lewis & Willcox (1981). 

12.22 Likelihood Ratio Tests 

Another way of detecting out.liers is to iise the likelihood ratio test for slippage 
in a givexi parametric model. For the circle: Collett (1980) considered the 
likelihood ratio test of location slippage in the von Mises model, so that 
- 1 observatioxis cox~ie from M ( p ,  ti) a i d  (we observation coixies from 

itf(p*, K). For the sphcre S2, Fisher, Lewis k Willcox (1981) considered the 
likelihood ratio test of concentration slippage in the Fisher model, so that n - 1 
observations come from F ( p ,  K )  and one observation conies from F ( p ,  n*). 

For the c C w  of several outliers, a test of this type was given by Kimber 
(1985). 

12.2.8 

For the sphere S2, the result (9.3.19) relating the colatitude of a Fisher random 
variable to mi exponential raidorxi variable mi be exploited to convert the 
problem of testing for discordancy of an observation from a Fishcr distribution 
into one of t.est.ing for discordancy of ;zn obscnation from an exponcntid 
distribution. Several tests of this type were introdutxd by Fisher, Lewia &. 
Willcox (1982). Analogous tests for discordancy of an observation from a 
Watson distribution on lRP2 were givexi by Best & Fisher (1986). 

Tests Based on Exponential Distributions 
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A detailed survcy of the detection and lu:commodation of out.liers in circular 
and spherical data is given by Baruett &. Lewis (1994, Chapter 11). Bagdii 
& Guttmann (1990) gave a Bayesian method of handling data consisting of' 
n - k ol)senxtions from M,,(p, K )  mid k observations ho~n .Mp(p*, K ) ,  where 
E is unknown. A test for discordancy of a single observation iu the spherical 
regression model (1 1.3.15) was given by Rivest (1989). 

12.3 GOODNESSOF-FIT 

Goodness-of-fit tests for circular data were considered in Section 6.4. These 
were based on the cumulative distribution function, and so have no analogue in 
higher dhrierisioris. Goodriess-of-fit tests for spherical data are of three types. 

18.3.1 

For data on S2, tests of goodness-of-tit. to a Fisher distribution can he based 
011 the tarigeut-norrnal decompmition (9.1.2). These tests cai be regarded as 
formal versions of the graphical tests obtained from t.hc plots of' Section 10.2. 
Let XI ? .  . . , xn be ohsenations on S2. As in Section 10.2, let (19;: 4;) denote 
the spherical polar coordinates of xi in some coordinate system hi which the 
sample mean direction is the pole 8' = 0. Similarly, let (Or ,oy )  denote the 
spherical polar coordinates of xi in the coordinate system in which the sample 
mean direction has spherical polar coordinates (d", 4'') = ( x / 2 , 0 ) ,  as in 

Tests Based on the Tangent-Normal Decomposition 

(10.2.2). 

(i) The mlatitude test is baed on (9.3.19) arid examinw the fit, of 
XI,. . . , X ,  to an exponential distribution, where Xi = 1 - cos8:. It 
rejects the hypothesis of a Fishcir distribution for large valiie~ of 

nffi;p,) = (D. - y )  (fi + 0.26 + - g) , (12.3.1) 

where Dn is the Kolmogorov- Smirnov statistic 

i - 1  

(12.3.2) 
with 

F ( z )  = 1 - exp(kz) 

and R w the approximatc maximum likelihood cstimate 

k =  

of K .  So~ne qriaritiles of h f ~ ( D , , )  arc! given in Table 12.1. 

n - 1  
Cbl COR 0: 

(12.3.3) 
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(ii) The Z m g i k d e  teat is a t.eHt. of rotationid symmetry imd examines the fit 
of the longitudes +', , . . . , to the uniform distribution. It rejects the 
hypobhesis of a Fisher distribution for large values of the modification 
M ~ J ( V ~ )  of Kuiper's 1.; statistic (6.3.21), where 

(12.3.4) 

Some quantiles of .M,(\,;) me given in Table 12.1. 
(iii) The two-vurinblc test is a test of riorrrialit,y arid examines the fit of 

21,. . . , zn to a normal distribution, where zi = 0; fl. It rcjccts the 
hypothesis of a Fisher distribution for large vali~w of 

(12.3.5) 

wtiere D,, is the Koimogontv-SmirIltw statistic 

with 
l n  

F ( z )  = Q, ( f )  mid s2 = - c 4 
$=I  

Q, being the cumuli5tive distribution of the standard normal 
tlistributioi. Soirie qunntiles of M E ( D ~ )  are given in Table 12.1. 

Further details are given in Fisher & Best (1984) (together with a power 
study) and by Fisher. Lewis 8i Embleton (1987, pp. 122-125). 

Table 12.1 Upper quaxitile of statistics for testing the goodness-of-fit of a 
Fisher distribution. After Stepbeus (1974) and Fisher k Best (1981). 

Reproduced by permission the publishers of J .  Amer. Statist. Assoc. and 
Auutnil. J .  Statist. 

a 
Statistic 0.10 0.05 0.01 
M E ( D , ~ )  0.990 1.094 1.308 
M L r ( t < , )  1.138 1.207 1.347 
k l , ~ ( D , )  0.819 0.895 1.035 

Example 12.1 
For the remncant-magnetisation data sct of Example 9.1, calculation gives the 
following. 
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and so the hypothesis of a Fisher distribution is accepted at  thc 10% 
level. 

(ii) Longitude test 
Af0(Vn) = 0.953 < 1.138 

and so rotst.ionid symmet.ry is ;tc(:eptrd at the 10% level. 
(iii) Two-vatiable t a t  

M x ( D , )  = 0.250 < 0.819 

and so the hypothesis of a Fisher distribution is luwptcd i5t the 10% 
level. 

All t.hrw tcsts confirm the concliisions reached from the graphid analysis in 
Example 10.1, 

Likewise, tests o f  goodness-of-fit of data on I R P  to a Watson tiiiytribution 
cCm be obt.aincd as formal versions of the graphical tests obtained from the 
plots of %tion 10.2. Let &XI,. . . , fx,, be observations on RP2. 

Bipolar Case 

As in Section 10.2, let (#:, 4:) be spherical polar coordiuates of xi about the 
dominant eigenvwtor t l  of T .  

(i) The coZutitude t e t  examines the fit of XI,. . . , X n  to i ~ n  exponential 
distribution, where Xi = 1 - cos28:. It rejects the hypothesis of a 
Wat.wn tliutribution for large valuev of 

where D,, is the Iiolrno~ortw-Sminiov statistic (12.32) with fitQed 
cumulative distribution fuctioii given by (12.3.3) and 

k = D;’(t;), 

f1 1)eing the largest eigerimlne of T. (The furiction Dgl on (0.341) 
is tabulated in Appendix 3.5.) Quailtiles of :WB(D.~)  are the same as 
those of Mfi;(Dn), some of which are giwn in Table 12.1. 

(ii) The lorryitude test is a test of rotatioual symmetry mid exmiiiim the fit, 
of the longitudes 2 4 ,  . . . ,2& t.0 the uniform distribution. It rejects the 
hypothesis of a Fisher distri tmtion for large values of the Inodifica.tion 
(12.3.4) of Kuiper’s V, statistic (6.3.21). Some quailtiles of : W ~ T ( V ~ )  are 
given in Table 12.1. 
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Girdle Case 

As in Section 10.2, let (@:,4:) be spherical polar cwordinatcs of xi &out. the 
eigenvector t 3  of T corresponding to the sindiest eigenvdue. 

(i) The colutitude test examines the fit of XI. . . . , S,, to ari expoiiential 
distribution, where Xi = cos2 19:. It rejects t.hc hypothesis of a Watson 
distribution for liuge viihies of 

.&(Dn) = (D,, - ") (6 + 0.26 + ") (12.3.7) 
n f i 7  

where D, is the Kohiiogorov -Smirncw statistic (12.3.2) with fitted 
cumulative distribution function given by (12.3.3) and 

fs being the smallest eigenvalue of T. (The Function D;' on (0,0.333) is 
tabulated in rlyperitfix 3.4.) The lo%, 5% a id  1%, quantiles of Mt;(Dn} 
are 1.04, 1.15 and 1.36, respectively. 

(ii) The longakde teat is H test of rotational symmetry imd examincis the fit 
of the longituctrs 2+;, . . . ,2& to the uniform distribution. It rejects the 
hypothesis of a Fisher distribution for large values of the modification 
(12.3.4) of hiper 's  lr; statistic (6.3.21). Some cpiritiles of .Mr,r(bi) are 
given in Table 12.1. 

Details mi be fowid in Best &. Fishier (1986) a i d  Fishier, Lewis &. Elribleton 
(1987, pp. 168-170). 

12.3.2 Scorr! Tests uyuinst SpeciJed Luryer Moc1el.v 

Von Mises-Fisher versus Fisher-Bingham 

A convenient way of testing Fisherness is by the score test of A = 0 in the 
Fisher-Ringham densities (9.3.22). An explicit form of this test was given by 
kiarciia, Holnies & Kent (1984). This test can be regarded its an orriIiibiis test 
of Fisherness which is designed to detect axial asymmetry. In the cCxe p = 2, 
the t.est. rcduces to Cm79 (1975) test of von Misesness which was given in 
Section 7.5. 

Von Mises-Fisher versus Kent 

For p = 3, a tcst with i5 simpler form t.han the above is obtained by rest.ric:ting 
the alternative to be a Keiit diutril~utioii. Let XI,. . . . x , ~  be observatioiis on 
the sphere S2. Let H(jio,n) be the rotation given by (10-2.1) which takes the 
sarnple r~irai dirm%ion j4t to the north pole n = ((J,O, l)T. Denote hy yj the 



MODERN METHODOLOGY 273 

2-w!ct.ar c:onsiuting of the last two components of H ( Q ,  n)xi. Lct il and i2 be 
the eigenvalnes of 

i= 1 

Then the score statistic for testing A = 0 in tiit: Kent tltriisities (9.3.23) t,;ika., 
the form 

k3 

4 ( i  - 3R) - - n  (il -l2I2, 

(12.3.8) 

where 2 is the maxirmmi likelitiood estirnate of K in the Fisher model. 
Fisherncss is rejected for large valucs of T. See Kent. (1982) and Rivest 
(1986). IJnder the riull hypothesis of a Fisher tiistribution, the large-sarriple 
asyniptotic distribution of P is 

ri- + x;. (12.33) 

The modification 

- (n  - 2) log (1 - P/n)  , T < n,  { T ,  T- 2 n,  
T* =r 

of T satisfies p* + x2 2 

( 12 3.10) 

(12.3.11) 

for samples or large concmtrations (Riwut, 1986). Lct TA and Ti he the  
statistics obtained frorii T and T* by replacing il and il by the two smallest 
eigenvalues f2 and of T. Riveit pointed out that 

T A = P + O p ( K - ' )  T; =P+op(K-l), K + c c .  

Bingham versus Fisher-Bingharn 

Sometimes it is appropriate to test goodness-of-tit of a Bingham distribution 
to data on SP-' which are not; riecessarily axial. -4 coiivenient test is the 
score test of p = 0 in the Fisher- Binghani densities (9.3.22). Biiighamness is 
rejccted for large valuta of 

njtS-'i, (12.3.12) 

where X arid S are the sample (vector.) Inem and variance matrix, respectively 
(Kent, 1982). Under the null hypothesis of a Binghani distribut.ion, 

.rrxs-ll-( + x i ,  rl. --t 00. 
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If the distribution is uniform then (12.3.12) is approximat.ely t.he Rayleigh 
test statistic (1O.4.4). 

General Alternatives 

The above tests can bc piit in the following gencral framework. Suppose 
that a parametric model is given whidi coiisists of rotatioually symmet.ric 
dist.ribut.ions on 9 - l .  Then appropriate goodness-of-fit tests are the score 
tests of this model against a larger mod~l  with log-densities in a suitable 00))- 
invariant subspace of an associated Hilbert space. See Boulerice & Dudiarme 
(1997). 

12.3. ,3 

Tests which compare a fitted density hi the specified class to a suitable non- 
parametric density estimate were introduced by Bowman (1992). 

Teats B m d  on Density Estimutev 

12.4 ROBUST METHODS 

Because outliers can have a considerable effect 0x1 estimates and on observed 
significance levels of tests, robust methods are usefiil. We now give an outline 
of robust, methods for the principal tlirectiorial clistributious. A survey of 
robust methods on spheres was given by He (1992). For t.hc cases of bhc circle 
and the sphare S2$ sw dso Bamet. & Lewis (1994, Chaptcr 1 I ) .  

12.4.1 Estirnutiorr 01 M a n  Direction 

One quantitative measure of robust.ness of’ an estimator is its influence 
function (which can he regarded as the bias in t.hc presence of infinitesimal 
contamination). The influence functions of the mean and median directions of 
circular distributions were found by Wehrly & Shine (1981). They concluded 
that the mean tiirer:tion iq quite robirst . This is not surprising, since the circle 
is compact. For rotationally symmetric distributions on 5’P-l. i.c. those with 
densities of the form (9.3.31): t.hc? influence funct.ions of the mean direction and 
the dc~iniri;uit eigeiive(:t.or tl of the scatter ruatxix T were dculated by Watmn 
(1986). He pointed out that, for sufficiently concentrated distributions, the 
latter est,irnator can be more robirst t h m  the I I I P ~ I  direc.tion. 

Influence functions place little emphasis on small inhitesimal bias. Since 
a smiill bias can be important. if it. is considerably larger t.han the standard 
deviatioii of ;ui estimate, it is appropriate to comider Yturbdurdised i?ifluence 
firnetions of estimators, in which the influence hnct.ions are standardised with 
respect t.0 so~~ie  other esstimator (KO & Giittorp, 1988) or wit.h rwpect, to 
Fisher information (He 8i Sinipson, 1992; KO & Chang, 1993). Similarly, it 
is appropriat.e t.o c:onsider standadiqed g r o ~  e m r  sensitiuitp (to measure 
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t.hc? reli5tive wympt.atic c+kt of i5 smdl contamination). An wtsimi~tor is Sf3- 
~ 6 u . d  (sturrdordiud bias 7v6'1cst) if its staidmdismi gross error sensitivity is 
bounded. KO & Guttorp (1988) showed that, for a very wide class of families 
o f  tiistribntions 0x1 SP-' , the xneaxi tiirection has infirlitti staxidardisd gross 
error sensitivity, i.e. the asymptotic effect of a s~iiall contamination can be 
vory large compmcd with the dispersion. 

Several robust estimators of inean dirm:tiou are foriris of mmlian. The 
intrinsic approach described in Section 9.1 leads to the sphe4.ical naedaan m 
o f  iz set of observations XI, . . . , x,, on S'-l its the point, miriirniairrg the rnem 
arc length to the observations, i.e. the point a in SP-l minimising 

In t.hc? circular casc, m is the circular mtuiian, ils defined in Section 2.2.2. 
Fisher (1985) introduced the spherical mediau aid proposed associated test 
procedures. Some large-sample asymptotic properties of the circular median 
were investigated by Ducharme 9c Milasevic (1987b). The embedding approach 
described in Section 9.1 leads to two forms of median. One is the noimulisecl 
spatial median 3, defined by 

f i  = 11m11-1m, 

where m is the spatial mcdian in lRp, i.e. the point a in lRp minimising 

(12.4.1) 
l n  
- n. 

c0s-l  xi - all. 
.- 

&=I 

The norrnnlisd spatial Indian was iritroduc*t?n by Diirharme 9c Milasctvic 
(1987a). The other form of median is the L1-estimator fi  of He & Shipson 
(1992), which is the point a in SP-' minimising (12.4.1). Chan &. He (1993) 
calculated the asymptotic tfistributions, efficieiiciw. iiifiueum fuiictioiis aid 
sensitivities of m, f i  and f i .  Their overall conclusion was that the normalised 
spatial rnediam j3 is to be preferred. 

A natural generalisation of these inedians is given by :ti-estimators of the 
mean direction p. These estimate p on the basis of observations XI.. . . , x, 
0 x 1  Sp-' by rriinbriisirig 

n 

1 p(t(xTCL; K))? 
a= I 

where p and t are suitable functions (and if K is unknown it is replaced by a 
suitable robust estimate). On the circle, such M-estimators were considered 
by Leiith (1981s), using t (u;  n) = sigu(u) 2tz(l - mid taking p to be 
Huber's (1964) function dcfincd by 

(12.4.2) 
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or Andrews's (1974) fimction 

(12.4.3) 

for a suitable value of c. Influence functions, large-sample asymptotic 
dist.ribut.ions, and conditions for SB-robustness of All-estimators of the 
mcian direction p and the concmtration parametor K, in von Miws-Fisher 
distributions on spheres were considered by KO 8i Chang (1993). Influence 
functions and largesample asymptotic distributions of M-estimators of the 
rotzition matrix A iri the rotation regression model (11.3.15) were given by 
Chang kk KO (1995). The use of median axes in robust estimation of'thc axis of 
symmetry of i5 Watson distribiition was considerod by Fisher, Lunn k Daviw 
(1993). 

12.4.2 Estimation of Concentmtion 

The maximum likctlihood t3timator of the concentration K: in a von Mises- 
Fisher distributhi is far from robust, as it lias infinite staidadised gross 
error sensitivity. Thus robust estimation of concentration is important. 

In the case of S2, (9.3.19) mi be exploited to transfer farniliar robnst 
methods for the mean of' an exponential distribution into robust methods for 
t.he concentmtion parameter K: of it Fisher distribution. In piwticiiliw, Fisher 
(1982) suggested tJe we of the Lestirriator (i.e. linear coinbination of order 
st at ist ics) 

Ib 

of K - I ,  where the c( i )  are the order statistics of 1 - xrfi,. . . . 1  - xLfi and 
I 1 ,  . . . , I ,  are suitable weights. He also coiisidereti a Winsorised versioii which 
was modified by Kiniber (1985) to reducc its bias. Other robust cstimators of 
K include thosc of Ducharme k Miluevic: (1990) and of KO (1992). Ronchet.ti 
(1992) considered optimal robust estimatiori of K .  

A robust method of testing the equality of the concentration parameters 
of severid von hlises-Fisher or Watson dhtributions was siiggest,ed hy Fisher 
(1986a; 1986b). His test is based on the bigh-concentration asymptot.ic (u- 1)- 
varirttc normality of the t.nngentid part x - (xTp)p of x (cf. (9.3.15)) and 
is carried out as a one-way analysis of variance 0x1 the absolute values of the 
components of the sample analogues xi - (xTji)ji of x - (x"p)p. 

12.5 BOOTSTRAP METHODS 
For inferential problem in which (i) there are no groiinds for adopting a sirnple 
parametric model, or (ii) the sample size and concentration are too small 
for asymptotic rnethods to applied, or (iii) the assumption of iIdqwndence 
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is unwsrrantcd, it is approprintc to use bootstrap mcithods for variance 
estimatioii. In a typical use of such methods, the variability of a statistic is 
assessed by resampling B times with replacement from the data. The statistic 
is evaluated for each o f  these B brmtstrup sumpleq mid the variability of these 
B values is taken as the variability of the statistic over the population. A 
general rcfercnw for bootstrap methods is Efron & Tibshirani (1993). 

Since the tfistributioris of the statistics commonly used for inferelits on 
directional distributions are more complex than those arising in standard 
xiorrrial theory, bootstrap x nett hods are particulnrly iiseful in the directional 
context. A detailed discussion of bootstrap methods for circular data is given 
by Fisher (1993, Chapter 8). N'atmn (1083e) and Fisher, Lewis & Embleton 
(1987) called atteiition to the use of bootstrap methods for small samples 
of spherical data with low concentration. A simulation study comparing 
bootstrap confidence cones for the mean direction p of a spherical distribution 
with various parametric competitors was giveii by Ducliasme et ul. (1985). A 
short review of bootstrap methods for directional data was given by Fisher & 
Hall (1992). 

The coverage properties of boot strap confidence regions are improved when 
t.hq are bascd on ;tyymptotically pivotal statistics. By using ;tyymptotically 
pivotal statistics, Fisher & Hall (1989) obtained a variety of bootstrap 
confidence regions for the mean direction p with good coverage properties. The 
alternative pivotal approaches of Fisher et rsl. (1996) give improved bootstrap 
confidence regions for the mean direction p of a distribution on S p - l ,  as well 
as bootstrap confidenw regions for t.hc principal or polar axis of an axial 
distribution. 

12.6 DENSITY ESTIMATION 

One way of obtaining B grilrp of the message given by a dnt.n set is t.a cstimate 
the underlying density and to produce a corresponding contour plot. 

12.6.1 Kernel Density Estimation 

A simple method of density estimation on the sphcre SP-' is kernel density 
estimatioii based 011 the von Mises-Fisher kernel, i.e. replacing eadi data 
point xt by the von hiises-Fisher distribution hfp(xs, M). Given obsermtions 
x1 , . . . , x,, , the wrrespoxiding density est,irnate is givm 1)y 

n 

j F ( x ;  6) = 1 ~ - ~ u ~ ( 6 )  1 exp (~x"xi )  , 

where the coxistaxit K deterruiries the degree of smoothing, mid up(&) is tJe 
nortnalising constant (defined in { 10.4.2)) for the von Mises-Fisher density 
(9.3.4) (see Watson, 1983a, pp. 9, 37; 1983a). In the a y e  p 3= 3, a computer 

(12.6.1) 
r = l  
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pr0gra.m t.o product: t.hesc: density wt,imi%ttcs was given by Diggle & Fisher 
(1986). 
Two useful generalisations of the kernel density est.imators given by (12.6.1) 

are those of the fonns 
n 

&(x; n) = ?2--1Cg(n) K ( / € X T X i )  (12.6.2) 
i=l 

n 
and 

)L((x;  6) = I L - ' ~ ( K )  C L(K. ( I  - X'Xi)), (12.6.3) 

where K a id  L are known kerriel furictions arid K. tietenninw the degree of 
smoothing. Hall, Watson kL Cabrera (1987) investigated the bias and variance 
of these estimators, as well as their expected squared-error and Kullback- 
Leibler losses. They showed that all estirnat80rs of the form (12.6.2) are 
asymptotically equivalent for large samples and they gave an asymptot.ically 
optimal kernel of the type (12.6.3). Conditions on L imd f for consistency 
of f~ ils im wtsimi%tor of the underlying density f were given by Bai, RSUJ & 
Zliao (1988). Gerierdisations of the estimators (12.6.3) to density estimators 
on Sticfel manifolds (as considered in Section 13.2) were given by Chikuse 

Perhaps t.hc? simplest. densitmy wtimators are the 'naive' est.imators f,, , 

i=l 

(1998). 

defiued by 
number of xi in C,, (x) 

= 7rvol cp,, (x) ' (12.6.4) 

where C,(x) denotes the cap on SP-' with centre x and radius 'r (see 
Riiy~ngaast., 1989). The estimators (12.6.4) are kerriel tierlvity estimators of 
t.hc form (12.6.2) with 

Ruymgmrt (1989) showml that if the pu teiid to zero at a suitable rate then 
the &,, are strongly curisistent. Generalisat.ions of the estirnat.ors (12.6.4) to 
strongly consistent density estimators on compact Euclidean manifolds (in 
partir:uInr, Stiefel and Grassmiinn mimifolds, ils considered in Sections 13.2- 
13.3) were given by Hendriks, Jaxlssen kL Ruymgaart (1993). Generalisations 
to estimators of rcal-valued functions on Sticfel manifolds were considered by 
Lee & Rnyngaast. (1996). 

12.62 Density Estimators Based on the Enabddeng Approach 

A different construction of density estimators was given by Hendriks (19W) for 
quite gcmeral Riernanriian manifolds. It is hitstxi on the infinite-dimerlvional 
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embedding i5pprowh of Sect.ion 10.8. For T = 1,2, . . . , let t T  denote the 
fuiictiou froiri SP-' into L2(P-') giveii by (10.8.2) with uk = 1 for k < T 
and (lk = I) for k 2 T .  Then the corresporiding density est,irnator & is ckfined 
by 

n 

= .-I tr(-) 
i r l  

or equivalently by 

where (-, -> denotes the innerprotiuc-t on L2((s"-' ). Heiidriks gave bounds in 
terms of T for the expected squared-error and supreniwi-error losses of these 
estimators . 

Dwoiivolut ioii density estimatioii oii SO(p) has 1)eeii developed I>y Kirri 
(1998), using Fourier analysis on L2(SO(p)) .  Deconvolutiou density estimation 
on SP-' was considered by Hedy, Heridriks & Kim (l(398). 

12.7 BAYESIAN METHODS 

Bayesian inference on von Mises Fisher distributions has been considered by 
Mardis & El-Ataum (1976) and Bagchi k Gut.tmann (1988). Bays prowdures 
for inference on unimodd rotationally synmietric distributions on SP-l were 
introduced bv Brunner & Lo (1994). A Bayesican analysis of the regression 
model (11.3.20) with KO = c = 0 was gi~i'en by Guttorp 8t Lockhart (1988). 

Laplace approxiniations to posterior moments were considered by Bagchi 
& Kadilne (1991). 

Conditions for consistency of Bayes procedures for estimating (i) the mean 
direct.ion of a rotationally symmetric distribution on SP-l, and (ii) the axis 
o f  syrnrnetry of n rotationally symInetric distribution 011 Il?,P-' , were give11 
by Lo & Cabrera (1987) 

Empirical Bayes wtimation of the mcian direction of von Misw-Fisher 
distributions on SP-' was considered by Bagchi (1994). Hedy & Kim (1996) 
used Fouricr analysis on L2(S2) to derive a consistent nonparametric empirical 
Bay= t&mator of the prior densig of the inem direction of rot,ntionally 
symmetric distribut.ions on S2. 

Bayes wtsimi~tors (re1at.ive t.a squared-error low) of t.hc? rot.ation matrix A 
in the spherical regrwuiou model (11.3.12) were characterised by Kim (1991). 
In pc7sticular: he showcd that the Bays estimator with respect to the uniform 
prior i~ the Iwst-squxtres estimator A giiven in (11.3.14). 
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12.8 CURVE FITTING AND SMOOTHING 

12.8.1 

Bwiiuse of its geophysic:al iniportariw, regrttysiori of a spherical variable (such 
as the position of the palaeomagnetic north pole) 011 a scalar predictor (such as 
t.ime) has been t.hc subjwt of much ;ztt.ention. Perhaps the simplest para.metric 
fanily of regresion functioxis for regresskig a spherical variable on a scalar 
(or an unremicted vector} is 

Scalar Predictor and Spherical Responw 

f(t ;A,c) = A(cosct,siIic~,O)’r, (12.8.1) 

where the parameter A is a rotation matrix and c is the constant speed 
of movexnent dorig the corresporidirig great circle path. A major problern 
with (12.8.1) (as with the ‘barber’s pole’ regression model (11.3.2)) is that 
one can obtain ;zn whitra.rily close fit to t.he data by increasing the speed c. 
Coxisequently, alinost all the work on curve fitting and smoothing for spherical 
dat.a has been non-parametric. 

Apart from a ‘kernel-t,ype’ smoothing zligorit,hm given by Wa.tson (1985), 
most of the methods proposed for non-parametric spherical regression have 
heen conccmed with constructing suitable: sphere-?-t-dlucd andogiics of cubic 
splines in the plaie. 

The intrinsic geometrical a.pproach described in Section 9.1 leads to the 
following corist,ruction of smoothing splines 011 the sphere. For fitting data 
{(ti,vi) : 1 5 i 5 n }  with llvill = 1, Jupp 8 . ~  Kent (1987) proposed the curve 
f which minimises 

(by analogy with miuinlising 

(12.8.3) 

for cubic splines in R3). Here WI ,  . . . , wn are weights and X is a smoothing 
parizmetcr. The first tcrm in (12.8.2) and (12.8.3) penidisc-s lack of fit.; the 
second term penalises curvature of the fitted path. An alternative which is 
easier to implement uses an extension of the wrapping approach described 
in Scwtion 9.1 to ‘u~iwrap’ the sphere onto the plswie (nsirig a given path 
rather than a given point), thus converting a spherical problem int.0 a standard 
planar onc. Det.nils given in Jnpp & Kent, (1987). A specific application 
of this work occurs in stdying apparelit polar wander pa th  (see, e.g. Jupp 
k Kent, 1987). The data are usually obtained through a preprocessing step 
which extraits the rernanent magnetism in giiven rocks through fi~idi~ig linear 
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segments given a set of ordered points: we K w t ,  Briden 8.c Mardia (1983) for 
further details. 

Two other forms of spherical spline were introduced by Fisher & Lewis 
(1985). One of these uses piecewise smooth furictioris f with I[f(t)ll = 1 
for w ~ i  the third derivative f (3 )  satisfies llf(3)(t)ll = constant (by analogy 
with f(")(t) = constant for cubic splines in R"). The other uscs portions of 
loxodromes (ciirvefi of coxiyt ant 'wiripass bearing' with respect to sorrie pole). 
For interpolating curves (i.e. curves with f(ti) = vt), another form of spherical 
spline was given by Watson (1985). He tackled the problern of unbounded 
speed which arises in fitting (12.8.1) by using instead curves which minimise 

/ "[I - f(t)f(t)T]f"(t){12dt + Y Ilf'(t)ll"t J 
for ari appropriate valne of the parameter v ,  thus pexinlising sped f' as well 
as curvature. 

12.8.2 

For nori-parametric regression of a rotation Inat.ri?r on a scalnr,  the wrapping 
approach leads to the use of the exponent.ial map (13.2.6) to transform splines 
in Rp to ‘splints' in SO(p) .  For further details when p = 3, we Prentict: (1987). 

Sculur Predictor arid Rotatimud Resporw 

12.8.3 Plunuu. Prwkctor and Ci9vular Response 

Non-parametric regression of an angular variate on a planar variate can be 
interpret4 as smoothing a unit vcctor fidd (a, fidd of directions at points on 
the plane). hkndoza (1986) has sliowri how thin plate spliiies mi be wed for 
this purpose. 

12.8.4 

Followi~ig Wahiba (1990), h4miia et rsl. (1996) tfevelopetf forriis of spline which 
map the circk to the line, as part of a generalisation of splines to a wider 
context. Thee periodic splirhes axe defined in terms of rniiihriurn sqiiared 
prediction error subject to linear constraints (e.g. on deriva.tives of order 
1. . . . , n) at, points 191,. . . ,8,& on the circle. The periodic splines haw explicit 
reprt?yentatioiis of the form 

Cirzdur Pmlactor und Suhr Re.Yyorrss 

where 

(12.8.5) 
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with a a positive parameter and 91,. . . ,g7,& certain trend functions on the 
circle. When u = I' + 1/2 with T mi integer, (12.8.5) mi be writteii 111ore 

(12.8.6) 

where B s ~  denotcs the Bernoulli polynomial of order 29.. 

I general discussion of splines and local regression methods for directioiial 
regression was gi\Vc.cn by Hanscn & Mount (1990) in a geological context. 

12.9 OTHER METHODS 

I\liost techniques for h e a r  data have analogues for directional data. In 
particular, discriminant analysis of spherical data has been considered by 
Morris & Laycock (1974), while sequential methods for circular data have 
bcen developed by Gadsdcn &. Kanji (1980; 1982). Optimal designs for 
several rvgrwsion models involving circular variatw were dtscribod by Laycock 
(1975). 



13 

G ener a1 Sample Spaces 

lS.1 INTRODUCTION 

In the previous chapters we have considered mainly observations which are 
unit vectors or axes. However, other types of observation occur in directional 
st.atist.ics, the most important of these from the practical point of view being 
rotations, orthonormal frames, md subspaces. To see how these might. i ~ w ,  
corisider the following example. 

Example 13.1 
The orbit of a periodic comet is an ellipse with the sun at one focus (see Fig. 
13.1). 

There are various t1irm:tional aspects of siidi orbits in whidi we iriight be 
in t erestcd . 

(i) 

(ii) 

(iii) 

We might be interested in just the perihelion t1irm:tion (the tfirectiou 
from the sun to t.hc point of nearest approach of the comet) of' each 
orbit. Thus each orbit provides a unit vector XI, so that. we have 
spherical data. A question of astrononlical interest is whether or not 
the perihelion directions are uniformly distributed on the sphere. 
We might luiow the plane of each orbit but not nec~warily the sense of 
rotation of the comet. Thus each orbit would provide a plane through 
the origin (the sun) of three-dimensiond spacc. A question of interclsts 
is whether or not these planes are uniformly distributed. 
For most comets we know the perihelion direction, the plane and the 
sense of rotation. Thiy eadi orbit provide9 thee  orthtuiorrnal unit 
vectors, xl, x2 and x3, where XI is the perihelion direction, x2 is the 
dimcttd unit normd t.a the orbit, and x:) is the vwtor product XI Axq.  
Tbexi the 3 x 3 matrix (XI,XZ,XS) is a rotation matrix. A question of 
astronomical interest is whether or not these matrices are uniformly 
(iiiytrihutd ON the group SO(3)  of all rotzitions of IR3 (Mardia, 1975a; 
Jupp & hlardia, 1979). 

Directional Statistics 
Kanti V. Mardia,Peter E. Jupp 

Copyright 0 2000 John Wiley & Sons, Inc 
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I 

Figure 13.1 The rotation matrix (XI, x g ,  XQ) of a c:oinetary orbit. The NUIL is 
at the origin, which is tbe focus of the ellipse. 

Observations whidi are rotations arise also in vet:t.c3r~rcardiol5raphy (Dowus, 
1972), since a vectorcardiogram can be regarded as a roughly cardioid-shaped 
planar ‘orbit’ in 3-spitce. Distributions on the group SO(3)  of rotations arise 
also as distributions of estimates of rotations. For example, as pointed out 
by Binghcun, Chang & Richards (1992), Chang’s (1986) spherical regression 
niodel (11.3.15) is paranieteriqed by a rotation matrix. The distril~utit~xi of its 
maximum likelihood estimate is a distribution on SO(3). 

In order to analyse di5tta of the forms arising in Example 13.l(ii) and (iii), 
it is necessary to develop models and techniques generalisiug those used in 
the previous chapters. Such generalisation is comparatively straightforward 
arid will be described in Sections 13.2 arid 13.3. 1x1 Stx%ion 13.4 we present 
analogous models and techniques for distributions on hyperboloids and we 
discuss briefly the study of statistics on general manifolds. 
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13.2 FRAMES AND ROTATIONS 

13.2.1 Stiefel Manifolds 

Example 13.1 (iii) ixidicatw that it is nwmsary to consider ort,hoIiormal frarnw . 
An orthonormal ?--frame in Rp is a set (XI : . . . , x,) of orthonormal vectors in 
Rr', i.e. 

'1' 1 if i = j ,  { 0 i f i z j .  
xi xj = 

The space of orthonormal r-frames in lRp is called the Sttefel nautaifold V r { R p ) .  
In terms of p x r matric:es X, 

Vr(R") = {X : X"X = Ir}. (13.2.1) 

Three important. special cayes are of interest: 

(i) a 1-frame is just a wit. vector, so Vl((aP) = 9 - l ;  

(ii) an orthonormal pframe is equivalent to an ort.hogona1 matrix, so 
&(lRP) = O@), the orthogonal g o u p  corisistiiig of dl orthogonal 1) x p  
matrices ; 

(iii) a11 orthonormal ( p  - 1)-frarne (XI, . . . , xp-l ) car1 be extended uriiqiiely 
to an orthonormal yframe (XI,. . . , xp) with matrix of determinant 1: 
so Vp-l(lRr') = SO@), the special orthogonal group consisting of all 
p x p rotatioil matrices. 

Two of the rotation groups cam he identified with more familiar sample spac.es. 
Firstly, the iIiapping 

) 
cosB sin8 

et+ ( -sine cove 

idexitifies the circle S' with SO(2). Secondly, there is a mapping M from the 
sphere S3 to the rot.ation group SO(3) which sends u = (211,. . . , ~ 4 ) ~  in S3 
t.0 

2(11,214 + 212.u3) u: + uf - u$ - u$ -2(U,Uz - u3u4) . 
-2(wlw:+ - u Z u . 4 )  ) 

'UT f 'U$ - 'U; - 'Us -2(Ul 'Ud - 'Uz'U3) 2('111?43 4- ?42U4) 

2(ulti.z + ti.yu.4) ?if + ti: - ,ug - ,ui 

(13.2.2) 

M(u) = 

.hi alternative expressioii for M(u) is 

M(u) = 13 + ~ I L ~ A ( v )  + 2A(vI2, 

where v = ( u ~ , ~ ; ~ , ? l 4 ) ~  and A(v) is defined by (13.2.7) below. Notr that 
M(u) represents the rotation through angle 2 C O , S - ' ( U ~ )  about v. Siiim 
M(-u) = M(u), M defines a map of RP3 into SO(3) .  It is straightforward to 
chwk that this  nap identifies R.P3 with SO(3). The t,rrisformatiou M r a i  be 
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described neat.Iy in tcrms of quat.ernions (Prentice, 1986). This transformation 
has been exploited by Mioran (1975) and Prentice (1987). 

For handling distributions on the sphere a basic role is played by polar 
decomposition of vectors, e.g. (i) the tiecomposition (9.2.2) x = R%I of the 
sample mean, and (ii) the polar decomposition )cp of the canonical parameter 
of il Fisher distribution. (Not.(! t.hat. if n and p we regarded ils 1 x 1 and p x 1 
matrice3, respectively, theii it is appropriate to regard the vectt3r np as the 
p x 1 matrix K.P.) The analogous tool for distributions on Vr(Rp) is polar 
decomposition of matrices. Any p x r matrix X (:mi he de(:oxriposed u 

X = MK, (13.2.3) 

where M is in I~~~(IR!') and K is r x I' symmetric positive semi-defiuit.e, The 
matrix M is called the polar part (or orientation) and K is the ellipticul 
PUT$ (or conc:ent~atxorr) of X .  If X has rmk r then K is positive tiefinite arid 
t.his dccomposit.ion is unique. (Take K = (X"X)'i2, the positive definite 
symmetric sqiiare root, and M = XK-'.) Further, as pointed out by 
Cliikuse ( 1 9 9 0 ~ ) ~  there is ari analogue for Stiefel mnnifoltlu of the tarigeut- 
normal decomposition (9.1.2) on spheres. In matrix terms, it says that for 
r 5 q 5 p - r ,  a i y  X in Vr(lRp) mi be tiecornposed as 

(13.2.4) 

where T is il q x r matrix with I, - TTT positive semi-dehite and U is an 
eleirierit of L;.(IR?) (.see also Chikuse, 1993c, Sectiou 2), 

The concept of wrappping distributions from a tangent space onto a sphere 
extends to Stiefel miuiifolds. We describe it just for rotation groups. The 
tangeut space to SO(p) at X is 

TxSO(p) = {XA : A  E SO@)}, 

where sob) denotes the set of skew-symrnetric p x p matrices. The analogue 
on SO@) of the wrapping map (9.1.3) is the exporrmtiul rrrup ho~n TxSO,(P) 
given by 

XA I+ Xexp(A), (13.2.5) 

where 

exp(A) = +An 
n=U 

(13.2.6) 

There is a useful identification of so@) with ~ ' ,  in which v = (el, 212,213)~ in 
nt" corresponds to the matrix 

( 13.2,7) 
0 -"3 v-2 
ua 0 -q 

-2'7. v1 0 
A(v) 3= 
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in tfo(3). Then (13.2.6) can be expressed in the simple form 

(13.2.8) 

The niatrix exp(A(v)) represexits the rotation though angle llvll about v. 

13.2.2 Uniformity 

Like the sphere, the Stittfel iriariifolti C;(Rp) has a Vrrrifonn diytniblrrtiurr. This is 
the uuique distribution which is invariant both under rotations and reflections 
of R’’ and under rotations imd reflections of the r-dimensional subspaw 
sparma1 by X, i.e. UXV has the same distribution as X for d l  U in O(y) a i d  
V in O(r) .  Thus it has the greatest symmetry of d l  distributions on t;(lRP). 
Bwause of this symmetry. a natiird riull hypotfiesis about a distribution 0x1 
Vr(lRP) is that of uniformig. 
As in the spherical case, the simplest test of uniformity is the Rayleigh test. 

Let XI, . . . , X,, be observatioris 011 k>(IRP) with sample mean 

The intuitive idea of the byleigh t.est. is thiit uniformity is rejectcd if the 
sample mean X is far from the population ixieari U. h r e  precisely, uniformity 
is rejected for large values of 

s = pa trfx’x). (13.2.10) 

If r = 1 t.his reduces to the hyleigh statistic (10.4.4) for testing uniformity on 
the sphere SP-’ . lhtier uniformity, the asymptotic large-sample tfstributiori 
of S is 

(13.2.11) 

The error in the approximation (13.2.11) is of order Cl(n-*). The modified 
Rayleigh statistic S” ~ I I  b;(lRp) givexi by 

- 2  s xrp .  

(13.2.12) 

(generalising (6.3.5) and (10.4.6)), has a & distribution with error of order 
O ( I Z - ~ )  (Jupp, 2001). Ewm for moderiztc sample sizes, t.hc? upper tail of the null 
tiistribution of S* is close to that of the &, tlistributiou. This modification 
is based on the fact that the Rayleigh test is the score test of the simple 
1iypot.hesis F = 0 in the matrix Fisher motiel (13.2.15). 
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The general machinery of %holev tests described in Section 10.8 can he 
used t,o provide a very large class of tests of wiiformity or1 l;.(lRp) whicli are 
invariant under X I-+ UXV for U in Ofp) and V in O(r ) .  The Rayleigh test 
Imwd on (13.2.10) is the sirnplest of these. Another simple Sobolev test on 
Vr(lRp) is the Bingham test considered hi Section 13.3.2. The map 

(x11- - * ,xr) XI 

which takes an orthonormal frame to its first vector maps V i ( l R p )  to SP-'. 
The methods of Jiipp & Spurr (1983) cari be used to decompose each Sobolev 
test of uniformity on r/;(RP) into the sum of a Sobolev test of uniformity on 
SP-' and a test of O(r - 1)-symmetry of ( ~ 1 , .  . . , x,) about XI. 

Example 13.2 
As explained in Example IXl(iii), the orbit of a periodic comet provides a 
rotation matrix. A question of astronomical interest is whether or not these 
rotation matrices X are uniformly distributed on SO(3). The data set oforbits 
of 240 cornets corisidered by Jupp & MW&H (1979) ca~i be surrirnarired by the 
mean rotation matrix 

0.523 -0.015 0.113 . (13.2.13) 
0.014 -0.012 0.001 

0.148 -0.025 -0.013 1 I= ( 
Since the Rayleigh statistic (13.2.10) is 3vztr(X1'X) = 223.1 > 21.666 = 
x~;o.ol,  the hypothesis of uriiforrriity is rejected strongly. Note that the 
modified Rayleigh statistic (13.2.12) is S' = 232.0, so the modification has 
negligible effect.. 

The Rayleigh statistic S or1 SO(3)  can be decorripwed as 

3.nt.r(XTX) = 3.nxTjll + 3ntr(RTlX-l ), ( 13.2.14) 

where 21 and X - 1  denote respectively the first column and the last two 
coliimns of X. The first, term on the righg-himd side of (13.2.14) is the 
Rayleigh statistic (10.4.4) for testing uniformity of the perihelion directioris 
XI. Since 3nXTX1 = 213.0 > 11.345 = the hypothesis of uniformity 
of periheliou dirwtiorlu is rejected strongly. The sewrid term on the riglt- 
hand side of (13.2.14) tests rotational symmetry of orbital planes about 
perihelion directions (more prwiucly that: for a given perihc4ion direction XI , 
the normals to orbits with perihelion t1irm:tion x1 are tfistributd uiiiforrrily on 
t.hc circle normal to XI). Under unif0rmit.p of x:, the asympt.otic largesample 
distributiori of this term is >re". A more useful test of symmetry is bmed on c,, 
defiued by 

c, = 2ntr (XT1(13 - TI )-'X-*) . 
where TI denotes the scatter matrix of XI. Kote that if XI is uniformly 
distribiited then c, 'v 3ntr(X?*X-t) for large n.  lhtier rotzitiorial symmetry 
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of t.hc? 0rbit.d planes, the asymptotic large-sample distribution of c,, is 
xg. For this data set, cB = 3.866. Since Pr(.ug 2 3.866) = 0.694, the 
hypothesis of symmetry of orbital planes can certainly be accepted. Thus 
the non-uniformity of the orhits comes largely fro111 the non-uniformity of the 
perihelion directions. 

Iu the special case of S0(3),  testing for wiiformity car1 be rmluced to testing 
for uniformity on the projective space W3. Sincc the mapping (13.2.2) takes 
the iiniforrri tiistribution on Sy to the uriiforrri ciistribution on SO(3), the 
Sobolev tests of uniformity on W3 considered in Section 10.8 give rise to 
tests of uniformity on SO(3). In particular, the Bingham test with statistic 
(10.7.1) (111 lI3.P' yields the byleigh test with statistic (13.2.10) on SO(3). 
Similarly, Gin& st.atist.ic (10.7.5) on RP3 yields the statistic 

This gives a test of uniformity on SO(3) which is eavy to coinpute arid is 
consisknt. against all alternatives. 

13.2.3 Matrix Fisher Divtributionv 

Perhaps the simplest non-uniform tfistributioris on 1;. ( EV) are the iriatrix 
Fisher (or matrix Langevin) distributions introduced by Downs (1972). These 
forrri ai exponential 11iod~1 with rmionic:al shtistic the matrix X it.wlf. This 
the density functions with respect to the uniform distribution are 

(13.2.15) 

Hare, F is an p x r parameter matrix and 0Fl is the  hypergeometric fiinct.ion 
of matrix argument defined by (A.28) of Appexidix 1. We shall denote the 
distribution with density (13.2.15) by L(F). The density (13.2.15) has a mode 
at  X = M, where M is the polar part. of F. hi the case T = 1, (13.2.15) 
is just t.hc density (10.3,l) of a Fisher distribution on the sphere SP-'. The 
mat.rix Fisher dist.ribiition L(F) can be obtained by siiit.able conditioning of 
a multivariate normal distribution (cf. Section 9.3.2). 

The mapping from lRP3 to SO(3) obtained from (13.2.2) cam be regarded 
as taking axw f x  to rotation Inat.rit:es M(x). The rantiorri matrix M(x) 
has a. matrix FEher dist.ribut.ion on SO(3) if and only if Itx has a Binghani 
dist.ribut.ion on RP3, as shown by Prentice (1986). If f x  has a Bingham 
tfistributiori mi RP3 tlieii the tleiisity of M(x) depends taily the distaritz fro111 
the mode if and only if fx has a Watson distribution on W3, as proved by 
Schaeben (19%). 
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Now consider maximum liktilihood estimation in the model with densities 
(13.2.15), bayed ox1 obwrvat~ions XI , . . . , X,&. Since this model is mi 
exponential model, the maximum likelihood estimator of the canonical 
pasiuneter F is given ixnplicit81y by 

&[XI = x. 

To make use of this, let R be the elliptical part of X, as in (13.2.3). N0t.e that 
R is a generalbation to I:(R") of the mean rcsnltiwt length R of obscnations 
011 a sphere. Then 

and cquitwiance arguments show that, in terms of the polar decomposition 
F = MK, we have 

rjI = XR-1: (13.2.16) 

i.e. the maximum likelihood estimate of the polar pc7st of F is the polar part 
of X. We cifli then obtain K from R its follows (Khatri & Mardin, 1977). If 

R = (jp-X)'/" 

R = UTdiag(gl,. . . .gr)U, with U E O(T) and g1 1 . . . 2 gr, 

Furt.her, approximatc Yc)lut.ions of (13.2.17) given by 

for (41,. . . :A) small? and (provided that F has rank r) 

for (41,. . . &) large. 

(iistritmtion of M giive11 K is 
Gcncral theory for txponentid models shows thi$t t.hc? conditional 

M ~ K - L ( ~ M K R ) ,  

generalking to Vp{(ntp) the conditional distribution (9.5.10) of j20 given R for 
a von hlises-Fisher dist~ri1)ution 011 a sphere. 
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The von Mises-Fisher dist.ribut.ions on V,(R") we chwactcriwd among 
tfistributioris with densities of the forru 

f(X; A) = y(tr(XTA)), A E Vr(Rp) 

(with y a given lower semi-continuous function), by the property that the 
polar part of X is a maximum likelihood estimate of A. This result is due 
to Purlcayasthis & Mukerjtx! (1992). For I' = 1, it is the maxirnum likelihood 
characterisation of \-on Mists -Fishcr dist.ribut.ions on 9 - l  which was given 
in Section 0.3.2. 

There are various high-concentration asymptotic results. The most basic 
of these is that for concentrated matrix Fisher distributions (i.e. with the 
eige:eritduw of K tending to ixifixiity) the apprcmirriation 

K1/'(X - M)T + X ( 0 ,  I, K I,) (13.2.18) 

hi old^, where IrgIv dc?iiotes the identity ruatxix in the taxigent space to Vp(R') 
at M and 

v = p- ( r  + 1]/2. ( 13 2.19) 

This yields the Wisbart npproxirnation 

K'!'(X - M)T(X - M)K'/' 1.5;' (v, I,.). (13.2.20) 

Let Xj, . . . , X, he a sample from (13.2.15). It follows from (13.2.20) that, 
See Downs (1972) and Khatri & Mardia (1977). 

for K + OG, 

n n 

Kl/2(21,. - X:'M - M"Xi)K1/z = I3 - M ) ~ ( x ~  - M)KI/? 
i= 1 i=l 

+ W(YW! Ir), (13.2.21) 

generalising (4.8.23) and (9.6.13). Using the decompositian 

n C K * ~ ~ ( x ~  - M ) ~ ( x ~  - M ) K ' / ~  
i=l 

3= 271K'r2(I,. - R)K1r2 + I L K I ~ ~ ( ~ R  - XTM - MT X)K'/', (13.2.22) 

which gerierdises (4.8.30) and (9.6.16)t we we that 

2nK1/'(I, - R)K1/' + W ( ( 7 i  - l)v,I,), (13.2.23) 
?2K1"(2R - XTM - MT X)K'/" W(V,  Ir) ,  (13.2.24) 

and that these are asymptot.ically independent. Since the expectation of' 
W ( ( n  - I)Y, I,.) is (n. - l)vI,? (13.2.23) leads t.a the approximation 
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t.o the miucimiim likelihood eHt.imator of K, cf. (5.3.9) and (10.3.7). The 
approxiinat ion 

1 'I& - 1 (* 1'; 1) pz- -  (Ir - x)-' 
2 1E 

follows. 
Taking the trace of (13.2.20) yields, 

-2tr [F"(X - M)] &. 
It. follows from genera.1 results of Jvrgenwn (1987) on exponential dispersic.)n 
models aid was shown explicitly by Biugliam, Chang &k Richards (1992) that 
this statistic can be Bartlett-correct.ed, i.e. multiplying it by a constant to 
make its xrieaxi eqiid to VT ensures that dl the cii~riiiliuits differ from those 
of the limiting distribution by t.errns of' order O(K-2). Various onc- and two- 
sample tcsts) are given in Downs (1972) and Khatri &. Mardia (1977). 

N(O,I, 8 I,.) for large YZ. 
Expansions to order O(n-') of the probability density functions of Z, ZTZ 
axid tr(ZTZ) iirider uriiforrriity anti siiitahb local alterriatives arc! given ixi 
Chikuse (1991b). (See also Mardia & Khatri, 1977.) 

Various high-dimensional asgmptotic properties we known. Let X in 
Vr(Rp)  have if iriatrix Fisher t1istribut;ioii with puaneter matrix F aid  let the 
singular value decomposition of F be F = rAA, where I' is in Vr(JRp), A is 
diagonal arid A is in O(r). Put Y = p'r2rTX. Then asp + cx) the tiistribution 
of Y t.ends to normality. See Watson (1983d) and Chikusc (1991a, 1993~). 
Asymptotic expansions to order O ( P - ~ )  of t.hc? probabi1it.y density fiinct.ions 
of Y, YYT arid tr(YYT) in the cases X - L(F) and X - L@1/2F) are given 
by Chikuse (1993a). 

The following gerierirlisation is given by Chikuw (1993~). Let P be a p x p 
niatrix representing a projection from Rp onto aa ?--dimensional subspace. 
Lct X be distribiitcd on V,(RF) with il probability density funct.ion which 
depeiids oiily ori PX. Tlieii, as y + 50, the distril~utioii of p'12PX tends t,o 

Let Z = ( n p ) l / * X .  Then, under uniformity, 2 

N(0, P @ IT). 

l3 .S.4 

-4 natural exteiisioii of the matrix Fisher aid  Binghaxi tfistributioris is the 
exponential model with canonical statistic X 8 X introduced by Prentice 
(1982). He proposed subfainilies wit.h appropriate symmetry as models for 
X-shapes and T-shapes iu pspace. Khatri & Mardia (1977) introduced the 
siibmodel with densitmy function 

f(X; K, V, p )  3= c(K, V, p )  exp{tr[K(X - p)V(X - /A)"]}! 

where K aid  V are positive defiiite matrices. A series expaisioii in terms of 
matrix polynomials for the normalising constant c(K, V, p)  was given by de 

Other Di~trz'butiona on Stiefel Manifolds 

waal (1979). 
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The complex andogiic of the orthogond group O(p) is the unitary group 
C(u) tiefirled in temis of p x p co:Omplex matrices as 

V@) = {X : X'X = Ip}, 

where X' denotes the complex conjugate transpose of X. The complex matrix 
Fisher distributions on bib)  introduced by Biriglinrn, Chang IFL. Richards 
(1992) have probability density functions 

( 13 2.25) 

where the iiormalising coiistant is give11 by 

with G being the matrix with (i,j)th entry X?-*~OFI ( p  + 1 - j ;  Xj/4) md 
XI, X2,. . . , Xk (with XI > A2 > . . . > A,) daioting the eigeiivalues of F*F. 

Various random walks on the rotation group SO(3) were considered by 
Roberts & Winch (1984). In part,ic.ular, t h y  wrisidemd the casw where (i) 
cadi rotation is though a fixed angle about an arbitrary axis, and (ii) the 
angle of rotation is arbitrary but the axis of rotation makes a given iwgk 
0 with a fwml axis. If 0 = a/2 in (ii) theii the set of such rotations cai be 
identified (via the image of the north pole) with S2 and the distributions 
obtained on SO(3)  conwpoiid to those obtained from raridom wdkr on the 
sphere. 

13.3 SUBSPACES 

13.3.1 Grwsrrrunn Manifold3 

Example 13.1 (ii) iridicatw that. it is Iiectassary to wnsider subspaces of IR?. 
The set of r-dimensional subspaces of IRp is called t.he Grussmanra manifold 
Gr(RrJ). Since il sabspwc is specified by the orthogond projection onto it, 
G,(RP) car1 be dmcribed in temis of p x p matrices Y as 

Gr(IRp) = {Y : Y == Y" = Y"Y,rkY = r ) .  

In particular, because a oncdimensional subspace is an axis, we have 
GI (Rp) = I[LPP-l , (p - l)-dimeiisioiial real projective space. 

Assigning to each subspace its orthogonal complement identifies G ,  (ap) 
with G,-,.(R"). This identifir:st.ion is given in mat.rix terms by 

Y H I p - Y -  

By assigning to cadi frame the subspace which it spans, we obtain a map hm 
L;(R") to G,.(IR"), given in mat.rix terms by 

x tj X X T .  (13.3.1) 
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l ,%Y.f  Uniformity 

The Grassmimn manifold Gr ( Rv) hiL5 il distingiiuheri distribution, the 
unifoir~i diatributirrrr. which is the unique distribution invariant under rotation, 
i t .  UYU"' has the same distribution as Y for all U in Sob). The map 
(13.3.1) takes the uriiforrri ciistribution 0x1 \.r;.(lRp) to the uriiforrri tiistribution 
on G,(RP).  

Again, the ccntral role of the uniform distribution mcians that t.hc? b;tuic 
problem on C,(lRp) is that of testing for uniformity. The simplest test is 
the Binghcam test introduced by Mardia k Khatri (1977). Let Yt, . . . , Y, he 
observatiow on G, (ap) with sarriple I I I P ~ I  

The intuitive idea bellind the Bingham test is that uniformity is rejected if 
the scample mean Y is far from its expected value (r/p)Ip. More precisely, 
uniformity is rejected for large t.dlua9 of 

(13.3.2) 

If r = 1 then this reduces to Bitlgliarn'u statistic (10.7.1) for testing wiiformity 
on the projective spmc IRPP-'. Under uniformity, the asymptotic large- 
sample tiistribution of S i.1 

(13.3.3) 

with error of order O(n-'). 
Because t.hc Binghani test is dso the score test of the simple hypot.hcsis 

A = 0 in the matrix Bingliarn model (133.5): there is a cubic modification of 
S generalising (10.7.3). The modified Biugliam statistic on Gr(lRP) is 

where 

(13.3.4) 

The m o d ~ c d  Bingh,am statistic 5'' has a yfp-l)(p+2)/2 distribution with error 
of order O(?L-') (Jiiyp, 20(~1). 
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13.3.3 Matriz Bangham Distributiom 

The matrix Bingham distributions on G, (W”) 
Biugham distributions on RPp-l. They have densit.y fuuctioils 

gencralisations of the 

with respect to the uniform distribution, where A is a symietric p x p 
parameter matrix and tF1 is the hypergeometric function of matrix argument 
defined hy (A.26) of Appendix 1. The matrices A arid A + ul,, yield the same 
distribution for any real Q (as for the Bingham distributions (9.4.3) on the 
projective spwc IRPP-’). Thus we may assume without loss of generality that 

t r A  = 0. (13.3.6) 

Let A have singular valiie decomposition A = UAUT with U in I$(IR”) 

UM! of the map (13.3.1) from \;(R’’) to G,(R”) enables the Bingham teHt 

High-concentration asymptotics for matrix Bingham distributions were 
corisidertrt by Chikuw (1993b). She showed that if Y has a matrix Birigharn 
distribution with parameter A = UAU’ with U in Vr(lRP) and A diagonal, 
then for large A (i.e. the absolute values of all non-zero eigenvalues of A 
teiidiiig to isifinity), 

and A diagonal. Then (13.3.5) has a iuode at UUI. 

to be UWA 0x1 Vj(B?P). 

I’ = 2A‘’2(I, - UTYU)A’/’ -+ W ( p -  r?I,.). 

She gave an asymptotic expansion up to order O(A-‘> for the distribution of 
v . 

Complex Bingham distributions on complex projective spaces (EIPP-’ are 
considered in Swtion 14.6. 

13.3.4 

The angular central Gaussian distributions on projective spaces have 
andogiics on Grassmmn manifolds. These the matrix angular central 
Gaussian distributions on G,(Rp) whidi were introdutxed by Chikime (199O‘ti). 
They are given by the probability density functions 

f(X; I=) = pI-‘/‘(XTpXI-”/” , x E rS.(W)? (13.3.7) 

on \k(lRp), where C is a p x p positive definite matrix. The matrix I3 is 
idexitifiable up to multip1ic:atiori by a positive scalar. Note that, btrc:ausc! 
(13.3.7) satisfies 

f(X; = m u ;  w ,  U E O(r) ,  

Other Distributions 011 Ciwsrriann Munalolds 
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it may bc (:onsidered as a probability densitmy function on G,(R"). For r = 1, 
(13.3.7) give?, the density (9.4.7) of mi arigiilar central Gaussian distributiou 
on I R P P - ' .  The action of the unimodular group SL,(lR) on IRp given by 
(9.4.8) gene raks  to ai action of SL,(IR.) on tk(IRp):  for A in SL,(lR), the 
corresponding transformation PA of Vr(lRp) is given by 

vn(X) = AXK(AX)-', (13.3.8) 

where K(AX) den0t.w the elliptical part of AX, i.e. ~ A ( X )  is the polar part 
of AX. A simple ~al(:~li%ttion shows t h t  the mat.rix angular cent.ral Gaussian 
distributhis 011 (lRp) form a transformation model under this action of 

The rnatrix migular central Gaussian distributions have the following 
characterisation: an (unrestricwl) p x r random matrix X has a. distribution 
which is invariant under X I-) XU for U in O(r)  and with densit-y of the form 

SL, (W 

f(X; C) = ~c~-"4J(x~c-'x) 

for some funct.ion 9 if and only if the polar part of X hiL5 a matrix angular 
central Gaussian distribution (Chikuse, 1990b). 

The maxiniuui likelihood estimate e of I= iu (13.3.7) based on observations 
XI,. . . , X, satisfies 

(13.3.9) 

Putting r = 1 in (13.3.9) leads t.0 cquat.ion (10.3.46) for the maximum 
likelitiood &imate o f  the pnrarIieter rnatrix of an migular central Gatiwian 
distribution on 9 - l .  

A general class of distributions on Gp(RV) has been introduced by Chikuse 
& Watson (1995). These distributions have probability density funct.ioris of 
t.hc form 

f(Y; F) = c(F)g(Y'/'FY'f2), 

where 9 is a fiinc:tion on the space of symInetric p x p matrices satisfving 

g(UFUT) = !?(F)? u E O(P). 

Chikiiat 9c Watson ( 19%) proved the Inrge-sarnple asymptotic: rionnality of 

and gave asymptotic expansions to order O(n-l)  for its density under local 
alternatives to uriifonnity of the form F,, 3= n-'F. 
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13.4 OTHER SAMPLE SPACES 

13.4.1 Hyperboloids 

The definit.ion 

of SP-' uses the Euclidean inner product given by 

s"-' = {x E IRP : x.x = 1) 

x.y = q , Y y  + 52y2 + . . . + 5pgp. 

If the Euclidean inner product on R" is replaced by the indefinite symmetric 
bilinear form * given by 

x * y = zlgl - zzg" - . . . - zpyp 

for x = (XI,. . . ,zp) mid y = (91,. . . , u p )  then the aridogle of SP-' is the 
unit hyperboloid HP-' in IRp defined by 

HI+' = {x E IRP : x * x = 1, 21 > 0). 

Since t.hc function (21,. . . ,zP) I-+ ( x l x 2 , .  . . , zlzp) identifies H p - l  with IRp-' 
and takes t.hc? distingiiiuhed point ( I , @ .  . . ,0) to t.hc? origin, distributions 
on HP-' can be useful for modelling random 0, - 1)-dimensional vectors, 
especially where zero has a special role, e.g. (for p = 3) the wind speeds and 
tfirectioiis considered I>y Jeiiseu (1981). 

Just as the orthogonal group O(p) is defined by 

O(p) = {A : Ax.Ax = X.X} , 

so the pseudo-orthogonal group O(1, p - 1) is defined by 

O(l,p - 1) = {A : Ax * AX = x * x } .  

Analogous to SO(p) is the subgroup SO'(1, p - 1) of O(1,p - 1) defined by 

SOt( l ,p  - 1) = {A E O(l ,p  - 1) : IAl = 1,Al1 = 1) 

The action x F-) Ax of' SOT(1,p - 1) on H p - l  is analogous to the action of' 
SO(p) on P-'. There is an SOf (1 , p  - l)-invariant measure on H"-' (iiniquc 
up to a scalar multiple). As sucli a measure has infinite mass, there is no 
uniform probability distribution on H P - I  {in contrast to the situation on 
SJ-'). 

There is a family of distributions on HP-' analogous to the von hliset- 
Fisher family on SJ'-'. The hyperbodoid distributions Hp(p ,  K )  have probability 
tfeiisity fuiictioiis (wid respect to ari SO+(l,p - l)-invariant measure) of the 
form 

f ( X + , K )  = .(.)-1 exp(-Kp * X}? (13.4.1) 
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where the parameters lc imd p sat.isfy lc > 0 and p E H p - ' .  This family 
is an exponential trtuisforrriatiori iriodel under the action of SOt(1 ,p - 1). 
These dist.ribut.ions were introduced by Barndorff-Nielsen (1978b) and their 
pntpertiw (which are arialogcm?r to those of von hlises-Fisher tiistributions) 
were investigated by Jensen (1981). Three examples of these properties are 
given in the next paragraph. 

Let XI, . . . , xn be observatioiis oii HP-'. Their vector 111eafi 2 cafi be written 
in the form 

where %H E Hp-' arid R = m. This is the a~ialogie of (9.2.2) 011 

5'P-l. Kote that the hgperb0old.c inem resultatat length i? satisfies l? 2 1. The 
I i y p d ~ ~ l i c  revulturit h g t k  i.1 nR. The analogue for hyperboloid tiiiytributions 
on HP-' of t.he higl-concentration approximation (9.6.17) is t.he high- 
concentration approximation 

x = RXH, 

2.Ibrc(R - 1) + &-l) (p- l ) .  (13.4.2) 

Lct R1, R1 md R bc t.he hyperbolic resultant lengths of two indepcindent 
random samples from the same hyperboloid distribution on HP-', and of the 
combined sample of size 11, respectively. Then the distribution of R1 + RzlR 
doe,r not depend oii K. This is tuialogow to the cc>rr~sponding property of VOII 

Mises Fisher distributions on S P - l  which forms the basis of t.he t-wo-sample 
Wat.son-Wiliiirmu t.est. given in Sertion 10.5.1. 

In the case p = 3, we may writ,e 

x = (cosh u, sinh ?L cos to, sinh t i  sin to)T, 

p = (cosh x, sinh x cos 8, sirih x sin 8)' 

and the density {13-4.1) reduces to 

AU., w; x,e, = 
lc exp( K )  

sinhuexp{-fi[cosh,~coshu. - sinhx sinh.ucos(w - @)I}. (13.4.3) 
2?r 

Several properties of the hyperboloid distributions on H2 can be expressed 
more neatly than the analogous properties of t.he Fisher distributions on 
S" Here are three such properties. Firstly, the tuialogue for hyperboloid 
distributions on H2 of the high-concentration approximation { 10.3.7) for the 
rnaxirriiirn likehood estimate R of K is the exact rwiilt 

It = 1/(R - 1). (13.4.4) 

Secoiidly, the arialoglie for hyperboloid distributions 011 H2 of the high- 
concentration approximation (9.6.17) is the exact result 

r w ( R  - 1) - 1371 - 1,1). (13.4.5) 
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Thirdly, if R1, Rz iind R iire the hyperbolic resultant lengths of two 
indepeiidexit raid0111 sanples froin the siil1ie hyperboloid distribution oii H2 
then the observed significance level is 

(13.4.6) 

In contrast, for t.hc? sphericd cay(:, no explicit expression for the ohscrvtd 
significance level is known. 

Example 13.3 
Jensen (1981) used hyperboloid distributions to analyse three sets of data on 
wind speed and dirtxtion. Two of these data scts can bc siimmiwised by 

P Z ~  = 8, & = 1.70, sinhgl = 0.36, 8, = 198O, 

1a2 = 8, & = 1.72, sinhi2 = 0.36, 9, = 196". 

The hyperbolic resultant length of the combined sample is R = 22.71. Jeusen 
found that hyperboloid distributions H 3 ( p 1 ,  61) and H 3 ( p 2 ,  K Z )  fitted these 
data sets reasonably well. Fkom (13.4.4), R1 = 1.44 arid k2 = 1.39. The 
hypothesis 1c1 = ~2 can be tested using (13.4.5). The observed significcznce 
level is 0.83, so equalit,y of fi1 mid /c2 is accepted. lhtier this assumption 
of equal concentrations, the hypothesis p1 = p2 can be tested using the 
conditional distribution of R1, R2 given R. From (13.4.6), the observed 
sig~iificaits level is 0.85, a i d  so equality of p ,  aid  p2 is accepted. 

13.4.2 General Manifolds 

Almost all the sample spaces used in direct.iona1 statistics are manifolds? i.e. 
space which lcmk locally like so111e Eucliclesui space. Thus ai appropriate 
general setting for directional statistics is the study of statistics on general 
manifolds. Mimy mimifolds of interest have .some mtra structure, e.g. a 
Riemmnian metric or a group action. On a coriipact Riemannian maaifold 
there is a uniform distribution and it is possible to define Sobolev tests of 
uniforrriity, geIiernlisirig those coxdderctd in Section 10.8 (sm G i d ,  1975). 
As in the spherical case discussed in Section 10.8, the same machinery can 
bc u s 4  t.a cwnstruct permutat.ion tests of (i) equality of two distributions 
(Wellner, 1979), (ii) symmetry (Jupp kL Spurr, 1983), (iii) independence 
(Jupp & Spurr, 1985). On a manifold with a group act.ion one can consider 
composite transformation models. An account of their rich st.riitrttire is giivcn 
in Barndorff-Nielsen, Blacsild & Erikscn (1989). 

Riemannian manifolds have exponential maps which cxtcnd the 'wrapping' 
map (9.1.3) arid the exponentid map (13.2.5) used oii spheres a i d  rot8atioii 
groups. For each point na of a Riemannian manifold 31, the exponential map 
 naps M (the tangent space to M at r n )  to M. The corresponding wrapping 
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approitch leads to il definit.ion (Ollcr, 1993) of bias of an wtsimi$tor taking 
values iu M. The same approach leads to general versioiis of the CraritSr Rao. 
Rao Blackwell and Lelimann SclieffE tlieorems (Oller k Corcuera, 1995). A 
more iritririsic version of the CntInClr-Ract theorern for general mmiifolds M 
and gexierd smooth loss functions (which generalises (5.2.5)) has been given 
by Hendriks (1991). The ingcdicmts are: 

(i) a family of probabiiityv density functions on :ti patameterised by 8. 
(ii) a smooth map 9 : 8 + S2, 

(iii) ai estimator t : M -+ R of c$(e), 
(iv) a loss function r : I1 x I1 -+ R. 

The estimator t is said to be u116a(~wd if 

Ee[r(rJ, t ( r ) ) ]  has a rniIihriiirn at w = cj(0). (13.4.7) 

(111 Q aid  (w’, . . . , w‘)  on 0, the matrim Given local coordinates (el . . . , 
C, H and CP are defined by 

Hendriks’s result is that if t is unbiased then 

c 2 HW-WH 

* r r J  

(13.4.8) 

(meaning that C - H+I-’#’H is positive semi-definite), where I denotes the 
Fisher informi$tion matrix. For the caw in which l2 = 9’-’ and ~ ( w ’ w ‘ )  = 
llw - ~ ’ 1 1 ~ .  the uiibiwdliesu conditioii (13.47) btrc:oines 

(13.4.9) 

aid (if H is invertible) the ge~ierdiutrci Crarnkr Rao inequality (13.4.8) cai be 
expressed as 

IIEs[t(4111-2 (I, - 4b(WwT) vx(t(x)) ( I p  - W 4 ( V )  1 *I-’*T, 
(13.4.10) 

where I, denotes the p x p identity matrix. Kote that t i c  left-hand side of 
(13.4.10) is proportional to the variance matrix of t.hc? tangential part of t(z). 
Whei: p = 2, (13.4.9) arid (13.4.10) rmlutz to (5.2.2) arid (5.‘2.5), respectively. 

For probability distributions on general manifolds embedded in a Euclidean 
spwe (or a spare of matric:es) there i.1 a generalisation (Hentfriks & Laidman, 



GENEFWL SAMPLE SPACES 301 

1996a) of the concept of mean direction. The mean location of a random point. 
X 011 a subirimiifold M of Rk is the point p of M whidi mi~ibriisa~ 

where P (iexiotw the rorrespontiixig probability distribution ON M. IJnder weak 
conditions the sample xuean location is defined hiost  surely. A large-sample 
t.est. of given mean location (gcneraliqing thc wore tcst b ‘ d  on (lfl.4.18)) WM 

given in Heiidriks tk L;uidsmnn (1996b). .4 corresponding twcrsmnple test was 
given in Hendriks & Landsman (1998). 

Rantiorri walks on gerieraJ Riernmiriiati iriariifoltis were studid hy Roberts 
& Ursell (1960). 

Not only do certain manifolds provide interesting sample spaces h i t  so do 
ce r td~ i  quotients of these Inmifolds by appropriate group actions. ExaJnples of 
particular practical importance are the shape spaces, which will be considered 
in Chapter 14. 



14 

Shape Analysis 

14.1 INTRODUCTION 

This chapter is concerned with the shapes of sets of points in Euclidean 
space. There have heen various ciwelopments in shape arialysh in the last 
decade. For a full treatment. of the subject, see Dryden & Mardia (1998). We 
describe here some reli5tionships of shape midysis with direct.ionitl st;ztist.ics. 
1x1 particular, certain distributions of tlirectiorial statistics have emerged in 
shape analysis. These include the complex Bingham distributions considered 
in Sw%ion 14.6. This chapter first gives so~ne background to shape mialpis in 
the plane and then goes on to directional distributions and their applications 
t.o shi5pe analysis. Sot.e tlii5t the idea of project.ing concentrated di5tta onto a 
tangexit space is used in both contexts. Gaieralisatioris to higher tlirxtensions 
are considered in Section 14.10. 
By shape we ~rieai 'the ciescription which rexnairis after lucatiun, scde a id  

iutational effects are filtered out7 (Kendall, 1977). For exaniple, consider the 
six tr iangh A-F given in Fig. 14.1. The triangles A, B and C are of the sitme 
shape. Triangle D doe,r iiot have the same shape as A, B, C, alttiougli it does 
after relabelliig of' thc vertices. Triangle E is not of the same shape as C unless 
we dso allow reflwtion as shape prtserving. Triangle F is not, of the same 
shape as any of A, B, C. We will also deal with invariance wder labelling and 
reflection, and in that case the five triangles A-E will be regarded as having 
the siilrie shape. We shall concentrate rriairily on the shapes of sets of points 
in two-dimensional Euclidean spmc. Such configurations can be described by 
sets of k points (kritmri in varioiis applied contexts as londrrwk.~,  vertices, 
anchor points, currtrvl points etc.). For convex~ence, coniplex rrotution will be 
used for these points zp, . . . , z: in C and we call them raw ltndmarh. We put 

For a i y  complex nurnber c, the configuration (zp + c, . . . 22 + c} h a y  the 
same shape as (27,. . . ,ti). Hence to dcscribc shape it is sufficient. to look 
at. an17 set. of k - 1 independent. contrasts of (zy, . . . ,z!): (a contrast is a 
fiinction of the form Ci=, ai$ with ai = 0). These contrasts can be 
constructed in various ways. For example, we could use the E dependent 

z 0 -  - (zl,. 0 . . ,zg)' in Ck;  in the case of triangles, k = 3. 

k k 

Directional Statistics 
Kanti V. Mardia,Peter E. Jupp 

Copyright 0 2000 John Wiley & Sons, Inc 
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Figure 14.1 Six labelled triangles: A, B and C have the same shape; D has 
the same shape after relabelling; E can be reflected to C; F has u different shape 
froin the rcst (Drydcri & Mardia, 1998. @ John Wiley & Sotis, Ltd, reproduced 

with permission). 
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cont.raqts ~ i i  = 24 - P, i = 1 , .  . . ? k ;  where P = & $/k. We call these 
czntwd lurbdmarku. .41ternatively, a coiivenient set of k- 1 orthiogorid coiitrasts 
ccm be obt.ained as follows. Recall that the standard k x k Helmert matrix has 
its first row with elements equal to k-4  mid the remnirihig rows are orthogonal 
to this f is t  row. Let H denote the (k - 1) x E matrix which consists of the 
last k - 1 rows of the Helmert. matrix. We call this matrix H t.he Helnaert 
sub-rrrat~ix. Explicitly, the ft.h row of H is gi~i'en by 

( ~ ~ , . - . ~ ~ j ~ - j ~ ~ , ~ , . - . , ~ ) ,  hj = { j ( j +  I.)}-'? j =  l 7 . - - , k - l t  (14.1-1) - 
f 

where hi is repeated j times. Thus a corivwiiaxit set of k - 1 orthogonal 
contrasts consists of the rows of H. Let ZII = Hzo be these new landmasks 
obtained from z'. We call ZH the vector of Hebmes-tdsed landmarks. 

Rirthier, ZH a i d  O Z H  are qtli\Jalent in shape for any real 1iwxibe.r Q > 0. To 
tilt.er out. this scaling effect we can simply scale ZH, i t .  we take ZH/ 11 ZH 11 = z, 
say, wtiere z = (21, . . . , zk-1 )T.  We tiave 

l2# + . . . f I Z k - 1 1 ~  = 1, (14.1.2) 

so that. a lies on the iiriit sphere S"-" = CSk-2 in a?-*. This forrriiilation 
indicates that we require statistics of observations on a coriiplex sphere. Such 
a z is called a preshupe and S2k"-3 is called the preshape space of eonfigurations 
of k points in the plane. Specifically, for the triangle case ( k  = 3), define 

20 = (2: + 2; + %;)/a, 

82 = (22; - 8 - ~20)/(mH.011h 

%] = (2," - z:)/(JZIIH."ll), (14.1.3) 

where 
llHzo112 = $12: - zy12 + i I 2 z i  - zy - z$'. 

Then (21 , 2 2 )  is the preshape detmnind by the raw landmarks zy, z: imd zg. 
Note that the prediape z lies 0 x 1  a complex sphere in (k - 1) ccmplex 

dimensions, although we started with a configuration which ccm bc regarded 
as a point in Is complex dimensions. We will s w  below that sorrietixnes it is 
convenient to preserve the k dimensions. This can be done by using 

zc = u / ~ ~ I I ~ I  = H"z. (14.1.4) 

where u = ( t i , , .  . . , uk) with ui = 2: - Zo, i = 1, .  . . , k. Then ZC, lies on the 
unit sphere in S"-' = QISk-' in cfk .  We call z(- the centwd preshap. Of 
course, there is some rmluiidaic:y in this representation. hiostly we will be 
using the preshape z, which will be called the Helmertised preshape if there 
is m y  confidon with the rentred preshape. 
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We hilvc yet to remove t.he effect of rot.ation on z. The shapci of z is the 
same as that of eiwz for a ~ i y  red Q. The set of equivdence classes [z] of points 
z on the complex sphere where z is regarded as equivalent to ei@z for d l  3 is 
kr~owri as compkx projectiue space cPk-2;  [z] i.1 the shape of z anti cpk-' is 
known as the dupe spuce. U'e also denote the shape of z0 by [zO]. Note that 
t.wo cwnfigirations z: and z(2) hii,v(? t.he same shape if 

z: = a l k  + 6ei'"zX (14.1.5) 

for some a in C , q  in S',6 > 0 md l k  = (1 ,1 , .  . . Here a represents H 

change of location, 6 a change of scale, and 3 a rotation matching z! to 2:. 
We could rewrite this expression as 

%O 1 - - C I l A !  +az;, (1 E @,,$ E c\{o). (14.1.6) 

Onc pwsiblc! co0rdinat.e system on CP"-" is given by 

j = 1,.  . . , k - 1, W? = ~ j / t l ,  (14.1.7) 

when ZI # 0, and by adding il point. ii,t infinity when 21 = 0. These called 
Kendull's shape coordinates. Alternatively, we have Booksteiu's (1986; 1991) 
com plex shape coordinates 

(14.1.8) 

provided that 2: # 3;. Since wp = 0, wf = 1, this is effectively a 
(k - 2)-diiensiond complex reprcsent.ation. Landmarks 1 and 2 are called 
the base with respcict to which the ohjwts re&ten?d i.e. the object.s are 
standarclised with respect to the coimion base line. Note that this is not a 
symmetrical method of wgistmtion. 

We ~ i o w  describe some practkitl ex;unples. 

Example 14.1 
For 21 nlicroscopic fossils (Gluborotulda trwncutuUnoides, see Fig. 14.2) thee  
landmarks are given in Table 14.1 below. Do the triangles given by these 
lmdrriarks tend to be al~nost quilaterd? 

Example 14.2 
Given a set of a 111o1w.e vertebrae (2nd thoracic bone: T2) with six 
mathematical landmarks (see Fig. 14.3), what is the sample mean shape? 
How rmi its variation be measured? If we take additional lnndmarks (pseudo- 
landmarks). (say) seven equally spaced points between each pair of adjacent 
limdmltrks, Whii,t is the cffett on the mitlysiu? 
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Figure 14.2 The outline of a microfossil with three landmarks @om 
Bookstein, 1986; reproduced by psrIuisbion of the hstitute of MatheInatical 

Studies). 

Example 14.3 
Given unlabelled triangles arising in central place theory (see Example 14.5), 
hiow should one assess the eviderice for the texideiicy of the triangles to be 
equilateral'? 

Other practical examples include: object recognition in images through 
shape representation, testing whether or not some prehistoric sites tend to 
lie 011 ley-lines, testing whether or riot, a givexi set of quawrs lias 011 a great 
circle on the celestial sphere. 
We end this sect.ion with a few comments on why some of t.he most 

straightforward coordinate system are not as useful. For the triangle case two 
internal angles are the most obvious choice of coordinates that are invariant 
wider the siniilarig transformations. Hmwer, it sooil 1)wo11ies apparent 
that using angles to describe shape can bc problematic. For cases such as 
t.hat. of very fli5t t.riang1es (three points in a straight line) there are mimy 
tfifferent arrangemeiits of three points. For larger numbers of points (k > 3) 
one could subdivide the configuration into triangles and so 2k - 4 angles 
would be nmdd.  Also, probability distributions of the arigles themselves are 
not easy to work with (see Mardia, Edwards & Puri, 1977). If the angles of' 
t.hc? t.rianglcs iue z1 ?n2 ;znd ZY, t.hen the UYC: of log(z1/q) imd log(z?/z:,) 
(where z1 + 2 2  + ZQ = 180') lias soIiie potential for arialysirig triarigle shape 
(Aitchison, 1986; Pukkila & Rao, 1988); we can follow the standard procedure 
for compositional da.ta aidysis arid this approac:h car1 be adapted to higher 
dimensions. 
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Figtare 14.3 Grey-level irnage of a T2 mouse vertebra with six rnathernattical 
landmarks (diamond round a +) aud $2 pseudo-landmarks (-I-), eqndly-spaced 
between adjacent pairs of landmarks (Dryden & Mardia, 1998. @ John UWey E 

%)US, Ltd. Reproduced with permission). 

14.2 MEAN SHAPE AND VARIATION 

Suppose that we are giveii ceiitre(i configurations u, in ck, j = I,. . . .YI. 
1% give in this section an int.uitively reasonable definition of mean shape. 

First consider only two wrifigurations u1 anti U.L. In order to compnre these 
two configurations hi shape. we need to estimate a measure of distance between 
their shilpeH. A suitable protdure is to matrh U.L t.a u1 by using the simi1;uit.y 
trariufortnatio~~s, arid the tfifferences between the fitted u . ~  arid observed u1 
indicate t.he magnitude of the difference in shape between UI and u2. From 
(14.1.6}, we mi exxprttys the matching by the complex regression tquatioxi 

us = a l k  + ,3u2 -t E ,  

where u, ,3 E 6: with !3 # 0 arid E is a rox~ixplex error vector. 



where u* cleiiotes the transpose of the ccmplex conjugate of u. The optimal 
representation of UI in terms of u2 is given by ul = 151 +buz and we say that 
u2 is r e y i s t e d  with respect to u1. Indeed, if u1, up are writred laridmarks, it 
can be shown by standard differentiation that 

6 = 0, !? = u;u1 /u;up. (14.2.2) 

Rirthcrmore, the rwiduitl sum of sqiiares is given by 

Since d(u1, u2) is not syrni~ietric in u1 aid  u2 we replace the problem of 
minimising (14.2.1) by the problem of minimising 

(14.2.4) 

with respect to u and 8. This leads to 

dF(U*,U2)2 = 1 - {~u;u2~}'/{Il IIII u2 11y = 1 - lz;cz2cl ' ! (14.25) 

where z1c and z 2 ~  are the centred preshapes corresponding to u1 and u2, 
respectively. The quantity dF(  u1 , u p )  is termed the JW Prr~:r-u~teu distunce 
between the shapes [ul] and [u~]. For a proof that d~ represents a distancc 
see, for example, Kent (1992). The ciistmcu is qrialified by thta word 'full' 
since we have miriiruised with respect to both scale (1131) aid rotation (arg 8). 
Alternativcly, we could have set up the problem of minimising 

where zl and 2 2  are prehapes correspoiiding to u1 a i d  u2 re-ypectively, so 
that 

dp(u1,uz)~ = 1 - 1z;z21? (14.2.6) 

We will denote this distance also by dp(zl. 22). If p(zl,za) denotes t.hc shortest 
great circle dist.mcc between z1 and $2 on the preshape sphcre in C"', t.hen 
(see, for exarnple, Drydexi & Mardia, 1998, pp. 72-73) 

d ~ ( z l , z 2 )  = sixip(zl,zp). (142.7) 

Kendall (1984) has shown that p(x1, zz) is the Riemanian distance on QIP"2 
between z1 arid zp (given hy half the Ful>ini-Stntiy metric). 
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Bearing this type of registration in mind, we define t.he mean shape [fi] 
of the centred configurations [ul], . . . , [u,,] ~ts the shape of the element p of 

which niinimises the objective function 

(14.2.8) 

where llpll = 1 and a, and 3j are included because the shape of uj is defined 
only up to loc.&k)n, scale mid rotation. Without any loss of generality, we 
centre p so that p"l = 0. Thus we aim to Illinimise 

n 

(14.2.9) 
j= 1 

with respm% to p, uj arid i? j .  AsvurniIig p to ~ ) e  kr~owri arid using lTu.j = 0, 
t.hc least-squares estimates for ~j and i3j are 

iij = 0, ,3; = p*uj/(u;uj), j = 1, .  . . ,n. (14.2. lo) 

p* - &!Ik 3 - $ ' ?~ t  I f  = p"H. 39 

Xotc that from (14.2.10) 

(14.2.1 1) 

where Hj = I - (~j*uj)-~ujuJ. Further, from (14.2.11) we have p*HjH,p = 
p*Hjp, so that the minimum of (14.2.9) with respect to Q I , .  . . , a n  and 
$1, . . . ? /3,, becomes 

np*p - p*StLp. (142.12) 

where 
#k 

s u  = ~(u,u;)/(uj.uJ). (14.2.13) 

Thus, under the constraint p'1 = 0, ~ ~ p ' ~ ~  = 1, I l J j u j l I  = 1, j = 1, .  . . ,n  the 
value of ii which minimises (14.2.8) is the domincant eigenvector of S, up 
to rotation. This [p] is called t h e  Prucrustes mean shape. We have followed 
a general Procrustes strategy for matching configurations (see, for exmipie, 
Mardia. Kent &. Bihby, 1979, pp. 417-419). This result is due to Kent (1992) 
a i d  further details are give11 in K a i t  (1994). -4 full trmtmeiit of shape analilysi~ 
based on Procrustes methods has been developed by Goodall (1991). 

Using (14.1.4}, we rnri rewrite (14.2.13) in  terms of the preshapes zJ as 

j=i 

s, = H%H, (14.2.14) 

with S = Cy='=, z3zj*? i.e. S is the matrix of the coinplex sum of square2 arid 
products. Let 3 be the tiorrihinrit eigerirvx%or o f  S. Then f i  = HTD up to a 
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rotation. Similar arguments apply t.a the other eigenvwtoru of S, and S. For 
shape mialysis, we choose to work oil S. 

Lct 61,. . . , I k - 1  be the eigenwlues of S. Xotc these are d l  real and non- 
negative. arid 

11 + . . . + 1k-l = Y1. ( 1 4.2.1 5) 

Let gl, . . . , ge-1 be the eigenvectors of S corresponding to 1 1 , .  . . , Lk-1, 

respectively. If E l  'Y . . . 'Y Ik-1  then the shapes are 'diffuse', i.e. [zl], . . . , [z,] 
are highly dispersed on Let 0 < 61 < ... < 6k-1 ;  then g k - 1  = P,  
where [v] is the mean shape. Since Ilgk-1Il = 1, gk-1 is defined only up to 
multiplication by a unit coriiplex number. i.e. a rotation of the plane. For 
visualisation purposes wic can select a suitable rotation. If 1k-1 is very large 
cornpareti with 1 1 , .  . . , Ik -2 .  i.e. Ik-1 is iiearly n, then the data *t is highly 
concent rated. 

Example 14.4 
Let us consider the data consisting of six landmarks on the T2 vert.ebrae from 
23 mice; the full data set is given in Dryderi tk M d i a  (1998, pp. 313-314, 
sniall-group case). The cigenvalues of S are 

I 1  = 0.004, 12 = 0.005, Is = 0.012, 1.1 = 0.072, 15 = 22.905. 

Thus there is an cxtremcly high c:oncc!ntrat.ion around the mean Shi%l)e, as 
22.905 is very close to 23. The inem shape is given by the eigenvecto,: 
corresponding to 66, which is 

gs = (0.041 + 0.246i, 0.408 + 0.072i, 
-0.495 - 0.716i, -0.056 + 0.03'2, 0.089)T. 

Note that lr(HTm) = 0, so that the configuration is centred (in addition 
to being of unit size, as ggHH'g6 = gzgs = 1). The cigcnvector is defined 
only up to il rotation, so we can plot. ei*HTg5 for siiit.able a. Here a is 
selected by rotating the mean shape so that the line joiuing the two landmasks 
furt.hest apart is horizontal. Phis mean shape ei"H?'gS is given by 

(-0.507 - 0.143.i, 0.506 - 0.143Z,0.085 + 0.154i: 
0.012 + 0.424, -0.070 + 0.160i, -0.026 - 0.451i)* 

and it.s six coriiponeiits are plot,ted in Fig. 14.4, together with four sample 
shapes which are farthest away from this mean in terms of the Procrustes 
distance, the lugest ciistaiicu being 0.13. We cdl this mean shape the sab-mean 
shape. If we use the mean shape using thc 42 pseudo-landmarks as well (shown 
in Fig. 14.3), the new mean shilpe is, of course:, closer to t.he cont.inuoiis hone 
outliiie than the subr~iean sbape, as sbown in Fig.14.5. Figure 14.5 also shows 
the mean shape of t.he six landmarks used before; the Procrustes distance of 
these points to the previous xrieari is 0.006, which is very small. 
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-0.6 4 . 4  -0.2 0.0 0.2 0.4 0.6 

Figure 14.4 Procrustes mean shape (solid line) for the mouse T2 vertebrae 
(six laudmarks) with the four furthest saniple shapes superiiuposal (dotted 

line). 

When data ase concentrated, we can use an appropriate tangent space, as 
in direct.iona1 statistics. Fkall from Chi%pt.er 9 that if p ( p  E Sf'-') is the 
irieari direction of x, llxll = 1, p r x  = COY e then as in the tangent-normal 
deconiposit.ion (9.1.2}, we have 

(14.2.16) x 3= (cos e)p + (! 6 = ( I ~  - ppT)x, 

so that ("p = 0 and the vector 6 is the projected value of x. Note that hi 
the c C w  (p = 2) of the circle with p?' = (cos p,sin p) ,  x'I' = (cos @,sin O ) ' r ,  
we have <* = (- siiip, c ~ t j p ) ~  sin(B - p ) .  That is, for 11 = 0, we mi work on 
8,  since sine N 6' for B cz 0. So: for concentrated data we can use standard 
statist.ied tools on 81 - /A,. . . ,8 ,  - /A. 

In shape analysis on the plane, let z = (q, ..., t k - l )? '  be preshape 
landmarks and let 7 be a mean shape. Then we can select a tangent projection 
siic41 that the configiiration is rotated t,o be as close as possible to 7 before 
projection (Kent, 1994), i.e. we use the tangent shape coordinates v defined 
by 

v = (Ik-1 - 7 y * ) z P ,  (142.17) 
where Q minirnist?s (7 - ei*z)* (y - @z), i.e. li, = - arg(T*z). 

It is common in multivariate analysis to use principal components to obtain 
a parsiInonions surrirnnry of the (fats, arid we could apply the technique to 
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4.2 -0.1 0.0 0.1 0.: 

Figure 14.5 Procrurrtcs m e w  for the mouse T2 vertebrae (i) 48 1,mwdmwks 
(dotted line), and (ii) 6 landmarks (solid line). 

landmark data using the principal components of' tangent. shape coordinates 
(see also Exarnple 14.8). It car1 be shown that ai isotropic tiistribution for 
landmarks about a mean gives rise to an isotropic distribution hi the tangent 
space to t.hc? mcian (Mardia, 1995), which is a desirable property since t h c  
covariants structure in the tarigeut space with respect to the orthonormal 
basis is preserved. However this property breaks down if we use Bookstcin's 
coordixiatw (see Bookstein, 1991; I h i t  & Mardia, 1994). 

142.1 Directional Averages 

The Procrustcs procedure used above can be applied to directions (Kent, 
1992). That is, consider ari equivalence rlasu of vectors in IR" in which a 11011- 

zero vector x is identified with the ray {rx : I' > 0). Given data UI,. . . , u,~ 
on 9 - I :  we can define the average j i  in 9 - l  to minimise 

n 71 

i= 1 i=l 

over ri aid p in 9-'. Minimisiug first over ~ ' i  = (P'Ui)+ (where u+ = cy: if 
o > 0 and as. = 0 if CL < 0), the objective function becomes 

n 
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Here ji is t.hc? dominant eigenvwtor of C, uiuT, where C+ indieatcs that the 
swii is take11 over data values ui for whidi fiTui > 0. The selection of t e r m  
in this sum depends on ji and the sign of f i  matters here. 

The direct.ion fi  is in some sense a rwiutant eHt.imlttor of average direction, 
because data values more than 90° away from j i  ase given weight 0. However, 
fi  is not necessarily unique. Consider a data set on the circle consisting of 
three tight cliist.erv o f  data approximately 120’ apart from o~ie miother. The11 
f i  can take three values; in each case fi  points towards the centre of one of 
t.he clust.ers imd ignnores the ot.her tn7o. Further, notc that this c:onutruction 
of f i  coincides with Procrustes analysis for shapes in one dimension. Thus, 
Procrustes methods do not necessarily lead to a uniquely defined average in 
this caw. 

A similar type of’ argument can be a.pplied in hiding an average for axial 
data. The i%w?rtip of (4x11, . . . , fun)  satisfies (Kent, 1992) 

n 

(14.2.19) 
i= l  

over P’i > 0, oi = fl and p in SP-’. Thus f i  is proportional to the resultant 
vector of the Ui after the signs of the Uj have been switched SO that they all 
lie in the sane 1:emispl:ere. Again, fi  is not, wiique. 

l4.2.Z Form Average 

Sote that wic cam define the Procrustes size-and-shape (form) average (e.g. 
Kwt, 1992). Two coiifigwatioriy u1 arid uz have the ~iiliie form if u1 = 
a l k  -t ci*u, for some Q in Q: and 2/r in 5’’. Following the method described 
enr1ic.r for the Prwrustes shape average, we find t.hat. the Procrmtcs form 
average is 

n 

(14.2.20) 

where Vj = Huj, u = Hp, and ij has to be found by a numerical procedure. 

14.3 SHAPE COORDINATE SYSTEMS AND UNIFORM 
DISTRIBUTIONS 

We now discuss uniform distributions on shape spaces. Let 1ql2 + ... + 
Izk--112 3= 1. Sirice (IrS”-” = S2k-3: we rmi use spherical polnr coordinates 
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for (Rc!(%l), Im(rl), . . . ? R e ( t k - l ) ,  Im(%k-1)) on s2k-3. Howe\7er, varioils 
alternatives are available. 

14.3.1 The General Cue 

Kent's Polar Coordinates 

Kent (1994) has proposed some non-standard polar cwordinatss on the 
presfiape sphere. Given a point (21,. . . , ~ k - 1 ) ~  on CS"', we transform to 
($1,. . . , S k - 2 , 8 1 : .  . . , e k - 1 )  by 

Re(zj) = sj a cosej, Ini(zj) = s j  t sinhtj, 

s j 2 0 ,  O<0j<2n,j=11 ..., k-1, (14.3.1) 

sj .  The coordinates s = ( ~ 1 , .  . . , ~ a - 2 ) ~  are 0x1 the k-2 where Y k - 1  = 1 - 
(k - 2)-dimensional unit simplex, 

A c - 2  = {SE Rk-2 : $1 + ... + 8 k - 2  5 1 ? 8 j  2 0: j = 1, ... ? k - 2 } .  

Noting that the volume of the unit simplex A,-? in lRk-2 is l/(k - 2)!, it can 
be shown that the nnifonn tiiiytribution ON CSk-' = S"-" 1 im pro t)ahi1it8y 
density function 

S E A k - z , @ j  E s',j = I,.. . ,k - 1. (14.3.2) 

Thus el, . . . , 
variates on S', independent of s. To obtain the uniform distribution on 
we procwd as follows. Define 

are indeyendeiitly arid ideutically distributed uniform 

@j=ej-&-l ,  j=1, ..., k-2. (14.3.3) 

We can represent any element of (CPk-2 (i.e. a shape) by ( s I , @ I ) ,  .. . , 
( 8 k - 2 ,  c&-~). The uniform distribution on (CP"-" has densit.y 

where f is given by (14.3.2). Sote that 41, .  . . :&-2 and &-1 me identically 
and intiependently distributed its uniform variables on S' . Hence ho~n ( 14.3.4) 
the uniform distribution on (CPk-2 is given by 

(k - 2)! 
d.;. = - dsl . . . dsr -2dQI . . . d 4 k - 2 ,  (14.3.5) 

( 2 7 r ) k - 2  
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where s is in Ak-2 and 41,. . . , & - I  iue in S1. Not.(! t h t  the 
probabilit,y tlerisity function (14.3.5) is corist~axit with respect. t,o f1.q . . . dsk-2 
dQ1 . . . dcpk-2. The measure in (14.3.5) is the unaform shupe ntemum. In the 
txiarigie case (k = 3), the nnifonn shape rneaSure is siInpiy 

(2n)-%qd&, 0 5 91 5 1, 0 5 4, < 25F. (14.3.6) 

Keuddl’s Coordinates 
Recall the Kendid1 coordinate system defined in (14-1.7): 

“j1Zk-I  = I.je;qJ., (14.3.7) 

$ a. where rj > 0 anti 0 5 qbj < 2n, j = 1, . . . , k - 2. 011 substittitirig z j  = s 7 t! J 

in (14.3.7) and using (14.1.2), we have 
3 

\ 1-z”i19 i=l j = l  

Surnrriirig (14.3.8) over all values of j ,  we firid that 

(14.3.8) 

k-2 

Y j  = 7$/(l+ A), .4 = c r ; ,  (14.3.9) 
j=1 

(14.3.10) 

L‘sing (14.3.10) and the result that for a (k - 2) x (k - 2) iriatrix B with 
(B)i, = 1 + bi,i = j ,  (B)i, = 1 for i # j ,  we have 

it is found t.hat. t.hc? Jacobian J = la.si/drjI of the transformation is given by 

Conwquently, from (14.3.5), t.hc? uniform distribution on CPk--‘, in terms of 
the shape w i a b l a ~  (lefixied by (14.3.7), is given by 
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Thus, in the Kendall coordinate system rjeid, = xi + iyJ, j = 1 : .  . . , k - 2 
(see also Mwdia L DrydeIi, 1989b), the wiiform measure 011 the shape space 
b:Pk-?- given by (14.3.11) reduces to 

14.3.2 The lliorryle Caw 

Since CP' is equivalent to S2$ the shape of a triangle c w  be studied 
through direct.iona1 statistics for the sphere. vl'e give here a specific description 
(Mardia, 1999). For k = 3, the trarisforrriatiori (1431)  can be written as 

21 = s*cZ(@+''), 22  = (1 - .~)$e'@', 0 5 ?I 5 1,0 5 4 < 2n, (14.3.13) 

on letting fl2 = ,t$, dl = d, s1 = s. The prcshczpe probability element of (s, 4, $) 
from (14.3.2) is given by 

(2n)-"clu d@ d& (14.3.14) 

so that s,4  and $ are all independeiitly distributed, where Y is uniform on 
[o, 11 and 4 imd 6) ewti uniform on s'. L C ~  sf = C W B , O  5 B c ~ / 2 ,  so 
that from (14.3.13) we liave 

z1 = cos @,i(9+4, t2 = e),'t!' (14.3.15) 

and the preshape probability element from (14.3.14) of (fl,#,q) is gi\Vc.cn by 

(2n)-?- sir128 d~ d# dqj, 0 5 B < n/2, o 5 4, < ~ n .  ( 14.3.16) 

Also, note that (fl, d) are the Kendall shape coordinates in CP' and the shape 
probability element of (0; Q) is simply 

(2nl-l sir128 d~ c&, o 5 e < ~ / 2 ,  0 5 Q < ~ n .  ( 14.3.17) 

On 'doubling' the angle 8, we set! that the point with spherical polar 
coordinates (20,6) is uniformly distributed on S2 and the Cartesian 
coordiriatw for (28, Q} are giivcn hy 

2 = sin 26, cost$, 9 = sin 211 sin d, t = cos 28, zz + i2 + tP = 1 . (14.3.18) 

Fkom (14.3.15) it can be shown that we cCm rewrite (14.3.18) as (I<endall, 
1984; Kent. 1994) 

z = 2nt? (E192) ,  y = 2 I!11(Z1.4, 2 = 1.11~ - 12212; (14.3.19) 

we will call this transformation the sphericul isometric transfomtution. 
Set @(z) = (2, y, z ) 7 .  Then it can be scyn that @(z) = @(e*Vz), so that +(z) 

depends oiily OII the quh~ale im class of z in CPI.  Also note that the Kendall 
coordinate z1/z2 in this representation from (14.3.15) is ci* cot B which, as 
exp&.ed, depends only 011 (8, Q}. 
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l4 .X.7 The Shape Sphere 

We now give some insight into t.hc sphcricd shape spacc. Consider the 
Bookstein coordinates (u ,  u )  with base 2: = - 3 , z ;  = !j and 230 = u + iv. 
The components z1 and s"2 given by (14.1.3) of the corresponding preshape 
are foimtf to be 

z1 = (1 + .')-i, zp = 2(&)-1(1+ ?)-&(I1 + k), 

where r2 = 4(u2 + c2) /3 .  Substituting these values of 21 and 22 into (14.3.19), 
and using (14.3.18) with 28 replaced by 8, wic find that 

S ~ ~ C O S ~ J  = 4(fi)-t(1 + ? ) - ' u ,  

siri8siIi 4 = d(d5)-i (1 + .i2)--lv, (14.3.20) 

COS8 = (1 - ?.2)/(1+ 2) .  

where 0 < 8 5 7~,0 < d~ 5 2 ~ .  We can now use (14.3.20) to map the shapes 
of triangles from (11, u )  in R2 to the spherirsl shape coordini$ttcs (13, 4). For 
example, for the equilateral triarigle (with labelling iuiticlockwise) we have 
(u, v) = (0, d / 2 )  which leads to the 'north polc' (# = 0) on S2 from (143.20) 
arid for the rttffm%ed quilateraJ triangle (with labt~lli~ig clockwise), we have 
(u, c) = (0, -&/2) which leads to the 'south pole' (8 = T) 0x1 S2.  Continuing 
in t.his way, Fig. 13.6 shows varioiis triangle shapes locat4 on spherical shape 
space. Thus the equilateral trimigle aid its reflection are at the riorth pole 
(6 = 0) and the south pole (6 = T } ,  respcctively. The fiat triangles (three 
colliIiear points) lie antuxid the quator  (8 = n/2). The Lmsceles triangles lie 
on the meridians 4 = 0 , ~ / 3 , 2 ~ / 3 , ~ ,  4~/3,5a/3.  The right-angled triangles 
lie on threw small circles given by 

sinBcos ( # -  - 2:) = ;, E = 0,1,2. 

and we we the arc of 11nli~hellt?d right-angled triangles on t.hc front half- 
lune in Fig. 14.6, where we note that the sphere can be partitioned into 6 
lunes and 12 half-lunes; one example of a Full lune is the region defined by 
0 5 9 5 ~ / 3 , 0  5 8 5 n arid m e  ~xample of a half-lime is the region tiefind by 
0 5 0 5 n/3,0 5 6' 5 n/2 .  Reflections of triangles in t.hc upper hemisphere a.t 
(@,@) iue 1oc:at.d in the lower hemisphere at (r - I 9 , @ ) .  In addition, permuting 
the triangle labels gives rise to poirits in each of the six equal half-lunes hi each 
hemisphere. Thus, if invariance under labelling and reflection were required, 
then we woirld be rttytricted to 011e of thee  half-iunes, e.g. the rtyjoxi defined 
by 0 5 @ 5 ~ / 3 , 0  < B < ~ / 2 .  

Considcir a triangle with labels A :  B md C, and edge lengt.hu AB, BC and 
AC. If the labelling aid reflection of the points was wiimportiuit, then we 
c ~ d d  relabel each triangle so that, for example, AB 1 AC 2 BC and point 
C is above the 1 ) ~ ~ e l U ~ e  AB. 
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Equilateral (north pole) 

Unlabelled 

Reflected equilateral 8= ff v2 (south pole) 
3 

1 

Figure 14.6 Kendall's spherical shape space for triwglw in two dimmsious. 
The shape coordinates are the latitude I )  (with zero at the north pole} and the 
lotigitucls 9; the ~liadccl area is a half-Itme (Drycien k klarclia, 1998. @ John 

Wiley xi Sons. Ltd. Reproduccd with permission). 

For practical analysis and the presentation of data it is often desirable 
t.a iise a siiit.able projtxtion of the sphere for triangle shapes. Kwdall (1983) 
tiefined ai equal-area projection of one of the half-hies of the shape spliere for 
displaying unlabelled triangle shapcs. The projected lune is bell-shaped and 
this grapiiical tool is also known as 'Kexidali's bell' or the spherical I,lat:kboard. 
Let (5, g, t) be a point on a Iialf-lune with vertices at 

L = (1,0.0)? L ~ I  = (1/2, ~ / 2 , 0 ) ,  J%' = (0.0, 1). 

Consider the point P such that LP = M P  = N P .  Points on the hdf-lune are 
mapped to the cylixidrr whidi toudies the sphere at P ,  a i d  this cylinder is 
unwrapped, with P at the origin to give the blackboard. Explicitly, a given 
point (I, y, z> on S' is mapped to (X, Y) on the bell (sce, for example: Mardia 
& U'alder, 1988), 

For mi example, see Fig. 14.7 Mcm. 
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An alternative tqual-area projtxtion is the Schmidt net (see Section 9.1) in 
Fig. 15.7 which gisivrs a plot of one of the half-luneu 011 the upper hemiupliere 
of shape space projected onto the Schmidt net with varying triangular shapes. 
Both representations preserve area, arid it is a matter of persorid preferewe 
which representation is used. 

? I . ,  , 

-0.5 0.0 0.5 

Figure 14.7 Part of the shape spacc of triangles (from a half-lime of Fig. 
14.6) projected onto the equal-area projection Schmidt net. If labelling and 
reflwtiou were not iiiiportruit, then all triangles codd bc projected iiito this 

Sector (Dryden & Mardia, 1998. @ John Wdey tk Sons, Ltd. &produced with 
pecrmission). 

Example 14.5 
We now illustrate the graphical method for data where the triangles are 
urilahelled a id  reflection invariant. Centrid place thtxiry is concerned with 
the pattern of human settlement (see Okabe: Boots 8i Sugihara, 1992), and is 
t.he situation where t.awns we distributed on a regular hexagonal 1at.tice over 
a hornogenmus area with t,ownu at centres of hexagonu. Mardia, Edwards &. 
Puri (1977) consider this hypothesis for a map of 44 places in six counties in 
Iowa, ~iariel?; h i o n ,  Ringgold: Clnrke, Decatur, Lucas arid Wayne Coiinties. 

In order to examine whether or not central place theory holds, one could 
examinti t.he shapes of the triangles formed by a toun and its neighhours to sect 
if they are more ecluilaterd thm expected under a hypothesit of raridoinneus. 
A convenient triangulation of the towns is a Ddaunay triangulation (klardia, 
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Figure 14.8 Delaunay triangles for the Iowa towns. 'Mangles with one or two 

points on the hoiiticlary have bwti retnovecl. 

Edwards & Piiri, 1977) which is given in Fig. 14.8 for t.his data yet. For 
ide? ceiitrd places. Delauriay triangles would 1)e equilateral triarigles. An 
important question to ask is whether the Delaunay triangles are more 
equilateral than expected by thance. 

To answer this question by exploratory analysis, points have beeii plotted 
in Fig. 14.9 on the bell according to the AiiI )W of the Deli%un;zy triangks. 
Thus figure also give% an average shape of the data a id  the meail uiider the 
hypothesis of the uniform distribution. Fijpre 14.9 indicates that there is a 
tentfenry for shapes to contsntrete towards the top of the bell, i.e. to be more 
equilateral. For various anaIyses of the data, see Dryden, Faghihi & Taylor 
(1996), Kcndall (1989), Mardin, Edwards & Puri (1977) and Mardia (1989). 

14.4 A TEST OF UNIFORMITY 

We have noted hi Section 14.2 that if all the eigenvalues of S ase nearly equal 
then the shapes will be very dispersed. We now provide a test for assessing 
sudi a situation. However, it should be mentionml at the outset that one 
does not usually come across such shape data in practice. To formalise the 
problem, let z1 , . . . z, be a riuidcmi sample 011 1; iiriiforrrily ciistri1)uted 011 

CSk-'. It follows h n i  symmetry or (9.6.1) that under this assumption all 
the eigenvalues of E[zz'] are equal. 

Let. us write Re(zi) = xi, bn(zi) = y t ,  a' = 1,. . . , ri mid 

S/n=T+YU, 

where 
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Figtare 14.9 The Iowa central place data on kidal l 's  spherical blackboard 
(from Marciia, 1989). Some special pointa are marked? an average shape (*), the 

mean of the uniform distribution ( x ) arid the centre of the bell (+). 
(R.cpmdiiccd by permission of the Royal Statistical Society.) 

Let 1 1 , .  . . . 1k-1 be the eigenvalnes of S. For large n? we have that 
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horn the result (9.6.2) on the moments of t.he uniform distribution on S2k-3, 
we have 

E(s:] = 3{4k(k - l)]-', E[zlyT] = {4k (k  - 1)I-I. 

This Iexds to 

var(tii) = u(k - 2 ) / ( k  - I), cov(t i i , t j j )  = -u / (k  - I), 

where a = {11k(k - I)}-'. SiniilarIy, we find that vm(t+j) = vm(erij) = a/2 ,  
cov(t,,,titjl) = cov(uij,uitjt) = O,i # i', j # j ' ,  cov(ti,,ui,jn) = O for all 
i ,  i f !  j .  j ' .  

Using these moments, we find that 

cov(v) = ct diag(lk-i - l k - ~ l i - ~ ( k  - 1)-', fl,, frIk-1) = A, say. (14.4.5) 

It can be shown that 
A - -  -1  - (Ik-l,21,, 21,) (14.4.6) 

and the rank of A is (k - 1)2 - 1 = k' - 2k. Hence for lilrge n, by the cent.ral 
liiriit theorem, 

{V - E[v])'A-{v - E[v]] - 2  XL>-'L. (14.4.7) 

Using (14.4.3)-(14.4.6), we can write the left-hand side o f  (14.4.7) as 

(14.4.8) 

Heiice the result follows. 

rriodifica.tion Q' of Q given by (Jupp, 2001) 
Whereas the approximation (144.2) has error of order O(n- ' ) ,  the 

8 2k2 - 3k + 3 4k2 - 9k + 3 
w* = {' - 6(k + 1)n 6(k2 - 'Lk + 2)(k + 1)n 

k(k - 3) - 
3(k + l)(k" - 2lc + 2)(kZ - 2lc + 4)7L 

has a distribution with error of order O(n-'). A h ,  note thilt under 
uniformity E[Q] = k2 - 2k. Further, 62 is the score statistic for testing the 
uriiforrriity o f  a complex Birigharn distribution (see Scwtion 14.6.1). 
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For the t.riangle crtve (k = 3), wc notc from (14.4.2) thiit 

(14.4.9) 

sincc 1; +& = 1, where & = l i / n  for i = 1,2. Let R he the mean resultant length 
of the data (111 S2 obtained by using the isometric trarisformatiou (14.3.19). 
Calculating the eigenwlues of thc 2x2 matrix S explicitly, it can bc shown that 
R = - ril and Q = 3r1R2. Hence the test, giiven by (14.4.9) of unifonnity 011 

CP' is the same as the Rayleigh test of uniformity on S2 given by (10.4.5). The 
reason for this result is that the complex Binghcam distributions are equivalent 
to the Fisher distributions for k = 3 (see Sa:tion 14.6.5). 

Example 14.6 
For the full T2 vertebra data set ( R  = 6,n = 23), using the eigenvalues of S 
given in Example 14.4, namely, 

11 = 0.004, 12 = 0.005. 15 = 0.012, 14 = 0.072, 15 = 22.905. 

we find that Q = 516.3. how Pr(& > 100) = 3 x lo-". hence the full data 
provide very st rorig evideiice of noxi-uniformity. The use of Q* is ixiappropriate 
here, since Q is very large. This is a typical practical cxample in shape analysis 
which indicates thiit the data are cixtremely fw from uniform. 

14.5 SHAPE DISTRIBUTIONS 

Our main cniphasis will be on dist.ribut.ions on (CPk-*. We have seen that 
there iue t.wo main appro;tchc?s in directional statistics which h a w  produccd 
directional distributions h n i  niultivariate normal distributions: 

(i) the marginal approach, where we integrate out the riori-ciirtx.%ional 
variables (as in the derivation of the offset normal distributions; see 
Section 3.5.6); 

(ii) the coxiditional approach, where the non-directioiial variables are Iield 
constant (as for a von Miscs density, we fix the length in a suit.ablc 
bivariate Iiorrnal tiiiytribution; see Scwtion 3.5.4). 

Recently both approaches have produced useful shape distributions, 
starting with the distribiitions of Mudie mid Dryden (Mardia & Dryden, 
1989a; 1989b) following the marginal approach. Kexit (1994) adopted the 
conditional approitch and introduced the complex Bingham distributions 
(Sa:tion 14.6). However, we mi co1ist2ruct sbape distributions directly from 
directional distributions themselves. 

1. For the triangle case, the itlentification of CP' with S2 using 
the isometric transformation { 14.3.19) sends any shape distribution 
to a spherical distribution (see Scwtion 14.5.2 l~elow). Since the 
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mapping (14.3.19) is im isometry (Kendall, 1984), we call the resnlting 
distributious 011 S2 ‘distributious obtaixied by isometry’. 

2. For k > 3, we can again use a directional distribution of z on a preshape 
space CSk-2 axid integrate out? say, $ in 2k-t  = rei@, r > 0, o < $ 5 2n 
in Kexit’s coordinates, to obtain a shape density, as hi (14.3.4). However, 
a simpler approach is t.a consider a density on the preshape sphere cfSk-2 
which satisfies the cornplex S ~ I I I I X I ~ I X ~  coriditioii 

f(z) = f(e‘@z) for ilII 6) in s’, z E C S ~ - ~ ,  (143.1) 

so that integrating out over 3 is not necessary. In particular, 
co~~iplex syrnrnetrie ciistxi1)utiorlu with (iexisit.ies of the form f(a*Az) 
are a.utomatically shape dist.ribut.ions; we shall mostly discuss such 
distributions (see Sections 14.614.9). 

14.5.1 O&t Shape Distributions 

Let XI,. . . ,xk be random points in nt2. Then t.hc shapc of’ (XI,. . . ,xk) 
is a random point in (CPk-‘. A c a ~ e  of particular interest. is tlii%t in which 
XI:. . . , xk are hidependent and Xi - iy(pi, c) for i = 1, .  . . , k. For this 
case hlardia & Dryden (1989a; 1989b), hlardia (1989) and Dryden & Mardia 
(1991) have given exprttysions for the probal)ilit.y density function o f  the 
corresponding shapc distribution on CPk-2.  Dryden 8i Mardia (1991) also 
allow correlations bcitnwn landmiwks. In general, t.hesc: distributions are 
known hi the literature as MLiardia Dryden distributions. 

In the case k. = 3, the shape space is CP’, which cam be identified with 
the sphere S2. hlardia (1989) showed that the tiiiytribution on S2 of the shape 
of (X1,X2,X3} with Xi - M(pj,a21),i = 1,2,3, has probability density 
fiinction 

f ( X ; X , K . )  = {I + K ( X T X  -/- 1)) eXp{K.(X’rX - I)}, X E s2, 1x1 = 1, (14.3.2) 

where X is the shape of (p1,p2,p3) and K = C:=l(pi - fi)2/403. For all K 

this dexlsity is quite close to a Fisher density with the same xuea~i and hexice 
the use of Fisher distributions for shapes was recommended in Mardia (1989). 
Fwt,hermore, Goodall I M d i a  (1993) have obtained shape distributions in 
higher dimensions following t.hc marginal approach. For further details, see 
Dryden k Mardia (1998). 

14.5.2 Distre’htioria of fiiurigle Shpu obtuirred by Isornetry 

4 si~nple procedure for obtaining shape ciistxi1)utiorlu for triangles is to itsf! 

the mapping of’ the preshape space CP’ to S2 given by (14.3.19). For given 
raw landmarks zO, the prmhilpe cwrdinat.eH zl and 22 are obtained explicitly 
froin (14.1.3). 

N’e first consider the case where a Fisher distribution F ( p ,  K) is appropriate. 
Martiia (1989) has shown that the offset, shape ciistxi1)ution (14.5.2) (:mi 



3'26 DIR ECTIOlVAL STATISTICS 

he i5pproximat.d by a Fisher dist.ribnt.ion. Hencc when the landmiwks are 
perturbed by a nort~ial tfistributiori as described Ui Section 14.5.1, a Firher 
distribut.ion will be appropriate. However: under the assumption of a general 
multivariate Iiorrnal distribution for the configuration, a Kent tiistribution 
given in Section 9.3.3 will be more appropriate. Various hypotheses related to 
t.riangb shape are of interest. under t.he iissumption of a F(p, K )  distribution. 

(i} The hypothesis that the shapes are uniformly distributed corresponds 

(ii) The hypothesis that the mean shape is equilateral is equivalent to p = 
(0: 0,  I)". We can take, without m y  loss of gen:neralit.y, p = (O,O, l) 'r  
instead of p = (O,O: - I ) ~ .  

(iii) Similarly, if p corresponds to an isosceles triangle, we can relabel the 
triangles so that I$ = 0 arid then p = (sin d, 0, cos d)T for some d. 

(iv) The hypothesis that the triangles are fiat can bc expressed as p2 + v2 = 
1 or cquivdently q = 0, whcre p'r = ( p ,  v: q ) .  

t0 K = 0. 

Example 14.7 
Bookstein (1991, p. 406) has given landmarks for 21 triangles for the 
microscopic fossil data of Lohmarin. (Each obsctrvation is a mean value.) 
For these landmarks, Table 14.1 gives the Booksteiu shape variables 
(u?,vi), i = 1,. . . ,21 with bwc line (-;, 0), (i, 0). The corresponding 
isometric spliericd coordinates (2. y, s> = (sin 8 cos q, sin B (:os cb, cotj f?) are 
obtained using (143.20) and are given in Table 14.1. We find that the 
mean vector is x = (0.29, -0.14, 0.94)T anti the ~ n e m  resultant length is 
R = 0.990. Thus, fi is lasge. Assuming that ( ~ 1 ~ ~ 1 ,  tl), . . . , (zn,y,,, 2,) is a 
random sample From the Fisher distribution F ( p ,  K ) ,  we find that R = 201, so 
that the data set is highly cc>iiceiitrated. Further, we c a i  test the hypothesis 
t.hat t.hc mean shape is equilateral, i.e. 

Ho : p = (O,O, l)? 

An approprintc test, is the Watson-Williams teHt, which is bwcd on (10.4.23), 
i.e. 

(. - l ) (R  - C)/( l -  R)  + F2,Prr-Z,  

where C = E T ( O ,  0,l)"'. Here C = 0.936 and F2.40 = 108.0 and the 0.1% point 
of F2,.,o is 8.3. Hence this hypothesis is clearly rejected. 

14.6 COMPLEX BINGHAM DISTRIBUTIONS 

1.#.6.1 The Distributions 

The preshape z = (zi , z2,. . . , zp-1)"' lies on the complex sphere CSk:-2 and 
one way o f  constnictixig ari appropriate tiiiytribution is hy wriditioning the 
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Table 14.1 The fossil data in Bookstein coordinates (u, u )  haw: (-+, fl) and 
( 4 , O )  arid the iwrnetric spherical coordmatw (z, y, 2). 

u 21 

-0.07 0.44 
-0.10 0.48 
-0.07 0.52 
-0.14 0.66 
-0.08 0.55 
-0.08 0.59 
-0.06 0.56 
-0.09 0.63 
-0.11 0.62 
-0.10 0.66 
-0.10 0.64 
-0.08 0.66 
-0.09 0.62 
-0.09 0.71 
-0.08 0.73 
-0.09 0.72 
-0.13 0.72 
-0.17 0.74 
-0.18 0.66 
-0.14 0.68 
-0.09 0.76 

5 

0.58 
0.51 
0.46 
0.24 
0.42 
0.36 
0.41 
0.30 
0.31 
0.25 
0.28 
0.26 
0.31 
0.19 
0.16 
0.18 
0.17 
0.13 
0.23 
0.22 
0.12 

u 
-0.12 
-0.16 
-0.11 
-0.19 
-0.12 
-0.12 
-0.09 
-0.12 
-0.16 
-0.13 
-0.14 
-0.11 
-0.13 
-0.11 
-0.10 
-0.11 
-0.17 
-0.21 
-0.25 
-0.19 
-0.11 

2 

0.80 
0.84 
0.88 
0.95 
0.90 
0.93 
0.91 
0.94 
0-94 
0.96 
0.95 
0.96 
0.94 
0.97 
0.98 
0.98 
0.97 
0.97 
0-94 
0.96 
0.99 

complex multivariate Itortrial distribution with probal,ility density function 
proportional to exy(-iz"X-'z), where C is Hermitian (i.e. C = C*). 
Conditioning it on z'z = 1 gives rise to t.hc? following complex Bingham 
tfistributions. (For a similar construction of the red Bixigliarn tlistributioxts 
see Section 9.4.3.) 

The complex Birryharrr distre'htiovr with carioriical parameter rriatrk A has 
probability density function 

f ( z )  = C(A)-' exp(z*Az), z E CS"', (14.6.1) 

where the (k- 1) x (k - 1) matrix A is Herrnitimi arid C(A) i.1 the nonnalisirig 
constant. We write 

The density (14.6.1) satisfies the ixit-ariarice property (14.5.1}, a id  so it tiefines 
a dist-ribution on (EIPk-2. Thus the dist.ribut.ion is suitable for the analysis of' 
t.wcdimensiona1 shapes and WM proposed by Kent (1994) with this d m  in 
mind. 

Since Z*Z = 1 for z in (CSk-?-, the parameter matrices A and A + a1 define 
the sm~ie corriplex Bingharn tiistribution a id  C(A + (YE) 3= C(A} exp u for 

z - QIBk-s(A). 
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any complex number a. It is convenient t.a remove this non-identifiability by 
setting A;bIax(A) = 0, where A,,,,(A) cleiiotes the largest eigerivalue of A. Let 
yl,. . . , yk.l denote the standardised eigcnvectors of A, so that 

r;rj=l, r;rj=0, i f j :  ArjzAjrj ,  j=1  ?... , k - l .  

Each rj is defiiml only up to rotatiori by a unit cc~xriplex number. If 
A' = ... - - Xk-1 = 0, then the distribution reduces to the uniform 
dist.ribut.ion on CPk-'. Provided that Xk-2 < 0, it. can be seen t h t  z = ykc-l 
niaxinlises the deilsity and yk-l is unique up to a scalar rotation ys-, exp(i+}. 
Further, if A, :. . . , Xk-2 are far below 0, then the distribution becomes highly 
coiit:eiitratecl about, this modal nxis. 

A complex Bingham distribution on (CPk-* cCm be regarded as a special 
cays of i5 real Bingbam distribution on lRP2k-3. If zj = xj + iyj, define a 
2k-dimeilsioiial vector v = (21, pi:.  . . , zk, gk)I' = V(z), say, by splitting each 
complex number into its real and imaginary parts. Also, if A = (ahj) has 
eritries ahj = &j exp(i$qaj) with $,I, 3= -@laj, define a (2k - 2) x ('Lk - 2) 
matrix B made up of (k - l)? blocks of size 2 x 2 given by 

Then z*Az = vTBv, so that z - CBk-l(A) tj v - B(B) where B(B) 
denotes t.he real Bingham distribution with canonical parameter matrix B. 

It is teInpting to define a corripkx von Mises-Fisher distribution 0x1 the 
coriiplex sphere CS"' as having yrobabiiity density function proportional to 

exp(KR.e(p*e)}, z E CSk-',  

where p E Ck. Put z = x + i y  and p = v+in.  Then h ( p * z )  = uTx+iwTy,  
and so the coniplex von Mises Fisher distribution 0x1 ask-' with canonical 
parameter vector p is just the von klises-Fisher distribution on S2k-' with 
c;wionical pitmrneter vwtor ( V ~ , R ~ ) ~ .  For k 2 3, it is riot rotationally 
invariant and therefore will not be useful for shape analysis. In contrast to 
this, thc complex mi5trix von Mises-Fisher dist.ribut.ions on U ( p }  given by 
(132.25) are tliffereiit froin their couiiterparts or1 O(y) giveii I)y (13.2.15). 

14.6.2 The 1Vornaalisin.q Constant 

Lct A ] , .  - - , An,-1 he the c~igmvaliics of A with A1 c Az < - - .  < Ak-I = 0. Then 
the riorrrinlisiiig coristarit for the cor~iplw Biugliarn tfistributiori CDk-2 (A} is 

k-1 

Firrt.her, C(A) = C(A), where A = tfiag(A1,. . . , & - I ) .  
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To prove t.his we proceed as follom. Sincc A is Hermitian, we can write 
A = UAU'. where U is unitary (U*U = I), aid  A = diag(A1,. . . , Xk-l), 

where XI,. . . , & - I  are real. Ifz - CBk-2(A), then we have U'z - (CBk-2(A) 
so these two distributions tiave the same rionnalisatkm roilstarit, i.e. C(A) = 
C(A). 

in tcrms of Kent's prwhape polilr coordinates given in (14.3.1), we hii,vO the  
cornplex Biugliarn dexisity (with respect to d.Yl . . . dSk-2ddl . . . (18k-t) 

(14.6.3) 

since Z*AZ = xtzi XjZi 'Zj  = It-, '  X j s j .  Note that (91,. . . , ~ k - 2 )  and 
(0, . . . . , 8 k -  I ) are indcpendcnt. Furtk&more, 81,. . . ,&- 1 are independently 
uuiformly distributed and ( ~ 1 , .  . . , s k - 2 )  have a joint multivariate exponential 
distribution truncated to a simplex. It follows that 

(14.6.4) 
where aAk-2 = {(sl,. . . . ~ k - 2 ) ~  : sj 2 0 and x:if s j  5 a} denotes the 
' n c d d d '  unit sirnplex. We now prove (14.6.4) by iridnction. For k = 3, the 
result holds by showiug that 
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On integrating with respect. to SI we obtain 

k- I 

I(A3,. . . , & - I ;  (Y) = c bj(x1 - Aj)-'(exp(crA1) - e~xp(crAj)}. (14.6.5) 
j = 2  

Using the definition of aj,  the sum of t e r m  in (14.6.5) involving exp(uAj) can 
be rewritten iL5 

t - 1  k-1 

- x b j ( ~ l  - A j 1 - l  e x p ( a ~ j )  = c a j  exp(aAj), 

where;ty for t.hc? first. tcrm il partial fraction cqmnsic.)n of nl as a function of 
A1 sbows that 

j=2 j=2 

k- 1 

j-2 

Substituting thew in (14.6.5) complet.es the proof. 
If equalities exist between some Xis then C(A) can be obtained using 

repeatcd ;tpplicat.ions of L'HOpital's rule. For cxmple, if Ak-2 = AL-1 but. 
all other As are distinct., we obtain (Bingharn, Charig & Ricliardu, 1992) 

1 -  e-Ai e - ~ ~ - ~ { l -  x::;cxi - A & p }  + C(*) = (k - *)! c i-1 HjZi(Aj - Xi) T i j g - d A j  - Am-1) 

(14.6.6) 
A particularly useful and simple case is that of the complex Watson 
distributions, which occurs when there are just two tiistinct eigenvalues, as 
described in Section 14.7. 

Notc t ha t  various distributional results follow from (14.6.3). The random 
variables s = (31,. . . , s ~ - Z ) ~  aid  (81,. . . , & - I )  are independent, arid 
81 :. . . ,8,- me independently uniformly distributed on the unit circle. 
Firrt.hermore, s has a joint mult.ivariate exponential distribution trimc:ated 
to a simplex and it.s probability density function is 

~~ 

f ( ~ )  = ~T"-IC(A)-' ~ X P  c A j S j  : s E A,-2 , (14.6.7) 

so that these distributions of s form a (k - 2, k - 2) exponentid rnodel with 
canonical statistic s (see Section 3.5.1). Thus the moment generating function 
of 8, E[exp(Z~;:djaj)] = @(a; A), sayy i.i givexi by 

+(S; A) = C(A + A)/C'(A), (14.6.8) 

arid A = diag (aT, 0) .  Thus, we have the 

(14.6.9) 

(:I: ) 

where 6 = (61:. . . , 
moments 

E 

E(sj) = {C(A)}-'-, ac@) j = 1 , .  . .,k - 2. 
SAj 
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14.6.3 High Concentrratiom 

To model high conccmtrat.ion, replilcf: A by KA, so thilt from (14.6.7) 

and we assume that there is a unique Xk-1 = 0 > Xk-2. 

rardom variables with tLtrdt.ies 
As K + squj  = M S ~  ( j  = 1,. . . , k - 2) tend to independent exponential 

8-2 

C(A) N 2d-I  n (-Xj)-'. 

Another way of looking at the density (146.1) when there is high 
concentration about t.hc axis Y ~ - ~  is to r0tst.e 1: to and then to projwt 
1; oiito the t,;uigent plnne at 7 k - I .  Given 1; in C S ~ - ~ $  we construct. v in 
by 

(14.6.11) 
j=1 

( 14.6.12) 

It can be prclveti that $ mid v arc) bidependently distributed with zp nnifonn 

v = exp(-ivj)(Ik-, - Y ~ - ~ Y ; - ~ ) Z ,  6 = arg(Ti-lz). 

on the unit circle. Writing A = C;:: Xjy,7: = x;z: Aj-yjrT,  we have 

m+Az = KV*AV 

and therefore v has a complex normal distribution in k - 1 complex dimensions 
with variance matrix 

( 1 4.6.1 3) 

where (-2A)+ denot.es the Moore-Penrose genera.liued inverse of -2A. Here 
Z is singular because v lies in the tangent plane 7;l.-Iv = 0. Tlius z has 
the complex normal distribution CN(T~,  I=), so that Z is determined by the 
eige:erivwtoru other than 7 k .  

The asymptotic distribution shows that the vi are approximately joint.ly 
dist.rihut.d ils X k - 3  (0, ~31). Hence i5 complex Bingham dist.ribut.ion imposes 
an isotropic distribution 011 the marghial distril~ution. Iloweuer, it tloes 
allow intercorrelation (that of a complex normal covariance matrix) hetwcen 
liuidrnarks. 
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14.6.4 inference 

Lct 21,. . . , z,, be a random sample from the complex Bingham distribution 
CBk-a(A) where YZ 2 k - 1. Set 

j=1 

t.o bc t.he (k- 1) x ( t - I )  complex sum of squares and products matrix. Suppose 
that the eigenvalues of S are positive aid distinct, 0 < 11 < . . . < l k - 1 ,  and let 
gl,. . . ,gk-i. denote the corresponding eigenvectors. Sote that I$;&, = ? I .  

A s  in the case of n real Bingharn ciistribution, it car1 he SWXI that when the 
eigenvalues ZI, . . . , 2k-1 ase distinct then 

;i.. = g . ,  j = 1' ..., k-2, (14.6.14) I f  

since the log-likttlihood is 

k-1 

log L(A; z ~ , . .  . , z,) = c tr  (AS) - n IO~C(A) .  
j-1 

The iuaxiriium likeliiiood estimates of the eigenvalues are found by solving 

3logC(A) 1 
= - l j ,  j = 1: ..., k-2, 

i3A j IL 

and the dominant cigcnvector qk can bc regarded as the 'weragc axis' of 
the data. This wtimi%ttc is the samc as that obtain4 from Procrmtes shi%I)e 
aialysk (Kent, 1994). Under high concentration we have, fro111 (14.6.11), 

so that 
X j  N - Y Z / E ~ ,  j = 1 , .  . . , k - 2. (14.6.15) 

The dominant eigcnvector qk-l can be regarded as the average axis of the 
data - ai t&mate of modal shape. Henre, the average axis from the co~nplex 
Binghanl niaxiiiium likelihood estimate is the same as the full Procrustes 
estimate of mean shape, which was also given by the dominant eigenvector of 
S as shown in Section 14.2. 

We notc hially that, using the canonical representation of the complex 
Birigharn distributions, the st,atistic Q givexi in (14.4.2) can be shown to be 
the score statistic for testing uniformity of a coriiplex Binghi i  distribution. 
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Example 14.8 
The Prot:rwtecr riiea~i shape obtained in Example 14.4 is the ruaxirr~uir~ 
likelihood estimate of' the population dominant eigenvector of E[zz"'] under a 
complex Binghan distribution. Sirice the lnrgest dgeiivdue IS = 22.9 (given 
in Example 14.4) is nearly n = 23, the data ase highly conceutrated. For large 
concentration, from (14.6.14)-(14.6.15), 

Thus we car1 obtain GG(H+), to obtain soxrie idea of mriarices a i d  
correlations. It is found From cG%(H.f.) that the variances ( x 2  x 23) are 

0.020, 0.021, 0.005, 0.036,0.005, 0.007. 

Thus landmark 4 has most. variance, whereas landmarks 1 and 2 have t.hc next. 
highest. There is almost no variability in landmiirks 3, 5 and 6. The t3timatcd 
correlation rriatrix of H i  is 

1 
0.05 - 0.76i 1 

-0.34 - 0.25t 0.10 - 0.29i 1 
-0.60 + 0 . W  -0.60 - U.62 -0.U9 - 0.38i 1 
U.3U + 0.12i -0.lrf + 0.262 -0.36 - 0.Uli -0.24 - U.39E I 

-0.3B - 0 . M  -0.34 + &lei 0.50 - 0.08i 0.08 f 0.U4i -0.08 - 0.216 1 

This indicates that correlations between landrriarks arc! high. Note that the 

The i%ho\Te mitlysis gives some idea of variability, although the rest.ric:tions 
matris is necessarily singular. 

of a coinplex ccmriance structure me imposed. In part.icular, we necessarily 
have isotropic perturbations at each landmark. A pract.ical method from the 
shape arialysh point, o f  view would be t,o examine the shape variability in 
tangent space (see Dryden 8 . ~  Mardia, 1998, pp. 44-51). The next step will be 
t.o examine the hypothesis of complex symmet.ry. 

14.6.5 l lelutior~hip wath the Fisher Distributions 

Iu Section 14.5.2, we used Fisher distributions for shapes of triangles. 
Following Kent (1994), we now wtahlish links between complex Bingham 
tfistributions or1 CP' arid real Fisher tfistributioris or1 S" First, coimider rite 
parameter matrix A of a complex Bingham distribution on (CP' . This matrix 
is Hermiticin, so that tfiere appear to be four independent real variables. Since 
we can replace A by A + uI, where cy: is red, we may reduce the rank of A to 
1 and there are at most thrce independent real varinbleH. Hence we can take 

A = A ( ) (u*, v), 
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Further, we can choose X > 0. Miiltiplying t.hc eigenvcctor ( p l , ~ )  by a unit. 
coix~plex scalar tloes not alter A, so that we cafi asuulxie that v 2 0. Hence, 
provided t.hat v # 0,1, the one-to-one mapping between (u, ti) and (7, C) is 
given hy 

lr 
11 = ciqcos<,v =sinC; o < < -,o 5 q < Z X .  (14.6.16) 

F'urthcr, we transform t.hc random variables ( z l ,  22) to (rb,e. c3) by (14.3.15) 
so that the exponent in t.hc complex Bingham densitmy (14.6.1) becomes 

2 

= X{cos2 Ccos26'+sin2 ~sin2~+2sin~cos<sinBcosBcos(@- I ) ) } .  (14.6.17) 

Lc.t x and p bc the vrctors c:orrwponding to the spherical polar coordinatrs 
(28,d) a i d  ( Z C , r l ) ,  respectively. Then (14.6.17) mi be writteri as z'Az = 
X(1 + p r t ) / 2 .  Using (14.3.16) and the abovc expression for z+Az, the 
distributiori CBI (A) transformed to ( B , &  vj) tias the probability elerrient 

1 a ( c ( ~ )  I-' siu 2oe 4 A(' +pT 1 d+t~~db, 

where 0 5 28 < l r , O  5 Q < 2n, - x / 2  5 q~ < ;r/2 arid c(X) = 2r2((eA - l]/X. 
Hence Cit is independent of (e, d) and uniformly distributed 011 ( - l r /2 ,  .lr/2), 

whereas (20,4) is distributwi as the FishrJr distribution F(p,A/2). One 
coiisequence of this result is that we cai work with the Fisher clistributiou 
rather than CBl(A). For example, we cCm obtain the estimators of the 
pasiuneters (u. u )  arid X of the corriplex Birigliarn tiiiytribtition ho~n those of the 
Fisher distribution. Let the maximum likelihood estimators of p = (a, 3) and 
K of F ( p ,  K )  be (&. 8)  and R: respectively. Tliexi frorxi (14.6.16) the maximum 
likelihood estimators of the Procrustes mean (u, v) and X are respectively 

(ii, it) = (e'" cos(ii /2),  siu(~i/2)), .i = 2 ~ .  

This result also explains the relatioilship between the test of uuiforlllity given 
by (14.4.9) and the Rizyleigh test of uniformity on S2. 

14.7 COMPLEX WATSON DISTRJBUTIONS 

14.7.1 The Derr.Yity 

Let z = (21, ~ 2 , .  . . , ~ a - 1 ) ~  again be a point on the complex sphere 
The complex N'atson distribution on QlS"-2 = S2k-3  with parameters p and 
K has c1amit.y ( h d i a  & Drydtni. 1999) 

f(2) = c(.)-' ex?XI)(h: cos2 p ) ,  (14.7.1) 
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where p E and 

335 

cosp = Iz*pl, 0 5 p 5 T / 2 .  

Note that K is a coriceutratioii parameter and, as hi the real Watson 
distributions considered in Scct.ion 9.4.2, it can take values over the whole 
red lisle. If K > 0 then the tiistribution has modes at eiep (0 E S') anti so 
is useful in shape analysis for representing population modal shape. If K < 0 
t.hcm the distribution has modw at p1 = {v : u'p = 0). If K = 0 t.hm the 
tfistributiori is uniform. .4s our main motivation is shape iuialysk we slid1 
concentrate on the case K 2 0. 

The role of p is similar to that of the angle cos-' ( p T x )  in the real Watson 
distributions. For t.he case of interest. to us ( K  2 0) the analogy is with 
t.hc? bipolar red Watson distributions. We writc ( I1Wk-2(pCL,  K )  t.o denotc the 
cornplex Watson tfistributiori with parametem p aid K. We have ccmplex 
symmetry since f ( e i @ z )  = f(z) for dl $I on the unit circle and so C W k - z ( p ,  K.) 

defines a distribution 011 CP"-". 

14.7.2 The Normalising Constant 

We prove that the nortnalising constant is 

On using Kent's polar ccwrdisiates 0x1 CSk-2 given by (14.3.1), we have 

C ( K )  = 22-k Lh-, l, . . . I ,  eK8'd01 . . .rdek-lds~dsis~. . .dst-p - 
k-1 

"1 

(14.7.2) 

where 

f ($1) = dsya . . . $S&* = (1 - Yl)C--8 d'Ul . . . dUk-3. 
8zf83+. . . - t .Sb-2<1-81 

Now, the volume measure of the unit simplex &-3 is l/(k - 3)!. Hence 

To dcu la t e  the integral osi the right-haid side of (14.7.3), we note that, 

Hence the rtsuit follows. 



336 DIR ECTIOlVAL STATISTICS 

14.7.5 

The complex Wat,wn dist.ribut.ions are particular ca~cs  of complex Bingham 
distributions. When A has two distinct eigenvalues (one of them can be taken 
as zero) we can reparameterise A as 

Relatiomhip with the Complex Binghsm Dzstvibution.~ 

A = - K ( I k - ,  - pp*), 

so that (CBk-Z(A) = ci'vk-z(p,/€}. If k = 3 t.hcn the matrix A has at most 
two distinct valiies mid so the corriplex Watson distributions are identical to 
the complex Bingham distributions iu this case, and thus are related to the 
Fisher distributions, in view of Section 14.6.5. 

14.7.4 Lurye Concerthntion 

We show that if )c is large, then the distribution e W , + a ( p , ~ )  tends 
to a complex normal distribution with mean p and covariance matrix 
(1/2~)(Ik-* - pp*) - ,  which is a generalized inverse of 2rc(Ik-l - pp*) .  We 
first prove the following equalit.y: 

(z - p)*(Ik-l - p p * ) - ( z  - p )  = 1 - z*pp*z ,  (14.7.4) 

where z*z = p*p = 1. Put A = 1k-l - pp'. It is easily verified that A is 
idempotcnt. and t.herefore A3 = A. Then taking A- = A gives AA-A, i.e. 
A is a generalized iiiverse of A. To prove (14.7.4), expand the left-hand side 
as 

Z*(Ik-I - pp*)Z f p*(I&-l - Pp*)p - z*(Ik-I - pp*}p - p*(Ik-l - pp*)z- 

Sincc z*z = 1, we have 

ZI(Ik-1 - pp*)z = z*z - 2Ipp.z = 1 - z*pp*z. 

Further? (Ik-1 - pp*)p = p - p(p*p) = 0. Hence (14.7.4) is proved. Thus, 
t.he exponential factor in the complex Wat,wn density r a k e s  to 

1 exP{-&wz - P } * ( L I  - pp*)-(z - P)}I 

26 { ( z  - p)*(Ik-I - p p * ) - ( z  - p ) }  = 2rc (1 - z * p p * z }  

rcz*pp*z = K.cos* p, 

and so t.hc complex normal approximation follows. Hencc for large rc, we have 
that 

is approxirnately distributed w ~ ; 4 ~ - ~  since the co1iiplex rmik of (Ik-1- pp*)  
is k - 2. Further, 

where p i.1 the Procrustes distance between the shapes rorrespontfixig to z arid 
p, so that: for large )c, 

2 ~ ( 1 -  z * p p * z )  = 2KsiILf p + .&-4, (14.7.5) 

which is analogous to (10.7.25) for real Watson tiistributions. 
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14.7.5 Maximuna Likelihood Estimation 

Let 21, . . . , z,, he a random sitmple from a popiilat.ion modellcd by a complex 
Watson distribution, and suppose that YZ 2 k - 1. Set 

to be the ( I s  - 1) x (k - 1) coriiplex sum of squares and products matrix. 
Suppose thilt the c.igmwdiics of S are positive with eigenvaluta Zk-1 > Im-2 2 
. . . 2 I I  > 0 a i d  let. gk-1, . . . , g; denote the correspodixig wiit eigeiivet:tors. 
We assunic here K > 0, t.hc case of interest in shape analysis. 

IJnder the ror~iplex Watson ciistxi1)utioIi GWk-2 (p,  R )  the rnaxirriiirn 
likelihood estimators of p and n ase given by 

F = gk-1, 

d ( k )  Im-1 
c(k)  ' f L  ' 

and the solution to 
-=-  

where c'(n) = dc(K)/&. Under high concent.rations 

(14.7.6) 

N7e prove: this as follows. The log-likelihood for p and M based on the data 
rttctuc:es to 

n 

log L(p, .; z1,. . - , z,) = K c zTpp*z+ - ?I. logc(tC) 
i=l 

3= K tr(Spp*) - .rr. logc(K) 

Holdiig K. wrist,aIit, it can be see11 that 

ji = f?+gfi-, 

logL(fi,IC;21,.. . , E n )  = KZ&-l - nlogc(n). 

provides the imxiixiuxu, where r.r is ari arbitrary rotatioii angle, aid  so 

The maximum likelihood estimator of IC is found by solving 

6logc(ic) - d ( K )  1 
8R C(.) ' f L  

- - = --Z&-l. 
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TJrider high concmtration C ( K )  cy 2xk-' K* 2-ke" , and $40 

Therefore 

aid so the high-cont~ntration approximate maxirnum likelihood mtiinator 
(14.7.6) for f i  follows. 

14.7.6 Hypothesis Wstirry 

Vuions one mid two-sarnple tests for conc*eritr;rted red Watson tiii~tributions 
are given in Sections 10.7.3 and 10.7.4 A4ndogous t.ests cCm bc derived in 
exactly the same way for complex Watson distributions, where H random 
sample z1,. . . zn is available. Using the approximate distribution (147.5) we 
have 

(14.7.7) 
n 

2ti C sin2 p(ea, p )  + x ; ~ ~ - ~ ) ~ ,  f i  -+ 30 

i= 1 

and 
n 

2K*Csin2p(zi,G) + ~ ~ 2 k - - Q ) ( , , - t ) ,  f i  + ~7 (14.7.8) 
i: 1 

as 2k - 4 pasiuneters are est,irnated to obtain ii. Henre, 

This result can be used to obtain single-sample tests on p and to obtain 
confidence regions for p. In partidar,  a 100( 1 - a)% confidence region for p 
is given by values of p ,sati.tiufyhig llpll = 1 arid 

where Fp.p;l-a is the lOO(1- a)th percentile of the Fp,p distribution. 

aid y1, . . . , yn fro111 CU'(v. ti). We wish to test between 
Now consider two independent random sample3 $1,. . . , z,, from CrW(p, K,) 

Ho : bl = I4 and H1 : [PI # [4, 
where [p] = { P p  : 0 5 CE < 28) (i.e. [p] represents the shape corresponding 
to the  motid prttyhape p). IJsing (14.7.7) anti (14.7.8), it follows that 
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for large lc 

where $ is the overall rnaxirnurri likelihood t&mator of ,cr if the two groups 
are poolcd and 

(14.7.9) 

(tt + Pn - 2)B 
x:=l sin2 p(z i , f i )  + Cy!-, sin2p(yj,fi) 

F.. = ’ F 2 k - 4 , ( 2 k - 4 J ( n + m - 2 ]  ? 

( 14.7.10) 
and so we reject HO for large values of F.2. 

Using Taylor series expansions for large concentrations 

13 (n-’ + ~ r t - ’ ) - ’  sin’p(fi, c), 

and so for large K the test statistic F 2  is equivalent to the two-sample test 
statistic of C;ootfd (1991). 
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14.7.7 Likelihood Ratio Tests 

An alternative proccdurc is that b;tuexi on the likttlihood ratio, which  doe^ 
not require large concentrations. Consider two independent random samples 
ZL,. . . ,zn from CM1k-2(p, K I )  and y1,. . . ,ym from (C IV~-~ (Y ,  K Z ) .  We wish 
to test 

Ho : (p.u7K.1,K.2) E no,  againut HI : ( / J , V 7 / € 1 . K p )  E n,, 

where (20 C 121 and dirn(Ilo) = p < dii(I2l) = q 5 4k - 2. For example, we 
could test for equality in modal shapes or concentration parameters. Let 1i he 
the likelihood ratio for twting HO against HI . Thexi, using Wilkr's theorern, 
we have 

3 
7f l  = -2 log 2 1  'y xu-,, 

for large samples. 
Alteniatively, we could corisider a Bayesian approach to inference. Consider 

modelling a random sample of data ZI, . . . , zn with a complex Watson 
distribution with mode p and concentration parametcr K. The concentration 
parmrieter is asuulxied to be knowxi. Let the prior clistributiou of p be co~~iplex 
Binghani with known parameter matrix A. Then the posterior density of p 
is giiven hy 

where S = Cy='=l z-zt is the complex sum of squares imd products matrix. 
Since the posterior is also a complex Bingham distribution (but with 
parameter matrix K.S + A), the complex Binghcam prior is a conjugate prior. 

1 1  

Example 14.0 
As a complex Watson distribution with K. > 0 is il complex Bingham 
distributiou. with alI eigendues except the largest equal, under the complex 
Watson distribution we should expect. all eigenvalues 11:. . . , t k - 2  to he 
approxixnately equal. In other words, the shape variability for the co~niplex 
Wat.son distribution is isobropic and alI principal components of shape 
variabi1it.y have (?quill weighting. This ohscrvation provides us with a model- 
checking procedure. 

Consider the schizophrenia data described by Bookstein (1996), where 13 
lnridrriarks are taken ON nex-micisagittd two-diInensiona1isiod slims from magnetic 
resonance brain scans of ra = 14 schizophrenic pa.tients and in = 14 normal 
siibjtxm. It is of interest, t.o study my shapci differences in t.he brain between 
the two groups, in average (xniodal) shape. If niorphornietric difference2 lwtweeu 
the two groups can be established then this should enable researchers to gain 
ari ixicreased nnderstaxiding of the condition. In Fig. 14-10 we see the k = 13 
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Figure 14.10 The 13 landmarb on a near-midsagittal brain scan of a 
schizophrenic patient (after Booksidu, 1996). The landmark positions are 
located approximately at each moss (+). (From Dryden Si Mardia, 1998. 

@ John Wiley &z Sons, Ltd. Reproduced with pecrmissiou.) 

landmiirks on H two-dimensional slice from the scan of a schizophrenic pst.ient. 
The Prot:rwtes rotated data for the groups are displayed is1 Fig. 14.11. We 

see that there are generally circular scatters of points at each landmark in 
each group (as requirtxi for an isotmpic rriotiel, such as the co~nplex Watson 
model). The eigenvalues of the complex sum of squares and products niatrix 
for the controls are 

(13.935,0.0222,0.0162,0.0090,0.0063,0.0044, 
0.0028,0.0017,0.0012,0.0004,0.0003,0.0002), 

and for the schi7~phrenic patients 

(13.925,0.0274,0.0191,0.0086,0.0079,0.0041, 

0.0030,0.0020,0.0013,0.0007,0.0005,0.0001). 

If a complex Watson distribution is appropriate then all eigenvalues hut 
the largest are approxirriately equal in each group, which does riot, seem 
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3* 

If 

I 
-0.4 4.2 0.0 0.2 0.4 

Figure 14.11 The maximum likelihood estimates of the modal shapes for the 
xionrial subjec-tb ( x )  and xiiizoyhreuic yatieritb (+) for the brairi laridrriark data. 

urireasonahle. M d i a  & Dryden (1999) rnrry out a test o f  isotmpy in each 
group and find that there is no evidence against isotropy. They carry out a 
Monte Carlo permutation test as wvcll, to verify that the same conclusions 
hold without w(:h restrictive 111odelliiig asyurnptions. 

The maximum likelihood estimates of modal shape for each group are 
displayed in Fig. 14.1 1, by plotting HTb. The iriaxirriurri likelitiood est,irnates 
of the concentration parameter are 

i(. = 2377.4 (controls) and 6 = 2056.7 (schizophrenics), 

using the larg~~.Lconcentration approximst.ion of (14.7.6). The concentration 
parameters of the two groups are fairly similar. The value of B in the 
numerator of the test statistic F 2  of (14.7.10) is 0.010. The denominator is 
0.139, a id  M) I;lr = 1.89. Since 

Pr(F'2.572 2 1.893) Y 0.0085, 

we conclude that the subjects with schizophrenia h a w  different-shaped modal 
lmdrriark configiiriitions from the rontrol sii t)jects for this study. Carrying 
out the likelihood ratio test of equal modal shapes (but not restricting the 
concentrations to bc ('quid) wc haw -21ogA = 43.294. Since Pr(X& 1 
43.294) = 0.0043, there is stroxig evidwce against, equal modal shapes. .4 
permutation test carried out by Mardia k Dryden (1999) lead5 to the same 
wricliision. 
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14.8 

Anot.hc?r suitable model is an extension (Kent, 1997) of the ;zngU:ulilr central 
Gaussian distributions (9.4.7) of Tyler (1987). Consider the distribution on 
CS"* with dcnsitp 

f ( 2 )  = p~-~("*x-l")-~+' (14.8.1) 

with respect to the uniform distribution, where the parameter Z is a 
positive dcfinitc Hermitian matrix. Thc density sat.isficis complex symmetry 
conditioii (15.5.1), so (14.8.1) tfefuies a distrilmtiori oil CPk-*. Note that this 
distribution also appears as a particular case of'the offset normal distribution 
with equal means mid complex coviuianre matrix (see Drytien & Mwdia, 

Also, (14.8.1) is invariant under the rewding C I-+ cC, c > 0. We can wri& 
that the nortIialisiug comtait in (14.8.1) is correct by the same method as 
used for the complex Bingham distribution. The mode of the density (14.8.1) is 
the tfomiIiiuit eigenvector of X. He~ice. it is iiaturd to define mi average shape 
frorii a set of landmask data by the dominant eigenvector of the inaxiriium 
likelihood estimator of X. This maximum likelihood estimator 2 is given by 
the solutiori of the estiiriatirig ecluatiou, 

THE COMPLEX ANGULAR GAUSSIAN MODEL 

1991). 

(14.8.2) 

SO thilt k can bc viewed ils a weighted complex sum of squtirw imd products 
matrix. (Note that (14.8.2) is analogous to (10.3.46).) This equation can be 
solved iteratively by the EM algorithm (Kent, 1997) using 

(14.8.3) 

where 

Under mild regularity conditions on the data the iterations in (14.8.3) converge 
to the maximum likelihood estimator k, which is unique up to scaling. N0t.e 
that in (14.8.3) outlying values of 1; are dowxiwighted when forrriing the 
complex sum of squares and products matrix. In order to link this result 
t.a c:onventional multivariate M-estimators, consider what happens in the 
case of highly co1iteutrattd data. Let. the tlomixiarit eigerivector of I= be 
given by v = (1,0,. . . , O ) r  for simplicity (any angular central Gaussian 
distribution ran be rotated to this fonn hy a suitable (k - l)-dirnexisiond 
unitary transformation), and suppose that C is of the form 

z'J (') = (k - l ) / z p ( q - ' z J .  (14.8.4) 

(14.8.5) 
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where IC > 0 is large md A is H fixed (k - 2)-dimensional positive definitc 
matrix. Iu gexieral, the projection map of z onto the tarigeut space at Y 

of the shape space (EIP"2 is given by z tj (I - vv+)e-'@'z = w, say, 
where 6 3= aegu*z. In this case w = ~-'@.(Z~~...,ZC--I)~ mid $J = asgz~. 
Under the angular central Gaussian model, II, is uniformly distributed on 
S' independently of ( 2 2 ,  . . . , zk- l } ,  imd t.he distribution of (z2, . . . ? zk-1) is 
irivariiuit under multiplicatioii by ekP. Further, if IC is large, the distribution 
of z becomes concentrated near v ,  and the distribut.ion can be studied by 
projection onto the taIigent spwe to CP"-' at v. In pnrtiaiiar, if v = fiw 
then, as IC + 00, the limiting distribution of v has deilsity proportional to 

lim ( z * X - ~ Z ) - ~ + I  = lim ( 1 ~ 1 1 ~  + v*A-'v)-"I 
K 3 a O  Ic+m 

= 

= (1+ ~ * A - ' v ) - ~ + ' ,  v E (14.8.6) 

After switching t.0 real coordinates in R2k-47 this density can be viewed as 
a Im1ltivariiite t ciensit.y wit.h 2 degrees of freedom aid with scatter rnatrix 
given by re-expressing :A in real coordinates (hlarciia, Kent & Bibby, 1979, 
p. 37). This result gives some insight into the extent to which the angular 
central Gaussian clistributious car1 accornmodate outliers in shape analysis. 

lirn (1 - h--'v*v + v*A-'v)-"+' 
tis-tw 

14.9 A ROTATIONALLY SYMMETRJC SHAPE FAMILY 

One very large family of rotationally symmetric shape distributions consists of 
those in which the densities are fuiictious of the shape distiuice to iui average 
configuration. (This family is analogous to t.hc family of distributions on 9 - l  

with densities of the form (9.3.31}.) This CliLqS of densities on t.he pr[?shi%l)e 
sphere S"-l is giveii by 

cg { K) - 1 exp( KQ(COS2 p) )  , (14.9.1) 

where y = c0s-l 1z*pl arid 4 is a suitable incrrasing fulic:tion. We have 

following calciilations sixnilar to those leading to (14.7.3). -4 pitrtictilar sub- 
class is given by the densities with 

@(coy2 p )  = (1 - p ) / h .  (14.0.2) 

which give the same rnaximul~i likelihood estimator d average shape as a class 
of shape estimators proposed by Kent (1992). The estimators become more 
resistant to outliers a.l h increases, since the tiermities have heavier tails for 
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larger h. The complex Watson distributions are members of this family with 
h = 1. Other ineinbers (with h = 1/2) are tlie tlistriButioiis with tlensities 
proportional to 

exp( n cos p) . (14.9.3) 

Hare the maximum likelihood wtsimi%tor of shape is given by the partial 
Procruuteu meun (obtained by matcbing coidigurations over rotations and 
translations but not scale); see Dryden (1991). The densities in (14.9.3) h a w  
particularly light tails arid SO the maxirnum likelihood estiiriator of iriodal 
shape under (14.9.3) will be more af€ected by outliers than that in the coniplex 
Mkt.son shape dist.ribut.ions. 

The family (14.9.1) of rotationally symmetric shape distributions is 
important for the analysis of shape data. The distributions are appropriate 
when mi hotropic (:ovarimice st,ructure is plausible. If strong correlatious are 
present, then it would be more appropriate to use more general models, e.g. 
densities of thci form 

CG (A)-' ~ x P ( ~ ( z *  Az)), 
where A is Hermitimi. The coriiplex Birigharri clistributious tliscusuecl 
in Section 14.6 are in this class. The rotationally symmetric family of 
distributions (14.9.1) is a su ldass  of this gexieral family of distributions. If 
the corriplex correlation structure is not appropriate then distributions such 
as the offset normal distributions of Dryden &. Mardia (1991) could be iisedi, 
although this apprmdi is much iuore coiriplicatecl. 

14.10 SHAPES IN HIGHER DIMENSIONS 

Most of the above discussion generalism to higher dimt?nsic.)ns. For prac:t.ied 
example9 of sliapes in 1R3, set! Gtmdall& Mardia (1993) arid Drycleri & Mardia 
(1998). Let XI, . . . xk and y ~ ,  . . . Yk bc two (not. totally coincident) labelled 
sets of k points in IR'". 1% rtyprti these two configurations as having the smrie 
shape if 

for some scale factor c > 0: na x na rotation matrix R and vector b, i.e. we cram 
trmsform XI, . . . , Xk into y1, . . . , Yk by trardation, rotation arid scaling. This 
representation is an extension of (14.1.5). Sote that we do not allow R to be 
a reflcct.ion. Following Kenddl (1984), wc denote by EL the space of Shi%l)eS 
of sets of k labelled points in Rnz. The Procrustes distance on X! given in 
Section 14.2 can be generalised to a Procrustes distance on Zfn. Although (as 
explained below) the shape space Eft is a quot.ient of the rrimiifold Snr(k-l)-l 
by an action of SO(na), Eft, is not a smo0t.h manifold if in > 2 and k > 3. 
Such a shi%l)e space contains a singular set consisting of degeneratc shapes. 
The singular set is negligible, in that it lias measure zero uiider tlie uniform 
distribution on Zfn.  The complement in Z:l of the singular set is a Riemannian 
Inanifold with rnetric given by the Procnistw distmice. 

~ i = c R x i + - b ,  i = l ,  ..., k 
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For il deHcription of shi%l)I,ct in coordinatc tcrms, consider a set. of k (not. 
totally coincident;) points in Ill"', reprt?yentt?d by a k x 711 matrix X. Location 
and scale clfects are easy to eliminate directly. 

Let H be the Helrnert. siil)-~natrix its in Stx%ion 14.1. Then the (k - 1) x .rrL 
matrix XH = HX is invariant under location shifts X H X + 1gwT, for 
w in R". The k rows of X again t.he MW fizndmnrh and t.hc k - 1 rows 
d XH are the Helrrrsrtid 1~7iiirr~rk~ 

Scde effects can be eliminated by the st.andardisation Z = X,/(lXHll, 
where IIXHII~ = tr(X5XH). Then Z (mi be regarded as a point 0x1 the unit 
sphere Sm(k-l)- l  in R("-l)m and is cdlcd the prcshape of' X. The shape of 
X is t.he cqiiivdence cl;w of it.s preshape, where a prc?shi%pI,ct Z is equivalent 
to ZR for miy R in SO(m). 

There are two ways of passing from a configuration of k points in IR" to 
its shape. In the first way, ciescribed above, the effects of location arid scale 
are removed first to give the preshape. RCrnot.al of the clfect of rotation from 
t.he preshape t.hen givtts t.hc? shape. In the second way, deHcribcd in t.hc next 
paragraph, the effects of location a i d  rotation are removed first to give the 
sizc-and-shape (or form). Removal of the effect of scale from the size-and- 
shape then gives the shape. 

The method of obtaining the size-and-shape of a configuration of k points in 
IRm is bas4 on the QR decwmposition, as u s 4  widely in mult.im,riat.e anidyyis. 
-4gaili let the k x rri matrix X coiitaixi the raw landmarks mid XH = H X  
denote the Helmertised landmarks. To remove: orientation, consider the QR 
decomposition of Xu, xia~nely, 

XH = TI', I' E ~,(lR"')), 11 T II> 0, (14.10.1) 

where tt = min(k - 1, m ) ,  and T is a (k - 1) x ra lower t.riangular matrix with 
non-negative diagonal elements (i.e. Tii 2 0, Y = 1 , .  . . , n).  

The most important case in practice is when E > ni. In that case, I' E O(m) 
and II'l = f l ?  so t.hat. the QR decomposition rcmoveH oric!ntat.ion and 
reflection. To reiiiove orietitatioii oiily, we require I' E SO(rn), so II'( = +1 
and T,, is unrcst.ricted. Then T = {T'j : 1 5 i 5 j 5 in) is called the 
size-cd-shripe (or forrn) if I' E SO(7n) arid the rejlectiurr size-and-shape if 

To remove scale, we divide by the Euclidean norm 11 T I[ of T, i.e. wc define 
r E qtn). 

w I,y 
w = T/ I1 T II, I1 T I b  0. (14.10.2) 

We call W the shape of our configuration if I' E SO(m) arid the reflection 
shape if I' E O(m). (If k 5 t n  then these distinctions are irrelewnt..) For 
na = 2, t.he QR decomposition is closely rdated to the Bookstein coordinatcs 
(see Drydeli &. Mmdia, 1998, p. 81). 

We can treat the Procrustes mean for higher dimensions as follows. Given 
k x 711 centrtd da.ta rnatrices Ui, i = 1, .  . . ,n, define the average shape [fi] of 
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(14.10.3) 

over & in S0(7n),r; > 0 anti p in S'r'(k-t)-' (the centrttct j i  i.1 defined up to 
a rotation}. Thc Ptvcmtes  form average minimises 

n 

(14.10.4) 

over R, in SO(nz) and p in Srn('- lJ- l .  In practice, the solution is obtained 
iteratively. 

Lct thc ~n x (k - 1) matrix y be a preshapc. Then a convenient projection 
(Drgden k Mardin, 1993) of the shape space EL onto the tangent spaw to 
X:& at [7] can be described as follows. A preshape Z is mapped to 

v = { I~ , ,~ - , ,~  - v(,c.(7)vC,c.(7)T}v(zr), 
where the rotation matrix I' minimizes 

tr(y - r z j ' ( 7  - rz). (14.1O.q 

i.e. I' = UV'", where 7'Z = VAUI' is the singular value decomposition. N0t.e 
t.hat. vT{vw(~)}  = 0. Here, we h a w  given an exposition of the field of Shilpe 
analysis to indicate how directional statistics and shape analysis are related 
but there are varioiis other developments in shape analysis which do not fit 
into tJis framework. 1x1 particular, taugent prc?ja:tioxis to the shape space are 
found to bc adequate for practical purposes. For various other developments, 
we refer to Drgden k Mardia (1998). 



Appendix 1 

SPECIAL FUNCTIONS 

We list l~elow ~ ~ l x i e  irnportait forrriulw involving Bessel fuiictioiis auld 
Kummer functions. 

1. The rrrodafied Besuel function Ip  of the firat kind auld order. p ca~i  be 
defined by 

(A.1) 1 2K 
I , ( & )  = 2;; h c o s p C l e ~ C ~ Y ~ &  

(Abraniowitz & Steguu, 1965, p. 376, 9.6.19); 
2. 

3. 
(Abrruntmitz & Stegun, 1965, p. 375, 9.610); 

(Abraniowitz & St.egun, 1965, p. 376, 9.6.18). 
4. For lnrge r;, 

- (lip" - 1)(4i2 - 9)(4$' - 25) 
3!(8r;)3 
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6. 

APPENDLY 1 

(.4bramowitz & Stegun, 1965,p. 376? 9.6.26- 27). 
7. 

(G. K. Watson., 1948,p 79; Abrrnowitz & Stegun, 1065, p. 376,9.6.26). 
8. In (9.3.8) we defined A, by 

9. 

10. For small K., (A.2) gives 

rc3 + o  (t?) 1 
A Z J ( K )  = - rc - 

P 4 ( P + 2 )  

(A.lO) 

(A.11) 

(A.12) 

(Sciiou. 1978, (5)). 
11. For large K ,  (AA) gives 

(Sciiou. 1978, (ti)). 
12. From (A.8) and (A.9), 

(Schou, 1978, (3)). 
13. The B e s d  function J, of the first kind mid order. p cai be (lefi1ied by 

(-4t~ra111owitz & Steguri, 1965, p. 360, 9.1.10). 
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14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

J I' (.) = ,*P"'I P( - * P X i  4 (-4.16) 

(Abramowitz k Stegun, 1963, p. 375, 9.6.3). 
The K w m w  functiorr M(a ,  b, .) car1 be defined by 

;M(a, b, K )  = B (a, b - a)-' (1 - t2)b-a-'W (A.17) 

(.4brruntmitz & Stegun, 1965, p. 505, 13.2.1). The I<umIner func%ion 
:t i(u,b, .)  is also known as the conflueat hype~gmomdric function 
i F i ( a , h * ) .  

(A.18) 

(Abramowitz k Stegim, 196.5, p. 504, 13.1.2). 
For K red with 1.1 large, 

where 

u(u - b + 1) a(u + 1)(u - b + l)(u - b + 2) 
2n2 

M- = 1 - + 
(c 

( b  - a)(l  - a)  ( b  - a)(b  - a + 1)(1 - a)(2 - a)  
2rc2 

'If+ = 1 + + 
ti 

(.4brax1iowitii & Stgwi,  1965,p. 508, 13.5.1). 

(-4.20) 
U 

M ' ( U , b , K )  = -;Cl(a+ l , b +  1 , K )  
b 

(Abramowitz k Stegigun, 196S, p. 507, 13.4.8). 
h (10.3.32) we defined D, by 

For sinall K ,  (-4.18) gives 

(A.21) 

(A.22) 

(-4.23) 
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22. 

23. 

24. 

For lc real with lc IiVge, (A.19) gives 

Dp(lc) = l - ' A + O ( - $ ) ,  21c K + O C  (.4.24) 

(A.25) 

The hjlpergeornetric function 1Fl ( r / 2 , p / 2 ;  -) of matrix argument can 
be defined by 

(.4.26) 

where A is a synuuetric p x p matrix and the integration is with respect 
to the uniform distribution on the Stiefel manifold V;(W') (Muirhead, 
1982. p. 288, Ex. 7.8). 

In particular, 

(A.27) 

where the integration is with respect to the uniform distribution on 
SJJ-' . 

Definitions of the general hypergeometric functions pF4 of matrix 
argiment are given in Muirheaci (1982, Swtion 7.3). 
The hyp~yeorrrehic function OF* ( p / 2 ;  -) of matrix mgumeiit can be 
defiled bv 

(A.28) 

where F is a p x r matrix and the integration is with respect: to the 
uniform dist.ribut.ion on the Stiefel manifold C',(Rp) (Muirhead, 1982, 
p. 262: Theorem 7.4.1). 



Appendix 2 

TABLES AND CHARTS FOR THE CIRCULAR CASE 

The tables arid diartu in this appendix are prt?Yentt?d in the sa~~ie  order in 
which they were first cited in the text. 



354 APPENDLY 2 

d O O d 5 6  

O d d d 0 0  

Directional Statistics 
Kanti V. Mardia,Peter E. Jupp 

Copyright 0 2000 John Wiley & Sons, Inc 



12
0 

12
5 

13
0 

13
5 

14
0 

14
5 

0.
:1
35

33
 

0.
34

7'
22

 
0.

36
1 
11

 
0.

37
50

0 
0.

38
88

9 
0.

40
27

8 

0.
30

52
2 

0.
32

05
3 

0.
33

60
6 

0.
35

18
0 

0.
36

77
4 

0.
38

38
5 

0.
27

65
9 

0.
29

51
4 

0.
3 

10
1 7

 
0.

32
76

6 
0.

34
55

9 
0.
3G
3Y
 2

 

0.
24
83
2 

0.
26

58
7 

0.
28

42
0 

0.
30

32
7 

0.
32

30
6 

0.
34

35
3 

0.
22

1 
14

 
0.

2:
%

94
4 

0.
25

88
2 

0,
27

92
6 

0.
30

07
3 

o.
:iX

* 
19

 

0.
 1

95
66

 
0.

21
44

4 
0.

23
46

0 
0.

25
61

6 
0.

27
90

9 
0.3

0:3
:34

 

I). 
1
 72

26
 

0.
19

12
5 

0.
21

19
4 

0.
23

43
5 

0.
25

84
9 

0.
28

43
1 

0.
15

1 
12

 
0.

17
00

9 
0.

19
10

6 
0.

21
40

8 
0.

23
91

8 
0
2
6
6
9
3
 

0.
1y
2'
28
 

0.
15

10
3 

0.
17

20
6 

0.
19

54
5 

0.
22

12
7 

0.
24

95
1 

0.
11

,5
65

 
0.

13
40

2 
0.

15
49

1 
0.

17
84

7 
0.

20
47

9 
0.
23
39
O 

15
0 

15
5 

16
0 

16
.5 

1
 70

 
17

5 

0.
41

66
7 

0.
43

05
6 

0.
44

44
4 

0.
45

83
3 

0.
4 

72
22

 
0.

48
61

 1 

0.
40

01
3 

0.
41

65
5 

0.
43

30
9 

0.
44

97
3 

0.
46

64
4 

0.
48

32
1 

0.
3K
2&
? 

0.
40

16
6 

0.
42

09
8 

0.
44

05
3 

0.
56

02
5 

0.
48
(1
1)
9 

0.
36

46
3 

0.
38

62
8 

0.
40

84
1 

0.
43

09
5 

0.
45

37
9 

0.
47

68
4 

0.
31

65
6 

0.
37

07
7 

0.
39

57
0 

0.
42

12
2 

0.
44

72
2 

0.
4 7

:3%
 

0.
3'
28
83
 

0.
35

54
6 

0.
38

30
9 

0.
4 

11
55

 
0.

44
06

6 
0.

47
01

3 

0.
31

17
2 

0.
34

06
0 

0.
37

07
9 

0.
40

20
8 

0.
43

42
3 

0.
46

89
6 

O.
'L
9F
a4
 

0.
32

63
8 

0.
35

89
7 

0.
39

29
4 

0.
42

80
0 

0.
46

38
1 

0.
28

01
0 

0.
31

29
0 

0.
34

76
9 

0.
4 

22
0 

1 
0.

4G
07

7 

0.
38

4 
in

 

0.
26

57
5 

0.
30

02
0 

0.
33

70
1 

0.
37

58
5 

0.
41

63
0 

0.
45

78
6 

4
 

3:
 
n
 

18
0 

0.
50

00
0 

0.
50

00
0 

0.
50

00
0 

0.
50

00
0 

0.
50

00
0 

0.
50

00
0 

0.
50

00
0 

0.
50

00
0 

0.
50

00
0 

0.
50

00
0 

h
:=

2
.0

 
(~

=
2

.2
 

tc
=

2.
4 

rc
=

2
.6

 
~

~
2

.
8

 
~

~
3

.
0

 
h

:=
3

.2
 

(~
=

3
.4

 
tc

=
3

.6
 

rc
=

3
.8

 
0 

0.
00

00
0 

0.
0o

00
0 

0.
00

00
0 

0.
00

00
0 

0.
00

00
0 

0.
00

00
0 

0.
00

00
0 

0.
00

00
0 

0.
00

00
0 

0.
00

00
0 

5 
0.

00
08

3 
0.

00
05

9 
0.

00
04

1 
0.

00
02

9 
0.

00
02

0 
0.

00
01

4 
0.

00
01

0 
0.

00
00

7 
0.

00
00

5 
0.

00
00

3 
10

 
0.

00
16

7 
0.

00
11

8 
0.

00
08

4 
0.

00
05

9 
0.

00
04

1 
0.

00
02

9 
0.

00
02

0 
0.

00
01

4 
0.

00
01

0 
0.

00
00

7 
1.5

 
0.

00
25

3 
0.

00
18

0 
0.

00
12

7 
0.

00
09

0 
0.

00
06

3 
0.

00
04

4 
0.

00
03

1.
 

0.
00

02
1 

0.
00

01
6 

0.
00

01
0 

20
 

0.
00

34
4 

0.
00
24
5 

0.
00

1 
74

 
0.

00
1 2

3 
0.

00
08

6 
0.

00
06

0 
0.

00
04

2 
0.

00
02

9 
0.
00
02
0 

0.
00

01
4 

25
 

I)
.O

uI
 1

0 
0.

00
31

3 
0.

00
2'

23
 

0.
00

15
8 

0.
00

1 
11

 
0.

1#
)0

78
 

0.0
1W

)5
5 

0.
00

03
8 

0.
00

02
7 

0.
00

01
Y

 

30
 

0.
00

54
3 

0.
00

38
9 

0.
00

27
8 

0.
00

19
7 

0.
00

13
9 

0.
00

W
8 

0.
00

06
9 

0.
00

04
8 

0.
00

03
4 

0.
00

02
4 

35
 

O
.O

W
G

6 
0.

00
47

2 
0.

00
33

8 
0.

00
24

1 
0.

00
17

1 
0.

00
12

1 
0.

00
08

5 
O

.O
O

W
0 

0.
00

04
2 

0.
00

02
9 

40
 

0.
00

78
1.

 
0.

00
56

4 
0.

00
40

6 
0.

00
29

0 
0.

00
20

7 
0.

00
1 4

7 
0.

00
10

4 
0.

00
07

4 
0.

00
05

2 
0.

00
03

7 
45

 
O

.(K
)9

20
 

0.
00

66
9 

0.
00

48
3 

0.
00

34
8 

0.
00

24
9 

0.
00

1 
78

 
0.

00
12

7 
0.

00
09

0 
0.

00
06

4 
0.

00
04

6 
50

 
0.

01
07

8 
0.

00
78

8 
0.

00
57

1 
0.

00
41

6 
0.

00
30

0 
0.

W
21

6 
0.

00
15

5 
0.

00
1 

11
 

0.
00

07
9 

0.
00

05
7 

55
 

0.
01

25
9 

0.
00

92
7 

0.
00

67
9 

0.
00

49
6 

0.
00

36
1 

0.
W

2B
'L

 
0.

00
19

0 
0.

00
13

7 
0.

00
09

9 
0.

00
07

1 

It
ep

F
od

uc
ed

 ir
on

1 
B

ai
sc

he
le

t 
(1

96
5)

 b
y 

pe
rm

is
si

ou
 o

f 
th

e 
pu

bl
is

he
r,

 A
ni

er
. 

In
st

. B
io

l. 
S

ci
. 



A
p

p
en

d
ix

 2
.1
. 

(c
o

n
tin

u
ed

) 

(d
eg

rt
w

l)
 

n 
=

 2.
0 

K
 
=

 2
.2

 
K

 
=

 2.
4 

n 
=

2
.6

 
IC
 =

2
.8

 
IC
 =

 3
.0

 
IG
 =
3.
2 

n 
=

 3.
4 

K
 
=

 3.
6 

K
 
=

3
.8

 
60

 
0.

01
46

7 
0.

01
08

9 
0.

00
80

5 
0.

00
59

3 
0.

00
43

5 
0.

00
31

9 
0.

00
23

3 
0.

00
1 7

0 
0.

00
12

4 
0.

00
09

0 

a
 

F
(
4

 

65
 

70
 

75
 

80
 

8.5
 

90
 

95
 

10
0 

10
5 

11
0 

11
5 

12
0 

12
5 

13
0 

13
.5 

14
0 

14
5 

15
0 

15
5 

1
 GO

 
16

.5 
1 7

0 
17

5 

0.
01

 7
0Y

 
0.

01
9Y

3 
0.

02
32

8 
0.

02
72

3 
0.

03
19

3 

0.
03

7A
'L

 
0.

04
41

8 
0.

05
21

0 
0.

06
15

0 
0.

07
26

3 
0.

08
.5

74
 

0.
10

10
9 

0.
11

89
5 

0.
13

95
4 

0.
18

30
8 

0.
18

97
0 

0.
21

94
8 

0.
25

23
9 

0.
28

82
9 

0.
32

69
4 

0.
36

79
5 

0.
4 

10
87

 
0.4

55
O

Y
 

o
.u

12
n

i 
0
 .o 1

50
9 

0.
01

78
2 

0.
02

 1
1 I

 
0.

02
50

8 

0.
02

9n
t3

 
0.

03
57

1 
0.

04
17

6 
0.

05
12

7 
0.

06
15

2 
0.

07
37

9 

0.
08

84
0 

0.
10

56
4 

0.
12

58
1 

0.
14

9 
1.

7 
0.

1 
75

92
 

0.
20

61
8 

0.
23

99
6 

0.
27

71
3 

0.
31

74
4 

0.
36

04
 7

 
0.

40
57

0 
0.

45
'2

46
 

U
.1

N
95

6 
0.

01
 13

8 
0.

01
36

0 
0.

01
63

1 
0.

01
96

5 

U
.0

23
76

 
O

.O
21

3B
'2 

0.
03

50
6 

0.
04

27
3 

0.
05

21
 2

 
0.
06
,3
55
 

0.
07

73
6 

0.
09

39
1 

0.
11

35
6 

0.
13

66
2 

0.
16

33
.5

 
u. 

19
39

3 

0.
22

84
1 

0.
26

66
8 

0.
30

84
 8

 
0.

35
33

9 
0.

40
07

9 
U

.4
49

94
 

11
.0

07
11

 
0.

00
85

6 
0.

01
03

5 

0.
01

53
7 

0.
01

25
8 

0.
01

 88
7 

0.
02

32
5 

0.
02

87
5 

0.
03

56
3 

0.
04

4 
19

 
0.

05
4 

77
 

0.
06

77
7 

0.
08

36
0 

0.
10

26
4 

0.
12

53
0 

0.
15

18
8 

0.
18

16
4 

0.
21

76
6 

0.
30

00
4 

0.
34

66
7 

0.
39

61
 2

 
11

.4
.1

75
5 

0
.2

~
3

8
 0.

00
52

7 
0.

00
64

2 
0.

00
76

6 
o.

oo
w

9 
0.

01
20

1 

0.
01

49
8 

0.
01

87
6 

0.
02

35
9 

0.
02

97
2 

0.
03

74
9 

0.
04

72
7 

0.
05

94
6 

0.
07

45
2 

0.
09

29
0 

0.
1 

I5
07

 
0.

1 
41

 41
 

0.
1 

72
22

 

0.
20

76
6 

0.
24

76
9 

0.
29

20
6 

0.
34

02
9 

0.
39

16
6 

0.
4 

45
26

 

0.
00

:3
90

 
u

.0
02

88
 

0.
00

48
1 

0
.0

0
:~

~
 

0.
00

59
6 

0.
00

45
2 

0.
00

71
6 

0.
00

57
3 

0.
00

93
8 

0.
00

73
3 

0.
01

 1
89

 
u.

00
94

4 
0.

01
51

1 
0.

01
22

?
 

0.
01

93
6 

0.
01

59
1 

0.
02

48
2 

0.
02

07
5 

0.
03

 1
85

 
0.

02
71

0 
0.

04
08

4 
0.
03
53
4 

0.
05

22
3 

0.
04

59
5 

0.
06

65
2 

0.
05

94
6 

0.
08

42
1 

0.
07

64
4 

0.
10

58
3 

0.
09

74
6 

0.
1 

31
83

 
0.

12
30

5 
0.

16
25

9 
0.

15
36

7 

0.
19

83
2 

0.
18

95
9 

0.
23

90
3 

0.
23

08
8 

0.
28

45
0 

0.
27

73
2 

0.
33

42
1 

0.
32

84
1 

0.
38

74
0 

0.
38

33
2 

0.
44

:$
06

 
U

.4
40

Y
5 

0.
00

21
3 

0.
00

26
9 

0.
00

34
3 

0.
00

44
1 

0.
00

57
3 

0.
00

75
11

 
0.

00
9H

8 
0.

01
30

8 
0.

01
73

7 
0.

02
30

8 
0.

03
06

2 

0.
04

04
8 

0.
05

32
3 

0.
06

94
7 

0.
08

98
6 

0.
11

49
9 

0.
11

53
8 

0.
18

14
0 

0.
22

31
7 

0.
27

05
0 

0.
32

28
7 

0.
37

94
1 

o.
m

9:
3 

0 
.O

O 
15

7 
o.

ow
20

1 
0.

00
26

0 
0.

00
33

9 
0.

00
44

8 

0.
00

.S
96

 
0.

00
80

0 
0.

01
07

7 
0.

01
45

6 

0.
02

65
7 

0.
03

57
1 

0.
04

71
1 

0.
06

32
2 

0.
08

29
4 

0.
10

75
6 

0.
13

76
7 

0.
17

31
1 

0.
21

58
6 

0.
26

39
9 

0.
31

75
5 

0.
37

56
3 

0.
43

69
7 

o.o
1s

m
 

0.
W

11
6 

0.
00

15
0 

0.
00

19
7 

0.
00

26
1 

0.
00

35
0 

u.
00

47
5 

0.
00

64
8 

0.
00

88
8 

0.
01

22
2 

0,
01

68
1 

0.
02

30
8 

0.
03

15
4 

0.
04

28
2 

0.
05

76
0 

0.
07

66
5 

0.
10

07
1 

u. 
i:i

o4
n 

0.
16

64
1 

0.
20

89
3 

0.
25

77
6 

0.
31

24
4 

0.
37

20
0 

o .
 ,i:

w
n 

18
0 

0.
50

00
0 

0.
50

00
0 

0.
50

00
0 

0.
50

00
0 

0.
50

00
0 

0.
50

00
0 

0.
50

00
0 

0.
50

00
0 

0.
50

00
0 

0.
50

00
0 



TABLES AND CHARTS FOR THE CIRCULAR CASE 357 



A
p

p
en

d
ix

 2
.1
. 

(c
o

n
tin

u
ed

) 

(d
rg

rt
w

l)
 

n 
=

 4.
0 

K
 =

 4
.2

 
K

 =
 4.

4 
n 

=
4.

6 
IC
 =

 4.
8 

IC
 =

 5
.0

 
IG

 =
 6.

2 
n 

=
 5.

4 
K

 =
 5.

6 
K

 =
 5.
8 

1.5
0 

0.
15

96
4 

0.
15

31
9 

0.
14

70
8 

0.
14

12
9 

0.
13

57
8 

0.
13

05
5 

0.
12

55
8 

0.
12

08
3 

0.
11

63
1 

0.
11

19
9 

15
5 

0.
20

'93
5 

0.
19
60
6 

0.
19

00
6 

0.
18

43
3 

0.
17

88
4 

0.
17

35
8 

0.
16

85
3 

O
.l6

:l
68

 
0.

15
90

2 
0.

15
45

3 
16

0 
0.

55
18

0 
0.

24
60

8 
0.

24
06

9 
0.

23
53

0 
O

.'L
S0

20
 

O
.'L

25
24

 
0.

2L
O

M
 

0.
21

5%
 

0.
21

14
8 

0.
20

71
6 

16
5 

0.
30

75
2 

0.
30

27
7 

0.
29

81
8 

0.
29

37
4 

0.
28

94
4 

0.
28

52
7 

0.
28

12
2 

0.
27

72
8 

0.
27

34
4 

0.
26

97
1 

17
0 

0.3
63

84
8 

0.
36

50
8 

0.
36

17
7 

0.
35

85
7 

0.
35

54
5 

0.
35

24
1 

0.
34

94
4 

0.
34

65
5 

0.
34

37
2 

0.
34

09
6 

17
.5
 

0.
43

32
4 

0.
43

14
0 

0.
42

97
3 

0.
42
80
.5
 

0.
42

64
1 

0.
42

48
1 

0.
42

32
4 

0.
42

17
1 

0.
42

02
1 

0.
41

87
3 

a
 

F
(
4

 

18
0 

0.
50

00
11

 
0.

50
00

0 
0.

50
00

0 
0.
5l
MI
00
 

0.
50

00
0 

0.
50

00
0 

0.
.5

00
01

) 
0.

50
00

11
 

0.
50

00
0 

0.
50

00
0 

rc
=

6
.0

 
~

~
6

.
2

 
~

~
6

.
4

 
K

-6
3.

6 
~

~
6

.
8

 
~

=
7

.
0

 ~
=

7
.

2
 

~
=

7
.

4
 ~

=
7

.
6

 
~

=
7

.
8

 
30

 
0.

00
00

u 
0.

00
00

0 
0.

00
00

0 
u.

0u
uo

o 
0.

00
00

0 
0.

00
00

0 
0.

00
00

0 
o.
0o
ou
o 

0.
00

00
0 

O
.~

H
)0

00
 

35
 

0.
00

00
1 

0.
00

00
0 

0.
00

00
0 

u
.0

00
00

 
0.

00
00

0 
0.

00
00

0 
0.

00
00

0 
0.

00
00

0 
0.

00
00

0 
0.

00
00

0 
40

 
0.

00
00

1 
0.

00
00

1 
0.

00
00

0 
0.

00
00

0 
0.

00
00

0 
0.

00
00

0 
0.

00
00

0 
0.

00
00

0 
0.

00
00

0 
0.

00
00

0 
45

 
0.

00
00

1 
0.

00
00

1 
0.

00
00

0 
0.

00
00

0 
0.

00
00

0 
0.

00
00

0 
0.

oo
M

H
) 

0.
00

00
0 

0.
00

00
0 

0.
00

00
0 

50
 

0.
00

00
1 

0.
00

00
1 

0.
00

00
1 

0.
00

00
0 

0.
00

00
0 

0.
00

00
0 

0.
00

00
0 

0.
00

00
0 

0.
00

00
0 

0.
00

00
0 

55
 

0.
00

00
2 

0.
00

00
1 

o.
uO

o0
 1

 
o.

uu
o0

 1 
0.

00
00

0 
0.

00
00

0 
0.

00
0u

o 
0.

00
0(

H
l 

0.
00

00
0 

0.
uo

uo
o 

60
 

0.
00

00
3 

0.
00

00
2 

0.
00

00
X

 
U

.0
00

01
 

0.
00

00
1 

0.
00

00
1 

0.
00

00
0 

0.
00

00
0 

0.
00

00
0 

0.
00

00
0 

65
 

0.
00

00
4 

0.
00

00
3 

0.
00

00
2 

0.
00

00
2 

0.
00

00
1 

0.
00

00
1 

0.
00

00
1 

0,
00

00
0 

0.
00

00
0 

0.
00

00
0 

70
 

0.
00

00
63

 
0.

00
00

5 
0.

00
00

3 
0.

00
00

3 
0.

00
00

2 
0.

00
00

1 
0.

00
00

1 
0.

00
00

1 
0.
00
00
1 

0.
00
00
0 

7.5
 

0.
00

01
0 

0.
00

00
7 

0.
00
00
6 

0.
00

00
4 

0.
00

00
3 

0.
00

00
2 

0.
00

00
2 

0.
00

00
1 

0.
00

00
1 

0,
00

00
1 

80
 

0.
00

01
5 

0.
00

01
2 

0.U
O

O
O

9 
0.

00
00

7 
0.

0W
06

 
O

.O
(W

4 
0.

00
00

3 
0.

00
00

3 
0.

00
00

2 
0.u

O
Uo

IL 
85

 
0.

00
02

5 
0.

00
0'

20
 

0.
00

01
 5

 
0.

00
11

1 
2 

0.
00

01
0 

0.
00
1M
)8
 

0.
00

00
6 

0.
00

00
5 

0.
00

00
4 

0.1
M

30
03

 



TABLES AND CHARTS FOR THE CIRCULAR CASE 359 

~ 0 0 0 0 0  

0 
0 
0 
0 

0 
u? 

Q 
2 
0 

8 
9 
0 

0 

Q 
'c! 
0 

!i 
d 

0 
0 
8 
2 
0 
0 
0 
0 

0 
u? 

Q 
2 
0 

8 
9 
0 

0 

Q 
'c! 
0 

0 
2 



A
p

p
en

d
ix

 2
.1
. 

(c
o

n
tin

u
ed

) 
s C 

a
 

F
(4

 
(d

eg
rt

w
l)

 
n 

=
 8.

0 
K

 
=

 8
2

 
K

 
=

 8.
4 

n 
=8
.6
 

IC
 =

 8
.8

 
IG
 =

 9.
0 

n 
=

 9.
2 

n 
=

 9.
4 

K
 
=

 9.
6 

K
 
=9
.8
 

n 
=

 10
.0
 

70
 

0.
00

00
0 

0.
00

00
0 

0.
00
00
0 

0.
00
00
0 

0.
0w

)o
o 

0.
00
00
0 

0.
00
00
0 

o.
oo

00
0 

0.
00

00
0 

0.
00

0~
10

 
0.o

w
oo

 
75
 

no
 

85
 

90
 

95
 

10
0 

10
5 

1 L
O 

11
5 

12
0 

12
5 

13
0 

13
5 

14
0 

14
.5

 

15
0 

15
5 

t6
0 

16
5 

1 7
0 

1 7
.5 

18
0 

0.
00
00
1 

0.
00
00
1 

0.
00
00
2 

0.
00
00
5 

O.
OO
O(
J9
 

0.
00
01
9 

0.
00
03
8 

0.
00
07
4 

0
 .oo

 14
5 

0.
w2
77
 

0.
00
51
9 

0.
00
94
8 

0.
01
67
7 

0.
02
86
9 

0.
04
73
3 

0.
07
51
11
 

0.
11
44
0 

0.
16
71
0 

0.
23
39
3 

0.
31
39
1 

0.
40
41
 4
 

0.
50

00
11

 

0.
00
00
0 

0.
00
00
1 

0.
00
00
2 

0.
00
00
4 

0.
00
00
8 

0.
00
01
6 

0.
00

03
2 

0.
00
06
4 

0.
00
12
7 

0.
00
24
8 

0.
00
47
2 

0.
00
87
3 

0
 .O

 15
66
 

0.
02
 7 1
2 

0.
04
52
4 

0.
07
15
1 

0.
11
14
3 

0.
16
10
0 

0.
23
10
7 

0.
31
17
0 

0.
40
29
3 

0.
50
00
0 

0.1
)o

O
O

O
 

0.
00

00
x 

0.
00
00
2 

0.
00
00
3 

0.
uO
Uo
t)
 

0.
1M
I0
13
 

0.
00
0'
27
 

0.
00
05
6 

0.
00
11
2 

0.
00
22
2 

0.
W4
29
 

O.
uo
80
5 

0.
01
46
2 

0.
02
8G
4 

0.
01
32
5 

0.
07
00
1 

0.
10
85
5 

0.
16
09
9 

0.
22
82
7 

0.
30
95
2 

0.
40
17
4 

0.
50
00
0 

1l
.O

(W
)0

0 
0.
00
00
1 

0.
00
00
1 

0.
00
00
3 

O
.O

W
O

5 
~1
.0
Wl
l 

0.
00
0'
23
 

0.
00
04
8 

0.
00
09
9 

0.
01
)1
99
 

0.
00

:1
90

 
0.
00
71
2 

0.
01
36
6 

0.
02
42
5 

0.
04
13
6 

11
.0
67
6'
2 

0.
10
57
6 

0.
15
80
4 

0.
22
58
2 

0.
30
73
8 

0.
a0
05
6 

0.
51

M
)0

0 

0.
00
01
)O
 

0.
00
00
0 

0.
00
00
1 

0.
00
00
2 

0.
00

00
4 

0.
00

1M
)Y

 
0.
00
02
0 

0.
00
04
2 

0.
00
08
7 

0.
00
1 7
8 

0.
00

35
4 

0.
01
27
6 

0.
02
29
3 

0.
03
95
5 

0.
06
53
1 

0.
10
30
5 

0.
15
51
7 

0.
22
28
3 

0.
30
52
7 

0.
39
94
0 

0.5
01

M
)O

 

0.
00
68
4 

0.
0o

oc
H

, 
0.
00
ow
 

0.
00
00
1 

0.
00
00
2 

0.
00
Ou
4 

0.
00
00
8 

0.
00
01
 7
 

0.
00
03
6 

0.
00
07
7 

0.
00

1f
jO

 
#.

O
K

32
2 

0.
00
63
1 

0.
01
19
3 

0.
02
16
9 

0.
03
78
3 

0.
06
31
0 

0.
10
04
3 

0.
15
23
6 

0.
22
01
9 

0.
30
3 
I9
 

0.
39
82
5 

0.
.iO

O
W

 

0.
00
00
11
 

0.
00
00
0 

0.
00
00
1 

0.
00
00
 I 

0.
00
00
3 

0.
00
00
7 

0.
00
01
4 

0.
00
03
2 

0.
00
06
8 

0.
00

14
3 

0.
00

'2
9:

3 
0.
00
58
2 

0.
01
11
5 

0.
02
05
2 

0.
03
61
9 

0.
06
09
6 

0.
09
78
9 

0.
14
96
2 

0.
21
75
9 

0.
30
1 
15
 

0.
39
7 I
2 

0.
50

00
11

 

0.
00
00
11
 

0.
00
00
0 

0.
00

00
0 

0.
00
00
 I 

0.
00
00
2 

0.
00
00
5 

0.
00
01
2 

0.
00
02
7 

0.
00
06
0 

0.
00

 12
x 

0.
00
96
6 

0.
00
53
7 

0.
01
04
2 

0.
01
94
2 

0.
03
46
3 

0.
05
89
1 

0.
09
54
2 

0.
14
69
4 

0.
21
50
4 

0.
29
91
3 

0.
39
60
0 

0.
50

00
11

 

0.
00
00
0 

0.
00
00
0 

0.
00
00
0 

0 .
00

00
 1 

0.
00
00
2 

0.
00
00
5 

0.
00
01
 1 

0.
00
02
4 

0.
00
05
3 

0.
00

 1 1
5 

0.
00
24
2 

0.
00
49
5 

0.
00
97
4 

0.
01
83
8 

0.
03
31
4 

0.
05
69
3 

0.
09
30
2 

0.
14
43
3 

0.
21
25
3 

0.
29
71
4 

0.
39
48
9 

0.
50
00
0 

0.
00
00
0 

0.
00
00
0 

0.
00
00
0 

0.
00
00
1 

0.
w

U
oI

2 
0.
1M
30
0.
1 

0.
00
00
9 

0.
00
02
1 

0.
00
04
7 

0.
00
10
3 

O
.W

L'
21

 
0.
00
45
7 

0.
00
91
1 

0.
01
74
0 

0.
03
17
1 

0.
05
50
3 

0.
09
06
9 

0.
14
17
7 

0.
21
00
7 

0.
29
51
7 

0.
39
38
0 

0.
50
00
0 

Il
.M

)0
00

 
0.
00
00
0 

0.
00
00
0 

0.
00
00
1 

o.
wo

o 
1 

0.
01

)0
0:

3 
0.
0o
00
8 

0.
00
01
8 

0.
00
04
1 

O
.(H

)0
92

 
0.
00
20
1 

0.
00
4'
22
 

0.
00
85
2 

0.
01

64
7 

0.
03
03
6 

11
.0
53
19
 

0.
08
84
3 

0.
13
92
7 

0.
20
76
5 

0.
29
32
3 

0.
39
27
1 

;P
 

0.
51

M
)0

0 
2
 

?
I 2
 

R
ep

ro
du

ce
d 

fr
om

 H
at

sc
he

le
t. 
(1
96
5)
 b

y 
pe

rm
is

si
on

 o
f 

th
e 

pu
bl

is
he

r,
 A

m
er

. 
ln

st
. H

io
l. 

Sc
i. 

U
 



TABLES AND CHARTS FOR THE CIRCULAR CASE 36 1 

Appendix 2.2. Quantiles (in degrees) of the von Mises distribution M(0,ri)  transferred 
t,n the linear interval [--18O0, 180°] by cutting the unit circle at 1 8 0 O .  The lower tail area 
Pr(-180° < U < -180O + 15) is nj2. The upper tail area Pr(180° - d < U < 1 8 0 O )  is  ~ / 2 .  
For values nf K greater than tho~e shown in the table, approximate quasitila d are given 

by 6 = 180' - (180,/r)'rari-*. 
K u=0.001 0.01 0.05 0.1 )F, a =  0.001 0.01 0.05 0.1 
0.0 0.1 0.6 2.9 5.7 4.6 71.1 102.4 123.4 133.2 
0.1 
0.2 
0.3 
0.4 
0.5 
0.ri 
0.7 
0.8 
0.9 
1 .o 
1.1 
1.2 
1 .3 
1.4 
1.5 
1.6 
1.7 
1.8 
1 .9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
3.0 
3 . 1  
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 
4.0 
4.1 
4.2 
4 .R 
4.1 
4.5 

0.2 2.0 
0.2 2.2 
0.2 2.5 
0.3 2.8 
0.3 3.2 
0.4 3.6 
0.1 4.1 
0.5 4.7 
0.5 5.4 
0.6 6.2 
0.7 7.2 
0.8 8.3 
1.0 9.6 
1.1 11.2 
1.3 13.1 
1.6 15.3 
1.8 17.9 
2.2 20.8 
2.6 242  
3.0 28.0 
3.6 32.1 
4.3 36.6 
6.1 41.2 
6.0 46.0 
7.2 50.7 
8.5 55.2 
10.1 59.6 
12.1 63.6 
14.3 07.4 
16.9 70.9 
19.9 742 
23.2 77.1 
26.9 79.9 
30.8 82.4 
34.9 84.8 
39.1 86.9 
43.2 89.0 
17.1 90.8 
50.9 92.6 
54.5 94.3 
57.8 95.8 
60.9 97.3 
63.7 98.7 
66.3 1uo.u 

10.0 
11.1 
12.4 
13.9 
15.7 
17.7 
20.1 
22.9 
26.0 
29.6 
33.6 
38.1 
42.9 
47.9 
53.1 
58.4 
63.5 
68.4 
73.0 
77.3 
81.3 
84.9 
88.3 
91.3 
94.1 
96.7 
99.1 
101.3 
103.3 
105.1 
106.9 
108.5 
110.0 
111.4 
112.7 
114.0 
115.2 
11 6.3 
117.3 
118.3 
119.3 
120.2 
1 21 .o 
121.!! 

19.9 
22.1 
24.6 
27.5 
30.8 
34.5 
38.7 
43.3 
48.3 
53.5 
58.9 
64.3 
69-6 
74.8 
79.6 
84. I 
88.3 
92. I 
95.6 
98.8 
101.7 
104.3 
106.7 
109.0 
111.0 
112.9 
114.6 
116.2 
117.7 
119.1 
120.4 
121 .6 
122.8 
123.8 
124.9 
125.8 
126.7 
127.6 
128.4 
129.2 
129.9 
130.7 
131.3 
132.0 

68.8 101.2 122.7 132.6 

4.7 
4.8 
4.9 
5.0 
5.2 
5.4 
5.6 
5.8 
6.0 
6.2 
6.4 
6.6 
6.8 
7.0 
7.2 
7.4 
7.6 
7.8 
8.0 
8.2 
8.4 
8.6 
8.8 
9.0 
9.2 
9.4 
9.6 
9.8 

10.0 
10.5 
11.0 
11.5 
12.0 
12.5 
13.0 
14 
15 
20 
30 
40 
50 

I00 

73.2 
75.2 
77.1 
78.8 
82.0 
84 .9 
87.5 
89.8 
92.0 
94.0 
95.8 
97.6 
99.2 
100.7 
102.1 
103.5 
104.7 
105.9 
107.1 
108.2 
109.2 
110.2 
111.2 
112.1 
113.0 
113.8 
114.7 
115.4 
116.2 
118.0 
119.6 
121.1 
122.5 
123.8 
125.0 
127.2 
129.2 
136.5 
144.9 
149.7 
163.0 

103.5 
104.6 
105.6 
106.0 
108.4 
110.1 
111.7 
113.2 
114.5 
115.8 
117.0 
1182 
119.2 
120.3 
121.2 
122.2 
123.0 
123.9 
124.7 
125.5 
1262 
126.9 
127.0 
128.2 

129.0 
130.1 
130.6 
131.2 
132.5 
133.7 
134.8 
135.8 
136.8 
137.7 
139.3 

146.3 
152.7 
156.4 
169.0 

I 28.9 

1:tu.n 

124.1 
124.8 
125.5 
126.2 
127.4 
128.5 
129.6 
130.6 
131.5 
132.4 
133.3 
1 :M.l 
134.8 
135.5 
136.2 
136.9 
137.5 
138.1 
1:m7 
139.2 
139.8 
140.3 
140.8 
141.2 
111.7 
142.1 
142.6 
143.0 
143.4 
144.3 
145.2 
146.0 
146.7 
147.5 
148. I 
149.3 
150.4 
154.5 
1.59.3 
162.1 
164.0 

133.8 
134.3 
134.9 
135.4 
130.4 
137.3 
138.2 

139.7 
140.5 
141.1 
141 .x 
142.4 
143.0 
143.6 
144.1 
144.6 
145. I 
145.6 
146.0 
146.5 
146.9 
147.3 
147.7 
148.0 
148.4 
148.8 
149.1 
149.4 
150.2 
150.9 
151.6 
152.2 
152.8 
153.4 
154.4 
155.3 
158.7 
162.7 
165.0 
160.6 

139.0 

-. . 161.1 165.2 168.7 170.6 
z, = 3.291 2.576 1.960 1.645 
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Appendix 2.3. The hunction A, dehied by A(A] = I I ( K ) / I & ~ ) .  The mean resultant 
length p of the von Mities distribution M ( p ,  A) is p = .A(&). 

0.0 0.000 3.5 0.841 7.0 0.926 
IC A ( K )  I( A (K)  A 44 

0.1 
0.2 
0.3 
0.4 

0.5 
0.6 
0.7 
0.8 
0.9 

1 .o 
1.1 
1.2 
1.3 
1.4 

I .5 
1 .6 
1.7 
1.8 
1.9 

2.0 
2.1 
2.2 
2.3 
2.4 

2.5 
2.6 
2.7 
2.8 
2.9 

3.0 
3.1 
8.2 
3.3 

0.0.so 
0.100 
0.148 
0.196 

0.242 
0.2Hi 
0.330 
0.371 
0.410 

0.446 
0.481 
0.513 
0.543 
0.570 

0.39G 
0.620 
0.642 
0.6WL 
0.681 

0.698 
0.714 
0.728 
0.741 
0.754 

0.765 
0.775 
0.785 
0.7m 
0.802 

0.810 
0.817 
0.824 
0.830 

3.6 
3.7 
3.8 
3.9 

4 .u 
4.1 
4.2 
4.3 
4.4 

4.5 
4 .6 
4 . i  
4.8 
4.9 

5.0 
5.1 
5.2 
5.3 
5.4 

5.5 
5.6 
5.i 
5.8 
5.9 

6.0 
6.1 
6.2 
6.3 
6.4 

6.5 
6.6 
6.i 
6.8 

0.846 

0.835 
0.860 

O.H(i4 
0.867 

0.874 
0.877 

0.880 
0.883 
0.886 

0.891 

0.893 
0.896 
0.898 

0.902 

0.904 
0.906 
0.907 
0.909 
0.91 1 

0.912 
0.91 4 
0.91 5 
0.917 

0.851 

0.871 

0.889 

o.9oa 

0.918 

0.920 
O.YZ1 
0.YU 
0.923 

7.1 
7.2 
7.3 
7.4 

7.5 
7.6 
7.7 
7.8 
7.9 

8.0 
8.1 
H.2 
8.3 
8.4 

8.5 
8.6 
H.7 
8.8 
8.9 

9.0 
9.2 
9.4 
9.6 
9.8 

10 
12 
15 
20 
24 

30 
4 0 
60 
I 20 

0/9n 
0.928 
0.929 
0.930 

0.931 
0.!!32 
0.933 
0.931 
0.934 

0.935 
0.9:36 
0.5a1 
0.938 
0.938 

0.939 
0.940 
0.!!41 
0.941 
0.942 

0.943 
0.944 
0.!!45 
0.946 
0.948 

0.949 
0.957 
0.!!66 
0.975 
0.979 

0.983 
0.987 
0.!!92 
0.996 

3.4 0.836 6.9 0.924 x, 1.000 
Bawd on Table C of Ratt8chelt.t (1965), 

with permission of the Amer. Inst.. Biol. Sci. 
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Appendix 2.4. T h e  fnricliori A - ' .  T h e  rriaxiniurn likelihood ecltitriale K of the 
coilcentration parameter K of the von Mises distributiou M ( ~ , K )  is k = A-'(R).  

0.00 0.000 0.35 0.748 0.70 2.014 
3: A - 1 (x) z A - l ( X )  z .4-'(.) 

0.01 
OM2 
0.03 
0.04 

0.05 
0.06 
0.07 
0.08 
0.09 

0.10 
0.11 
0.12 
0.13 
0.14 

0.15 
0.16 
0.17 
0.18 
0.19 

0.20 
0.21 
0.22 
0.23 
0.24 

0.25 
0.26 
0.27 
0.28 
0.29 

0.30 
0.31 
0.32 
0.33 

0.U20 
0.040 
0.060 
0.080 

0.100 
0.120 
0.140 
0.161 
0.181 

0.201 
0.121 
0.242 
0.262 
0.283 

0.303 
0.324 
0.345 
0.366 
0.387 

0.408 
0.430 
0.451 
0.473 
0.495 

0.516 
0.539 
0.561 
0.584 
0.606 

0.629 
0.6F2 
0.676 
0.700 

0.36 
0.37 
0.38 
0.39 

0.40 
0.41 
0.42 
0.43 
0.44 

0.45 
0.46 
0.47 
0.48 
0.49 

0.50 
0.51 
0.S2 
0.53 
0.54 

0.M 
0.56 
0.57 
0.58 
0.59 

0.GO 
0.61 
0.61 
0 . a  
0.64 

0.65 
0.M 
0.67 
0.68 

11.772 
0.797 
0.823 
0.848 

0.874 
0.900 
0.927 
0.954 
0.982 

1.010 
1 .0:w 
1.068 
1.098 
1.128 

1.159 
1.191 
1.223 
1.257 
1.291 

1.326 
1.382 

1.436 
1.475 

1.5L6 
1.557 
1.600 
1.645 
1.691 

1.739 
1.790 
1.842 
1.896 

1.398 

0.71 
0.72 
0.73 
0.74 

0.75 
0.7ti 
0.77 
0.78 
0.79 

0.80 
0.81 
OX2 
0.83 
0.84 

0.85 
0.86 
0.87 
0.88 
0.89 

0.90 
0.91 
0.92 
0.93 
0.94 

0.95 
0.96 
0.97 
0.98 
0.99 

2.077 
2.144 
2.214 
2.289 

2.369 
2.455 
2.547 
2.646 
2.754 

2.871 
3.000 
3.143 
3.301 
3.479 

3.680 
3.91 1 
4.177 
4.489 
4.859 

5.305 
5.852 
6.540 
7.426 
8.610 

10.272 
12.76s 
16.!)17 
2a.LaL 
50.242 

' r ' r.. 

0.34 0.724 0.69 1.954 
Rased on 'Ikble I? of Ratschelet (1965) by permimviori of the Amer. Inst. 

Bid. Sci., and on Table 2 of Gutribel, Greeriwoci & Diirarid (1953) 
by pertnissiou of the authois aud publisher of' J .  Artier. Stutiut. Asrw. 
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Appendix 2.6. Upper quantiles of c:' from the uniform distribution. 
n n = 0.10 0.05 0.025 0.01 
5 0.413 0.522 0.611 0.709 
6 0.376 0.476 0.560 0.G52 
7 0.347 0.44 1 0.51Y 0.60T 
X 0.3'24 0.412 0.486 0..%9 
9 0.305 0.388 0.4S9 0.538 

10 
11 
12 
1 3 
14 
15 

16 
17 
18 
19 
20 

21 
22 
25 
24 
25 

0.289 0.368 0.436 0.512 
0.275 0.551. 0.4 16 0.489 
0.264 0.3:WJ 0.398 0.468 
0.253 0 .3'23 0.383 0.451 
0.244 0.311 0.369 0.435 
0.235 0.301 0.357 0.420 

0.228 0.291 0.345 0.407 
0.221 0.2UL 0.335 0.395 
0.215 0.271 0.3% 0.384 
0.209 0.267 0.317 0.374 
0.204 0.260 0.309 0.365 

0.199 0.254 0.302 0.35G 
0. 194 0.248 0.295 0.318 
0.lYO 0.219 02x8 0.34 1 
0.186 0.238 0.282 0.334 
0.182 0.233 0.2i7 0.327 

0.17 0.21 0.25 0.30 
0.15 0.20 0.23 0.2X 
0.14 0.18 0.22 0.26 
0.14 0.17 0.21 0.25 
0.13 0.16 0.20 0.23 

{ 2 n ) ' W  + N(u,~) 1.282 1.645 1.960 2.326 
H a s 4  on 'Table 3 of Stephens (1969d) by permission of the J .  Arner. Statist. ASSW 



366 APPENDLY 2 

Appendix 2.7. Quanliles of the Hodges-Ajne statistic 7Il under unibrniity. The 
quant ih  mo have been chosen to make the tail probabilitie Pr(m 5 tm) closest to the 

nominal level a. 
n a = 0.10 0.05 0.025 0.01 
9 0 0 0 0 

10 1 0 0 0 
I1 1 0 0 0 
12 1 1 0 0 
13 I I 1 0 
14 I 1 I 0 

15 2 2 1 1 
16 2 2 1 1 
17 3 2 2 1 
18 3 3 2 2 
19 3 3 1 2 

20 4 3 3 2 
21 4 4 3 2 
22 5 4 3 3 
23 5 4 4 3 
24 5 5 1 3 

25 6 5 4 4 
30 7 7 6 5 
36 9 9 8 7 
4 0  11 10 1 0 9 
50 I5 14 1 3 11 
Compiled from Hodges (1965) with permission of the publisher 
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Appendix 2.8. Quantiles (in degrees) of the circular range w under uniformity. 

11 LL = 0.005 0.01 0.05 0.10 
4 38.8 48.9 83.6 105.3 
5 64.0 76.1 113.8 135.4 
6 87.2 100s 138.2 158.7 
7 107.6 120.8 158.0 177.3 
a 125.5 138.5 174.4 192.5 
9 141.1 163.8 188.1 205.1 

10 154.7 167.1 199.8 215.8 
11 166.8 178.7 209.9 n 5 . u  
12 177.4 189.0 218.7 233.0 
13 ia:.o 198.1 226.5 240.0 
14 195.6 206.2 233.1 24G.2 

1.5 20x2 213.5 239.5 251.7 
I6 110.2 120.1 245.1 256.7 
17 216.6 2262 250.1 261.2 
18 222.1 231.6 254.7 265.3 
19 227.7 236.7 258.8 269.1 

20 232.7 24 1 . 3  2K2.7 272.5 
21 137.2 145.6 266.2 27.5.6 

23 245.1 250.2 27-2.5 281.3 
24 249.0 256.7 275.3 283.8 

22 241.4 249.5 269.4 m . 6  

25 2n2.5 259.9 277.9 2u5.1 
26 155.7 162.9 280.1 288.3 
27 258.7 265.7 332.7 290.4 
28 261.5 268.3 281.8 292.3 
29 264.2 270.8 286.9 294.1 
30 266.7 273.2 288.8 295.9 
Reproduced from Lauhcher & Rudolph (1968) by permission 
of the authors. 

. -, 
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Appendix 2.9. Quantiles (in degrees) of t,be equal-spacings statistic L under 
unifomiity. 

n cl = 0.01 0.05 0.10 
4 221.0 186.5 171.7 
5 212.0 183.6 168.8 
6 206.0 180.7 166.3 
7 202.7 177.8 16.1.9 
8 1 9a.ri 175.7 lli3.4 
9 195.1 173.5 162.4 

10 192.2 172. I 161.3 
11 189.7 170.3 160.2 
12 187.6 169.2 159.2 
13 185.8 167.8 158.4 
14 184.0 166.7 1.57.7 

15 182.2 165.6 157.0 

17 179.6 16.1.2 155.9 
18 178.2 lli3.1 155.2 
IS 177.1 162.4 1.54.8 

16 180.7 164.9 15G.6 

20 176.0 161.6 134.4 
25 171.9 158.9 152.7 
30 1G8.8 135.7 151.4 
35 166.4 155.0 150.3 
10 164.4 153.6 149.5 
45 162.7 1.5’2.1 148.7 
50 161.2 131.4 148.1 

100 152.8 14G.8 143.7 
200 146.8 142.6 140.3 
Reproduced froin Rao ( 1969) by permission of 
the lndian Statistical Institute. 
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Appendix 2.10. Upper quantiles of the statistic Uz for testing goodness of fit of a von 
Mises  distribution. 

K 

,411 K 

0.0 
0.50 
1 .oo 
1.50 
2.00 
4.00 
x, 

0.0 
0.50 
1 .oo 
1.50 
2.00 
4 .00 
30 

0.0 
0.50 
1 .oo 
1.50 
2.00 
4.00 
CYI 

0.500 

0.069 

0.047 
0.048 
0.051 
0.033 
0.055 
0.058 
0.059 

0.047 
0.048 
0.081 
0.053 
0.035 
0.057 
0.057 

0.030 
0.031 
0.035 
0.039 
0.043 
0.047 
0.048 

Significance level n 
0.25 0.15 0.10 0.05 0.025 

(a) Case 0: both parameters known 
0.105 0.131 0.152 0.187 0.222 

(b) Caw 1: shape parameter I( know 
0.071 0.089 0.105 0.133 0.163 
0.072 0.091 0.107 0.136 0.lG 
0.076 0.095 0.111 0.139 0.169 

0.081 0.101 0.119 0.147 0.177 
0.086 0.107 0.124 0.1.53 0.183 
0.089 0.110 0.127 0.157 0.187 

(c) Caw 2: p known 
0.071 0.089 0.105 0.133 0.16.3 
0.072 0.091 0.107 0.135 0.165 
0.076 0.095 0.111 0.139 0.169 
0.080 0.100 0.116 0.144 0.174 
0.082 0.103 0.1 19 0.148 0.177 
0.085 0.106 0.122 0.151 0.181 
0.085 0.105 0.122 0.1.51 0.180 

(d) Case 3: neither parameter known 
0.040 0.0413 0.052 0.061 0.069 
0.042 0.050 0.0.M 0.068 0.077 
0.04Y 0.0SY 0.0136 0.079 0.092 
0.056 0.067 0.077 0.092 0.108 
0.061 0.074 0.084 0.101 0.119 
0.067 0.082 0.093 0.113 0.132 
0.069 0.08.1 0.096 0.117 0.137 

0.080 0.0YY 0.1 15 0.144 0.173 

0.01 

0.268 

0.204 
0.206 
0.209 
0.214 
0.217 
0.224 
0.228 

0.204 
0.205 
0.209 
0.214 
0.218 
0.2'21 
0.221 

0.081 
U.(J(JO 
0.110 
0.128 
0.142 
0.158 
0. 164 

0.005 

0.304 

0.23.5 
0.23T 
0.241 
0.245 
0.248 
0.255 
0.259 

0.235 
0.237 
0.241 
0.245 
0.24Y 
0.253 
0.252 

0.090 
0.100 
0.122 
0.144 
0.159 
0.178 
0. in4 

For ti > 4 uw linear interpolation in l/n. For cases 2 aud 3 enter the taMe at the 
estimate of IE. 

Haprodiiced from Ikble 1 of Imckhart k Stephens (1985) by permision of the 
Biometrika Trust. 



3 70 APPENDLY 2 

Appendix 2.11. Confidence intervals for n. 

Appendix 2.11a. Clhart for obtaining a 90%. confidence interval for the concentration 
parameter n of the von Mims distribution M(p,n).  n denotes the sample size. The 
curves iri the ripper part give the tipper confidence liniit nu; t.ho~e in the lower part 

give the lower coiifideuce h i i t  q. 

Y 

Mean resultant length r f  
Reprodwed from Figure 5.3.1 of' Batschelct (1981) by permission of' the publisher. 
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Appendix 2.11b. Chart for obtaining a 98% confidence interval for the concentration 
paratrielor n of the von kfim disrribution M(p, K ) .  n dutiotes the saxtiple size. The 
c u ~ i c s  iu the upper part give the upper coilfidetrce limit nu: thwe it1 t.he lower part 

give the lower confidence limit y. 

Mean resultant length R 
Reproduced from Figure 5.3.2 of Batschelei (1981) by perniission of the publisher. 
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Appendix 2.11~. Details of the charts in Appendices 2.1 l a  and 2.1 Ib. 

rk6 

6 
10 

20 

1 .o 

i i o  200 
0.5 

200 

100 

0 0.1 0.2 
ii 

1.5 

10 
K 

20 

30 

50 
100 

0.5 200 

1 .o 

200 

0 0.1 0.2 
Fi 

Reprodnced from Figure 5.3.3 of Batschelat (1981) reproduced by permimion of the 
publisher. 
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Appendix 2.12. Lpper quantilm of the two-sample \Vatnon-Willi~mn twt. 

Appendix 2.12a. Chart. for obtaining the upper 5% quantile of R' = (R1 + Ra)/n 
coriditional on the rnesri rtwultsrit lcngth R of the corribiiwd saxriyle (Eqtiirl sample 

~ires: rc1 = n.1). 

373 

b n  resultant length i 
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Appendix 2.13b. Chart for obtaining the upper 5% quantile of fi' = (NI + &)/n 
conditional on the mean resultant length fi of the combined sample (n2 = 2n1). 

Mean resultant length R 
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Appendix 2.13. Cyper quantiles of N: for the two-saniple uniform scores test. The 
quantiles R?," have been chosen to make the tail probabilities Pr(R; 2 tcf.") rlosest to 

t,he nominal level R. 

tl nl a = 0.001 0.01 0.08 0.10 
8 6.83 

9 

10 

11 

12 

13 

14 

15 

16 

4 

3 
4 

3 
4 
5 

3 
4 5 

3 
4 
5 
6 

3 
4 
5 
6 

3 
4 
5 
0 
7 

3 
4 
5 
0 
7 

3 
4 
5 
0 
7 

12.34 

11.20 
13.93 
14.93 

11.83 
15.26 
17.31 

12.34 
16.39 

19.20 15.59 
20.20 16.39 

12.78 
17.35 14.32 
20.92 17.48 
22.88 16.14 

13.14 
18.16 15.35 
22.43 16.98 

8.29 

9.47 
10.47 

7.20 
10.42 
8.71 

i.46 
8.46 
10.46 
11.20 

7.68 
9.35 
10.15 
10.42 

7.85 
9.30 
10.30 
12.21 
11.65 

7.99 
8.74 
10.36 
11.61 
11.57 

8.11. 
9.44 
10.44 
11.54 

6.4 I 
4.88 

6.M 
6.24 
6.85 

5.23 
7.43 
6.60 

5.73 
7.40 
7.46 
7.46 

6.15 
7.03 
7.39 
8.04 

6.19 
7.60 
7.85 
7.94 
8.85 

6.7~ 
7.91 
7.91 
9.12 
9.06 

5.M 
7.38 
9.03 
9.11 

25.27 18.16 12.M 9.78 
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Appendix 2.13. (cmatinued) 

1L 7&1 u = 0.001 0.01 0.05 0.10 
17 3 8.21 7.23 6.14 

4 
5 
6 
7 
8 

18 2 
3 
4 
5 
6 
7 
8 
9 

19 2 
3 
4 
5 
6 
7 
8 
9 

20 2 
3 
4 
5 
6 
7 
8 
9 

10 

13.44 
1 H.88 
23.73 
27.40 
29.37 

13.70 
19.46 
24.87 
29.28 
28.40 
2 9 2  

13.93 
19.98 
25.87 
27.71 
31.04 
29.46 

14.12 
20.43 
26.75 
29.36 
30.08 
32.41 
33.26 

1 1.7fi 
16.41 
17.76 
17.98 
19.11 

X.'B 
12.17 
16.05 
17.40 
19.46 
20.1 1 
20.23 

8.36 
12.52 
15.88 
18.19 
19.34 
21.12 
21.07 

X.42 
12.83 
16.29 
18.64 
20.43 
21.77 
Y2 .99 
2267 

9.74 
1 1.03 
12.21 
12.63 
13.36 

7.4 1 
9.94 

11.45 
12.25 
13.4 I 
13.82 
18.99 

7.66 
9.69 

11 29 
12.57 
13.54 
14.29 
14.68 

7.70 
9.H7 

11.49 
12.93 
14.05 
14.77 
15.45 
15.39 

7.64 
8.76 
9.41 

10.11 
10.15 

3.88 
6.41 
8.06 
8.76 
9.94 

10.29 
10.60 
11 .04 

3.89 
6.48 
7.64 
8.98 
9 3 7  

10.55 
11.12 
11.37 

3.90 
6.70 
7.80 
9.08 
9.98 

1 1.03 
11.47 
11.97 
12.19 

R' = x;,, 13.816 9.210 5.991 4.605 

Reproduced from Yardia (1967; 1969a) by pcrnlission or the Royal 
Statistical Society. 
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Appendix 2.14. Upper q~iantiles of Wattmri’s two-sample statistic U:l ,“z. The 
quaritilss l::, .r,s,O have been chosen to makt? the tail probabilities 

pr(u:,,n2 2 u:,,,,2ao) ClOWSh t o  the l l l J ~ I ~ l l d  It?Vt?l U. 

n nl a = 0.001 0.01 0.05 0.10 
9 0204 

10 

11 

12 

13 

14 

1 5 

16 

17 

4 

4 
8 

4 
5 

4 
8 
6 

4 
5 
6 

1 
5 
6 
i 

4 
5 
6 
7 

4 
8 
6 
i 
8 

4 
5 
6 
i 
8 

0.280 
0.298 
0.304 

0.1N9 
0.311 
0.322 

0.260 
0.297 
u. :m 
0.339 
0.344 

0.266 
0.304 
0.333 
0.:353 
0.363 

0.385 

0.169 
0.2.12 

0.236 
0.257 
0.264 

0.244 
0.2139 
0.282 

0.250 
0.229 
0.216 
0.251 

0.256 
0.24 1 
0.262 
0.239 

0.2 I7 
0.251 
0.248 
0.245 
0.250 

0.224 
0.239 
0.253 
0.247 
0.248 

0.2138 

0.217 
0.225 

0.227 
0.182 

0.181 
0.200 
0.206 

0.192 
0.189 
0.190 

0.186 
0.191 
0.186 
0.199 

0.195 
0.177 
0.18H 
0.182 

0.182 
0.188 
0.190 
0.182 
0.184 

0.186 
0.186 
0.185 
0.185 
0.186 

0.187 

0.163 
0.171 
0.171 

0.175 
0.1g 

0.154 

0.151 
0.159 
0.161 
0.158 

0.156 
0.161 
0.156 
0.156 

0.1% 
0.15ii 
0.156 
0.156 
0.156 

0.154 
0.155 
0.157 
0.155 
0.15fi 

0.152 

377 

Compiled from Burr (1964) with permission of the publisher. 
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Appendix 2.15. Upper qumiilcu of the total number r of' I'UUY. The quaitiles ro have 
been chosen to niakc the tail probabilities P r ( r  2 ~ 0 )  closest to the nominal level CI. 

n2 n = 0.05 
rt l  = 3  4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

4 2 
5 
6 

8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

CI 

2 2  
2 2 2 2  
2 2 2 4 4  
2 2 2 4 1 4  
2 2 2 4 4 4 4  
2 2 4 1 4 4 6  6 
2 2 4 4 4 6 6  6 6 
2 2 4 4 4 6 6  6 6 8 
2 2 4 4 4 6 6  6 8 8 8 
1 2 4 4 6 6 6  X 8 8 8 H 
2 2 4 4 6 6 6  8 8 8 8 1 0 1 0  
2 2 4 1 6 6 6  8 8 8 1 0 1 0 1 0 1 0  
2 4 4 4 6 6 8  8 8 1 0 1 0 1 0 1 0 1 2 1 2  
2 4 4 G 6 6 8 8 8 10 10 10 12 12 12 12 
2 4 4 6 6 6 8 8 8 10 1 0  10 12 I2 12 12 1 4  
2 4 4 6 6 8 H X 10 10 10 12 12 12 12 14 1 4  14 

n3 n = 0.01 
5 2 
6 2 2 2  
7 2 2 2 2  
8 2 2 2 2 2  
9 2 2 2 2 2 4 

10 2 2 2 2 2 4 4  4 
11 2 2 2 2 4 4 4  4 4 
12 2 2 2 2 4 4 4  4 6 6 
13 2 2 2 2 4 4 4  6 6 G 6 
1 .I 2 2 2 4 4 . 2 4  6 6 6 6 8 
15 2 2 2 4 1 4 6  6 6 6 8 H X 
16 2 2 2 4 4 4 6  6 6 6 8 X 8 8 
17 2 2 2 1 4 4 6  6 6 8 8 8 8 1 0 1 0  
18 2 2 2 4 4 6 6  6 6 8 8 8 1 0 1 0 1 0 1 0  
19 2 2 2 4 4 6 6  6 8 8 8 8 1 0 1 0 1 0 1 0 1 2  
20 2 2 4 4 4 6 6  6 8 8 1 0 1 0 1 0 1 0 1 0 1 2 1 2 1 2  

Compiled from Asano (1965) with permission of Kluwer Academic Publishers, Ihkyo. 
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Appendix 2.16. l!pper quantiles of N' for the three-sample uniform scores text. The 
qiiarrtileti Wo h a w  been chosen to make the tail protxibilitiex Pr(W 1 WO) ck~sest to 

the ~11JnliIld level U. 

n1 n2 n3 a = 0.01 0.05 0.10 
3 3 3 12.82 9.45 9.06 
4 3 2 I 1.96 9.06 8.02 
4 3 3 10.89 9.40 7.97 
4 4 1 10.29 8.59 

4 4 2 10.47 9.05 8.05 
4 4 3 11.53 9.36 8.21 
4 4 4 12.20 9.60 8.23 
5 2 2 10.38 8/28 7.85 

5 3 1 9.59 7.90 
5 3 2 12.38 9.14 7.65 
5 3 3 11.78 9.22 7.85 
5 4 1 10.92 9.31 6.97 

5 4 2 11.48 9.00 7.72 
5 4 3 11.50 9.30 8.05 
5 4 4 11.82 9.52 8.19 
5 5 1 11.87 8.99 7.14 

5 5 2 11.14 8.79 7.68 
5 5 3 11 .87 9.25 7.99 
5 5 4 12.00 9.46 8.20 

Reproduwd from Xfardia (1970) by perniission of tho Royal 
Slatisticill Society. 

4:* 13.277 9.188 7 * 770 



380 APPENDLY 2 

Appendix 2.17. Upper qiiantilee (upper entries) of the linear-circular rank correlation 
cotrfficient, U,). The lower entrim give the exact leveltl. 

u 
Pt 0.10 0.05 0.01 
S 8.97 - 

0.083 - 

6 4.57 4.67 4.95 
0.083 0.067 0.017 

7 4.30 4.90 5.75 
0.100 0.047 0.008 

H 4.488 5.17 6.15 
0.010 0.050 0.010 

9 4.50 5.34 6.68 
0.010 0.050 0.010 

10 4.52 5.48 G.68 
11 .1.55 5.5 7.2 
12 4.57 5.6 7.5 
15 4.59 5.7 7.9 
20 4.60 5.8 8.3 
30 4.G0 5.9 8.7 
40 4.60 5.9 8.8 
50 . I d 1  6.0 8.9 

100 4.61 6.0 9.1 
Adapted from Mardia (1976). 

Appendix 2.18. Upper qunntilei (upper entries) of the circular. circular rank correlation 
coefficient Po. The Icmer entries give the exact levels. 

a 
IC 0.10 0.05 0.01 
5 I .00 

0.083 
6 0.694 

0.117 
7 0.522 

0.100 
8 0.432 

0.098 
9 0.37t 

- 

0.616 
0.061 
0.534 
0.053 
0.627 
0.052 

1.00 
0.017 
0.796 
0.uaa 
0.7m 
0.012 
6.68 
0.010 

1 0 0.33t 0.4lt 0.59t 
Adapted from Ysrdia (1975a). 
t Values calculated froni approximation ( 1  1.2.17). 
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TABLES FOR THE SPHERICAL CASE 

The t,aBlaq in this appendix are prt?Yentt?d in the siiliic! order in ahidi they 
were first cited in the text. 
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Appendix 3.1. Quiutiles (ia degrees) of cofatitude B in the Fisher distribution 
P(p, K ) .  For values of K grealer t Ira~1  those shown in the table? approximate quailtiles 6 

HW given by d = an- 3. 
lc a = 0.001 0.01 0.08 0.10 
0.0 176.4 168.5 154.2 143.1 
0.1 176.2 
0.2 176.0 
0.3 175.8 
0.4 175.5 
0.5 175.3 
0.6 175.0 
0.7 174.6 
0.8 174.3 
0.9 173.9 

1 .o 173.5 
1.1 1 73.1 
1 .a 172.6 
1.3 17'2.1 
1.4 171.5 
1.5 170.9 
1.6 170.2 
1.7 169.5 
1 .8 188.7 
1.9 167.8 

2.0 166.9 
2.1 165.9 
2.2 164.8 
2.3 163.6 
2.4 16'2.3 
2.5 180.9 
2.6 159.4 
2.7 157.9 
2.8 166.2 
2.9 154.4 

3.0 152.5 
3.1 150.6 
3.2 148.5 
3.3 146.4 
3.4 144.3 
3.5 142.1 
3.6 139.8 
3.7 137.6 
3.8 135.3 
3.9 133.1 

4.0 130.9 
4.1 128.7 
4.2 126.6 

167.9 
167.3 
166.6 
165.8 
185.0 
164.1 
163.1 
162.1 
161.0 

159.7 
158.4 
157.0 
155.5 
153.8 
162.1 
150.2 
118.3 
146.2 
144.0 

141.8 
139.4 
137.0 
134.6 
1.7'2.1 
129.6 
127.1 
124.7 
122.2 
119.8 

117.5 
115.2 
113.0 
110.9 
108.9 
106.9 
105.0 
103.2 
lU1.5 
99.8 

98.2 
96.7 
95.2 

152.9 
161.5 
150.0 
148.4 
146.6 
144.8 
142.8 
140.8 
138.6 

136.3 
133.9 
131.4 
128.9 
126.2 
123.6 
120.9 

115.6 
113.0 

110.4 
107.9 
105.4 
103.1 
100.8 
98.8 
9fi.5 
94.5 
92.B 
90.8 

89.0 
87.4 
85.8 
84.3 
82.8 
81.4 
80. I 
78.8 
77.6 
76.5 

75.1 
74.3 
73.3 

I in.3 

141.4 
139.5 
137.4 
l3i5.3 
1 3 3 . 1  
130.7 
128.3 
125.7 
123.1 

120.4 
11 7.7 
114.9 
112.2 
109.4 
106.8 
104.1 
101.5 
99.0 
9fi.6 

M . 3  
92.1 
89.9 
87.9 
8fi.O 
84.1. 
82.1 
80.7 
79.1 
77.6 

76. I 
74.7 
73.4 
72.2 
71.0 
69.9 
68.8 
67.7 
66.7 
65.8 

64.8 
64.0 
63.1 

4.3 121.6 93.8 72.3 62.3 
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Appendix 3.1. (mntincred) 

n 0 = 0.001 0.01 0.05 0.10 
4.4 122.G 92.5 71.3 61.5 
4.5 
4.6 
4.7 
4.8 
4.9 
5.0 
5.2 
5.4 
5.6 
5.8 
8.0 
G.2 
6.4 
6.6 
6.8 
7.0 
7.2 
7.4 
7.6 
7.8 
8.0 
8.2 
8.4 
8.6 
8.8 
9.0 
9.2 
9.4 
9.8 
9.8 

10.0 
10.5 
1.1 .I! 
11.5 
12.0 
12.5 
13.0 
14.0 
15.0 
20.0 
30.0 
40.0 
50.0 

100 

1211.6 
118.7 
116.9 
115.2 
113.5 
111.9 
108.8 
106.0 
103.4 
100.9 
98.6 
96.5 
94.5 
Y2.7 
W.9 
89.2 
87.7 
86.2 
84.8 
83.4 
81.2 
80.9 
79.8 
78.7 
77.6 
76.6 
75.6 
74.6 
73.7 
72.8 
72.0 
70.0 
6X.2 
66.5 
84.9 
G3.4 
62.1 
59.6 
57.4 
49.1 
39. i  
34.2 
-70.5 
21.3 

91.2 
89.9 
88.7 
87.6 
88.5 
85.4 
83.4 
81.5 
79-8 
78.1 
78.8 
75.1 
73.7 
72.4 
71.2 
70.0 
88.9 
67.8 
GG.8 
65.8 
64.9 
64.0 
83.1 
62.3 
G1.5 
60.8 
6lso.0 
59.3 
58.8 
58.0 
57.1 
55.8 
51.5 
53.2 
52.0 
50.8 
49.8 
47.9 
46.1 
39.7 
32.2 
27.8 
24.8 
17.4 

70.4 
69.6 
68-7 
67.9 
87. 1 
68.4 
G4.9 
68.6 
w2.3 
61.1 
80.0 
58.9 
57.9 
56.9 
.M.0 
55.1 
54.3 
53.5 
52.7 
52.0 
51.3 
50.6 
50.0 
49.3 
48.7 
48.2 
47.6 
47.1 
46.5 
46.0 
45.5 
44.4 
4 3 . 3  
42.3 
41.4 
40.5 
39.7 
38.2 
36.8 
31.8 
25.8 
22.3 
19.9 
14.0 

60.8 
60.0 
59.3 
58.6 
58.0 
57.3 
56. I 
55.0 
53.9 
52.9 
52.0 
51.1 
50.2 
49.4 
48.6 
47.9 
47. 1 
46.5 
45.8 
45.2 
44.6 
44.0 
43.5 
42.9 
42.4 
41.9 
41.4 
41.0 
40.5 
40.1 
39.7 
38.7 
37.8 
36.9 
36.1 
35.3 
34.G 
33.3 
32.2 
27.8 
22.6 
19.5 
17.5 
12.3 

6 = U K - - ' f 2  a = 212.9 173.9 140.2 123.0 



384 APPENDLY 3 

Appendix 3.2. The function A i l .  The maximum likelihood estimate k of the 
conceutration parameter R of the Fisher distribution ~ ( p , n )  is ic = A;'(@. 

A - 1  * 
2 4;'w X A,'@) 1 3 ( .I 

0.00 0.000 0.35 1.137 0.70 3.304 
0.01 
O X 2  
0.03 
0.04 

0.05 
0.06 
0.07 
0.08 
0.09 

0.10 
0.11 
0.12 
0.13 
0.14 

0.15 
0.16 
0.17 
0.18 
0.19 

0.20 
0.21 
0.22 
0.23 
0.24 

0.25 
0.26 
0.27 
0.28 
0.29 

0.30 
0.31 
0.32 
0.33 
0.34 

0.030 
0.060 
0.090 
0.120 

0.150 
0.lE.U 
0.211 
0.241 
0.271 

0.3u2 
0.x2 
0.363 
0.394 
0.425 

0.433 
0.488 
0.519 
0.551 
0.583 

0.615 
0.647 
0.ti80 
0.713 
0.746 

0.780 
0.814 
0.848 
0.H83 
0.918 

0.953 
0.989 
1 .025 
1.062 
1.100 

0.36 
0.37 
0.38 
0.39 

0.40 
0.41 
0.12 
0.43 
0.44 

0.45 
0.46 
0.17 
0.18 
0.49 

0.50 
0.51 
0.51 
0.M 
0.54 

0.55 
0.56 
0.5i 
0.58 
0.59 

0.m 
0.61 
0.61 
0.63 
0.64 

0.65 
0.M 
0.67 
0.68 
0.69 

1.lX 
1.215 
1.255 
1.296 

1.336 
1.378 
1.121 
1 A64 
1.508 

I .k54 
1.6UO 
1.647 
I .696 
1.746 

1.797 
I .84Y 
1 .HI3 
I .958 
2.015 

2.074. 
2.135 
2.198 
2.263 
2.330 

2,401 
2.473 
2.519 
2.628 
2 . i l l  

2.798 
2.888 
2.9X4 
3.085 
3.191 

0.?1 
0.7'2 
0.73 
0.74 

0.75 
0 . X  
0.77 
0.78 
0.79 

0.80 
0.X1 
0.82 
0.83 
0.84 

0.85 
0.86 
0.X7 
0.88 
0.89 

0.90 
0.9 1 
0.92 
0.93 
0.94 

0.95 
0.96 
0.97 
0.9H 
0.99 

3.423 
3.551 
3.687 
3.832 

3.989 
4.158 
4.341 
4.541 
4.759 

.1.99H 
5.262 
5.555 
5.882 
6.250 

6.667 
7.143 
7.tiY2 
8.333 
9.091 

10.000 
11.111 
l2.500 
14.286 
16.667 

20.000 
25.000 
3:3.:3:u 
50.000 

100.000 
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Appendix 5.4. The function DT1 on (0, i). The maxiinurn fikclihood 
estimate k of the concentration parameter K of the girdle Watson 

distribution W ( ~ , K )  is it = Di'(E33). 

0.001 -50u.o 0.115 -.4.196 0.230 - 1.357 
t D, ' ( t )  t D;'( t )  t D, ' ( t f  

0.005 - 100.0 
0.010 -50.00 
0.015 -33.33 
0.020 -25.00 

0.025 -20.00 
0.0.30 - 16.67 
0.035 - 14.29 
0.040 - 12.25 
0.045 -11.11 

0.050 -!4.9Y2 
0.055 -9.087 
0.060 -8.327 
0.065 -7.681 
0.070 -7.126 

0.075 -6.641 
0.080 -6.215 
0.085 -3.836 
0.090 -5.495 
0.095 -5.188 

0.I00 - 4 .YO8 
0.105 -4.631 
0.110 -4.415 

0.120 -3.993 
0.125 -3.802 
0.130 -3.624 
0.135 -3.457 

0.140 -3.298 
0.145 -3.148 
0.150 -3.006 
0.155 -2.870 
0.160 -2.7-11 

0.165 -2.617 
0.170 -2.499 
0.175 -2.385 
0.180 -2.275 
0.185 -2.170 

0.1YO -2.088 
0.195 - 1.970 
0.200 -1.874 
0.205 -1.782 
0.210 - 1. .692 

0.215 - 1.605 
0.220 - 1 320 
0.225 - 1 A38 

0.235 - 1.279 
0.240 - 1.202 
0.245 -1.127 
0.250 - I .053 

0.255 -0.!!HZ 
0.260 -0.911 
0.265 -0.842 
0.270 -0.773 
0.275 -0.708 

0.280 -0.642 
0.285 -0.578 
0.290 -0.311 
0.295 -0.452 
0.300 -0.390 

0.805 -0.330 
0.310 -0.270 
0.315 -0.211 
0.320 -0.152 
0.325 -0.095 

0.830 -0.038 
0.333 -0.004 
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Appendix 3.6. The furictiuri Dc' 011 (i, I). The rtiaxitriiini likelihood 
wilirnate k of the concentration parameter is of the bipolar W&wn 

distribution W(C( ,K)  is k = D;' ( l l ) .  
t 4 ( t )  t q ' ( t )  t n,; ' ( t )  

0.34 0.075 0.57 2.392 0.80 5.797 
0.35 0.184 0.58 2.496 0.81 6.063 
0.36 0.292 0.59 2.602 0.m 6.354 
0.37 0.398 0.60 2.709 0.83 6.676 
0.38 0.503 0.61 2.819 0.84 7.035 

0.39 0.606 0.62 2.930 0.85 7.438 
0.40 0.708 0.63 33.044 0.86 7.897 
0.41 0.809 0.64 3.160 0.87 8.426 
0.42 0.909 0.65 3.330 0.88 9.043 
0.43 1.008 0.66 3.402 0.89 9.776 

0.44 1.106 0.67 3.529 0.90 10.654 
0.45 1.204 0.68 33.filjY 0.91 11.74ti 
0.46 1.802 0.69 3.764 0.92 13.112 
0.47 1.399 0.70 3.934 0.93 14.878 
0.48 1.497 0.71 4.079 0.94 17.242 

0.49 1.594 0.72 4.231 0.95 20.CGO 
0.50 1 .fig2 0.73 4.389 0.96 25.546 
0.51 1.790 0.74 1.556 0.97 33.886 
0.52 1.888 0.75 4.731 0.98 50.521 
0.53 1.987 0.76 4.917 0.99 100.510 

0.54 2.087 0.77 5.115 0.99 100.5 LO 
0.55 2.188 0.7H 5.326 0.995 200.5 
0..% 2.289 0.79 5.552 0.999 1000.5 
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Appendix S.6. Upper quaritiles fio of fi for testing that the conccutration parameter 
of a Fisher distribution haa a prescribed value IE. Pr(R > &) -- a. 

a = 0.01 (upper entry) and n = 0.05 (lower entry). 
71 n =  0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
5 0.805 0.828 0.867 0.898 0.920 0.935 0.945 0.953 0.959 I1.963 0.967 

6 

7 

8 

9 

10 

12 

16 

20 

30 

40 

60 

I00 

OCI 

0.700 0.729 0.784 0.833 0.868 0.892 0.909 0.921 0.9B2 0.939 0.945 

0.747 0.777 0.828 0.868 0.896 0.916 0.929 0.939 0.947 0.963 0.957 
0.642 0.676 0.724 0.799 0.841 0.870 0.891 0.906 0.918 0.927 0.934 
0.699 0.735 0.79.5 0.843 0.876 0.8rTJ 0.915 0.927 0.936 0.M3 0.949 
0.597 0.635 0.708 0.773 0.819 0.852 0.876 0.894 0.907 0.917 0.925 

0.658 0.699 0.767 0.821 0.859 0.885 0.903 0.917 0.927 0.935 0.942 
0.560 0.602 0.681 0.7M) 0.802 0.838 O.8G4 0.883 0.897 0.909 0.918 

0.624 0.669 0.743 0.802 0.843 0.872 0.893 0.sO8 0.919 0.928 0.935 
0.529 0.575 0.659 0.732 0.786 0.825 0.833 0.874 0.889 0.902 0.912 

0.594 0.643 0.722 0.785 0.850 0.861 0.884 0.900 0.912 0.YZ 0.Y30 
0.503 0.552 0.640 0.716 0.774 0.815 0.844 0.866 0.883 0.896 0.906 

0.546 0.601 0.687 0.757 0.808 0.813 0.868 0.887 0.901 0.912 0.920 
0.460 0.516 0.009 0.691 0.753 0.797 0.830 0.863 0.872 0.886 0.897 

0.476 0.511 0.638 0.717 0.774 0.815 0.845 0.867 0.883 0.896 0.906 
0.400 0.463 0.567 0.655 0.723 0.773 0.809 0.835 0.856 0.872 0.884 

0.428 0.500 0.001 0.688 0.751 0.796 0.828 0.862 0.871 0.885 0.897 
0.358 0.428 0.538 0.631 0.703 0.755 0.794 0.823 0.846 0.862 0.876 

0.355 0.436 0.550 0.643 0.713 0.764 0.802 0.819 0.850 0.867 0.880 
0.295 0.374 0.493 0.594 0.671 0.729 0.771 0.803 0.827 0.846 0.862 

0.307 0.398 0.517 0.616 0.690 0.745 0.785 0.815 0.838 0.856 0.870 
0.255 0.313 0.467 0.572 0.6.53 0.713 0.758 0.79 1 0.81 7 0.837 0.853 

0.251 0.353 0.479 0.583 0.663 0.722 0.765 0.798 0.823 0.841 0.858 
0.208 0.307 0.437 0.546 0.631 0.6% 0.742 0.i7i 0.805 0.826 0.844 

0.194 0.308 0.441 0.650 0.635 0.698 0.746 0.780 0.807 0.828 0.846 
0.161 0.272 0.407 0.521 0.609 0.676 0.725 0.763 0.792 0.815 0.H34 

0.000 0.164 0.313 0.438 0.537 0.613 0.672 0.i16 0.731 0.i78 0.800 

Front M. A. SLepLiens in Bionre trh ,  Vd. 54, pp. 211-223: 1'96i. Rcprocluced by 
permission of' the publisher. 
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APPENDLY 3 

Appendix 3.7b. Upper ct quwtiles of i?' = (Rl + Rz)/n coriditiorial oil the imw 
resultaut length R of the combined sample. a = 0.01 (upper entry) and u = 0.05 

(lower entry): n 2  = 2ri1. 

R R = 0.10 0.15 0.20 0.25 0.30 0.35 
20 0.420 0.436 0.454 0.474 0.497 0.525 

0.355 0.371 0.392 0.414 0.441 0.475 

24 0.38-5 0.403 0.422 0.443 0.469 0.499 
0.325 0.345 0.3w 0.392 0.422 0.455 

30 0.350 0.Mi 0.387 0.4 12 0.44 I 0.472 
0.2% 0.314 0.338 0.367 0.MJ 0.435 

40 0.3W 0.325 0.35U 0.378 0.409 0.441 
0.261 0.281 0.309 0.340 0.376 0.414 

60 0.257 0.278 0.307 0.339 0.375 0.414 
0.220 0.214 0.2i5 0.312 0.351 0.393 

120 0.195 0.223 0.258 0.297 0.339 0.383 
O.lG9 0.201 0.239 0.281 0.326 0.372 

oi: 0.10 0.15 0.20 0.25 0.30 0.35 

From M. A. Stephens in Biornelnka. 'VOl. 56, pp. 169 181, 1969. 
Reproductd by perinision of the publisher. 



Appendix 4 

NOTATION 
Relations 

- N 
N is distributed as 

‘y is approximately distributed as 

is apprcmirnately equal to 

Sample spaces 

S1 unit circle 
SP- 1 

IRpIj-1 

(3 @I 
sow 
w4 
v, ( WP) 
G J W )  
HP-1 unit hyperboloid in Rp 
CPk-’ 

c z  

unit. sphere in lRp 
real 0, - l)-dimensionitl projtxtive spm: 
groixp of orthogonal p x p Inatrices 

group of p x p rotation matrices 
group of unitary p x p matrices 
Stiefel miinifold of orthonormid ~ - f r m e ~  in R” 
Grass.rsIriann manifold of r-dirnensiond subspacw of IR” 

coniplex ( R  - l)-dimeu.siou.al projective space 
space of shapes of R labelled points in R” 

Population quantities 

P mean diectiou. on S1 
CL mean direction on 9 - l  

li concentration paramettcr 
P 111eaii resultant length 

4p = up + gP pth component of characterltic function of 
distribution on S’ 

Directional Statistics 
Kanti V. Mardia,Peter E. Jupp 

Copyright 0 2000 John Wiley & Sons, Inc 



APPENDLY 4 

Sample quantities 

mean t1irm:tiou 011 S1 
mean direction on Sp-' 
resultant length 
mcian resultant length 

corriponent along p (or dorig z-uis if p 3= 2) 
of vector mean 
component normal to p (or along y-axis if p = 2) 
of vector rrieai 

scatter matrix of observations on SP-l 
pth trigonometric moments of observations on S' 
maximum likelihood cstimate of 11 

maxirnum likelihood estixiiat e of p 

maximum likelihood estimate of K 

marginal maximum likelihood estimate of n 

von Mises 

cardioid 
wrapped Iiorrrial 

wrapped Caudiy 
von Mises-Fisher 

k&(p> K ) ,  Fisher 
Brownian motion 

projected iiormal 
Watson 
Bingham 
angular ccntral Gaussian 
c01nplex 1vatso>11 

complex Binghani 



NOT.4TION 

Special functions 

modified Bwuel? definetl in (A.1) 

Bessel, defiued in (1.15) 
defined in (A.10) 

defined in (.4.21) 

393 

full Procrustes tiistanre l~etwexi z1 mid zs (0 5 d F  5 1) 

Prot:rwtecr tlistauts between z1 a i d  2 2  (0 5 dp 5 1) 
Helmcrt.ised sub-matris ((k - 1) x k) 
vector of raw landmarks (k x 1 vector) 
vector of HelInert.ist?n landrriarks ((k: - 1) x 1 vm%or) 

Helmertised preshape 

shape of' z 
centred preshape 
t.rmspose of complex conjugatc of e 

centred laidmarks 
Helmertised 1andllicu.k coordinates ((k - 1) x m matrix) 
preshape ((k - 1) x 'in matrix) 
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complex angular Gaussilln 

distribution 34-34 
maximum likelihood estimator 343 

density 329, 334 
high concentrations 33 1 
inference 332-3 
normidising constant for 328-30 
notation 392 
probability density tbnction 327 
relation to other distributions 324, 

test for uniformity 323, 332 
complex notation, for landmwlis 303 
complex projective space 306 
complex symmetry condition 325, 343 
complex von Mises-tiisher distributions 

complex Watson distributions 334-42 

complex Bingham distributions 182, 326-8 

3334, 336. 345 

328 

density 334-5 
example 3.10-2 
high concentrations 336 
hypothesis testing 338-5) 
likelihood ratio test 340 
maximum likelihood estimation 337-8 
normalising constant for 335 
notation 392 
wlation to other distritwtiona 336. -345 

composite transfornation models 33. SO 
concentrated m n  Mises-Rsher 

distributions 172-3 
tests, mean direction 314 
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concentration measures 18 

concentration parameter 
see also dispersion measures 

circle 36 
sphere 169 

one-sample test 218 
robustness of estimators 276-7 
two-sample tests 220-2 

confidence intervals plotted 370-2 
equality in two-.sample tests 13.3-4 
homogeneity in multi-sample tests 

single-.sample tests 126-7 

comparison in shape 308-9 

see nlso Kuminer function 

von Mises distribution 

139-41 

configurations 303 

confluent hypergwmctric function 351 

contrastq, in shape analysis 303, 305 
control points 303 
convolution 

angular variables 28 
von Mi= distributions 44-5 

corrwtivns for muping 23 
comlation coefficients, general class based 

on uniform scores 253 
correlation nieasures 245-57 

circular-circul;lr correlation 248-54 
Iinear-cixular cornlation 235-8 
sphericul-?jphericaI cornlation 254-7 

Cmnir-Rao bound, analogue for circular 

Cram&-Rao inequality 301 
Cram&-Rao theorem 300 
Cram&-von Mises statistic 104. 151 
crystal-orientation data 220 

testing of quality of concentration 
parameters 221 

testing of equality of mean directions 
219 

parameters 84 

crystallography 9. 159, 259 
curve fitting mnd smoothing 280-2 

circular pwlictor and scalar msponsc 

planar predictor and circular response 

scalar predictor and rotational response 

scalar predictor and spherical response 

28 1-2 

28 I 

18 1 

280- I 
curved exponential model general 32 
cylindrical association (C-association), 

correlation coefficient based on 248 

cylindrical distributions 55 
regression model 257 

Duphniu data 8. I2 
data see axi al...; circul ar... ; shape da ta...; 

spherical data 
data examples see astronomy. biology, eaith 

scicnces, image analysis, geography, 
geophysic. medicine, meteorology, 
physics, psycholoLv 

I78 
decentred directional distributions, sphere 

Uelaunay triangulation 320-1 

density estimation 277-8 
example 321 

based on embedding approach 278 
gocdnmss-of-fit tests bawd on 274 
kernel 278-9 

descriptive ineasures 
circle 13-23 
sphere 163-7 

diagrmmatical rcprcsentation of data 
1-4 

axialdata 4 
gnmpeddita 2-3 
ungrouped data 1-2 

DimrothSchcidegger-Wat~n distributions 
see Watson distribution 

dipole interdctions 170 
direct linked pmesscs 264-5 
directional data, repmentation on sphere 

directional distributions 
I59 

conditional approach 32.4 
marginal approach 314 

directional time series 
a m s i n g  xriui dependence 263 
time series models 

on circles 263-5 
on spheres 265-6 

35 
discrete uniform distributions, circle 34, 

dispersion measures 17-20 
population versions 20-3 I 

distribution tbnction 
circular 25-6 

Fourier expansion 27 
von Mises distributions 41 

spherical distributions 

54.91 

distributions see axial ... ; circul ar... ; sha pe... ; 

double-wrapped von Mises distributions 

doubling of angles 1, 17, 91 
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earih sciences 
actual dab 

calcite grains 203 
cross-bedding X 
crystal-orientation 220 
geological populations 23 I 
geomagnetism I77 
Icelandic lava tlows 166 
micmfossil$ 327 
sand grains 7 
sandstone 223 

examples of directional data 6-7, 176-7. 

pulamumnt studiea 7 
pulaeomagnetism studies 6, 159, 170, 

263,280 
remnant-magnetisation studies 166-7, 

195, 1%. 201. 216, 228,270-1 

280 

earthquake studies 6 
Ugeworth expansion 99 
EM algorithm 90, 243, 264 
embedding approach 

circular data 14, 46. 83 
analysis of variance 138-9 
timeseries 264 

cornlacion coefficient based on 
for circulw-circuIur cornlation 248- 

for linear-circular cornlation 

density estimation based on 278 
spherical d& 

analysis of vwiance 22.5-6 
robust estimators of mean direction 

275 
entropy. of distribution on circle 42-3 
equal-area projections 

Kendall's bell 319, 319, 322 
Lambeit's 160-1. 177, 193 
Schmidt net 161. 320 

equal-spwings test 108 
critical values li$ted/trrbulated 368 

exploratory data analysis, spherical data 

exponential distributions, outlier tests based 

exponential map 286 
exponential models, general 32-3 
exponential transformation model 33 

F approximation see high-concentration 

fingerprint analysis 10 

so 

245-6 

161, 162, 187, 241 

193-7 

on 268-9 

F test 

first significant digits, Reuder's Digest 

bisher-Binghwn distributions 174-5 
data64  

goodness-of-fit testq, vs von Mises-Fisher 

relation(s) with other distributions 175 
test of Binghamness 274 
test of Rshercss 272-3 
see also Binghun distributions 

bisher distributions 168 
examples of use 170 
goodness-of-fit tests 269-71 
graphical tests of goodness-of-fit 195 
marginal m.1.e. of concentration 

I>aramder, listedltabulated 385 
matrix Fisher distributions 289-92 
m.1.e. of concentration pannieter, 

notation 392 
outliers detected 268 
quanliles listdtabulated 382-3 
relation(s) with complex Bingham 

distrihution 324, 3 3 3 4  
testing prescribed concentration 

parameter, critical values listed 
tabulated 388 

use for shapes 325 
see also Fisher-Bi ngham .. . ; 

distribution 

listed/tabulatcd 384 

Fisher-Watson ... ; matrix Fisher..-; 
von MisesRsher distributions 

Fisher information circle 84 

Fisher informuticin matrix 32. 34, 86, 199, 

Fisher-Watson distributions I77 

Fourier analysis 27, 279, 280 
frames and rotations 285-93 
frequency distributions 

sphere 300 

300 

relation(s) with other distributions 175 

forms 4-45 
multimdd distributions 5-6 
unimodd distributions 4-5 

tiubini-Study metric 309 

Gauss's theory of errurs 10 
general sample spaces 283-301 
geogrdphical terminology 160 
8"fFPhY 

lowadata 3211-1 
geology see earth sciences 
geomagnetism studies 

216, 228 
geophysics 259 

166. 195, 196, 201. 
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Gin6’s F,, test 209 
compared with other fmts of’ 

uniformity 2 10 
Giiit?s G,, test 233-4 

compared with other tests of 
uniformity 234. 289 

descriptive intcqmtation i94 
$idle distributions 161, 183 

gcxxl1ltXs-of-tit tests 
C~XUIW dirril 1 15-1 K 

critical values listed/tabulated 36Y 

density estimate based tcsts 274 
score tests against larger models 

tangent-normal decomposition based 

spherical data 195, 269-74 

272-4 

tests 269-72 
Gra..sniann nianifolds 293-4 

distributions on 295-7 
notation 391 
uniformity 294-5 

beat circle distance, shortest 3()9 
gmuping. corrections for 23 

Hmkel transforms 60 
helical regression functions 257 
Helmeri sub-matrix 305. 346 
Helmrrti.d landmarks 305,346 
Helmertised preshape 305 
Hermans-Rasson test 109-10 
high-concentration asyniptotic distributions 

circle 78-80. 87-8, 123, 133, 139 
shapes 331, 336 
sphere 189-92. 201 

high-concentration F test 
multi-sample tests 

circle 135 
sphere 223, 229. 231, 240 

two-sample tests 
circle 130 
sphere 219, 221 

high-dimensional shapes 345-7 
Hilhertspaue 241 
histograms 

circular 2.4 
linear 2-3. 5 

Hodges-.4jne tcst 105-7 
critical values IisWtabulated 366 
example of use 106-7 

Hodges bivariate sign test 106 
homogeneity of concentration pmnieters in 

multi-samDle tests 

sphere 226-7 
homomorphism property of wrapping 48 
hyperbolic mean resultant length 208 
hyperbolic resultant length 298, 299 
hyperboloid distributions 298 

cxarnplc test 299 
properties 298-9 

hyperboloids 297-9 
hypergeometric functions 289, 295 

definitions 352 

Icelandic lava flow data I66 
confidence regions for mean dinxtion 

point estimation 201 
probability plots 195. 1% 

216 

image analysis 10,47. 307 
independence of angular variables 27-8 
inertia see moment of inertia 
influence functions 214-5 
intrinsic approach 

circular data 14, 43 
spherical data 162,275 

see also uniformity, tests 
invariant tests 9G, 98, 105, 107. 112-14 

Iowa towns 320-1 
isometric transformation. shape 

distributiions 317, 324 

Kelker-Langenberg distributions 183 
Kendall’s bell (spherical blackboard) 319. 

319 
example 322 

Kendali (shape) coordinates 306.316-17 
Kendall’s tau, analogue 253-4 
Kent coordinates 3 1-5- I6 
Kent distribution 176-7 

goodness-of-fit tests, vs von Mises-Fisher 
distributions 272-3 

point estimation 205-6 
relation(s) with other distrihutitms 175 

kernel density estimation 277-8 
Kolmogorov-Smirnov statistic 100, 26Y. 

Kolmoprov-Smirnov tcst 150 
see also Kuipcr’s ... tcst 

Kuiper’s one-sample test 99-103 
alternative representation to Vn 100-1 
compmd with other tests 115 
example of use 102-3 
null distribution of Vn 102 
rotation-invariance of Vn 101 

270. 27 I ,  272 

circle 13GI Kuiper’s two-sample test 150 



INDEX 42 1 

Kuiper’s Vn statistic 100 
alternative representation 100- 1 
modification 270. 271 
null distribution 102 
rotation-invariance 101 

Kummer function 181, 202 
defined 351 

kurtosis 
circular data 22 

population version 31 

Levtimators 275. 276 
Lmbert’s equal-ma projection 160-1, 

177, 193 
landmarks 3M 

base 306 
centred 305 
Helmertised 305 

w w  303, 346 

see olso von Mises-Fisher dktributions 

circle 76-8, 86-7, 9598. 123-4. 136, 

pseudo- 306.308 

Langevin distributions I61 

large-sample asymptotic distributions 

138. 142. 148 

228, 230, 231 
latitude If& 

see ofso colatitude 
lattice distribution 

circular 34-5 

S P ~ K  179, 187-9. 201, 212, 217, 218, 

as limiting distributions 62 
Lebmgue-Stieltjes integml 26 
Lehmann-Scheffk theorem 300 
Irukaernia da&a 9, 97 

gdness-of-fit test I18 
uniformity test 96 

ley-lines 307 
L’Hiipitd’s rule 330 
likelihood ratio test 33 

circular data 
multi-sample test 1368 
single-saniple test 1 19-20, 122-3 
two-sample test 132 

complex Watson distributions 340 
outliers detection 268 
spherical data 

multi-sample test 224-5 
single-sample test 210. ZII. 212, 

216-17 
uniformity tests 95-6. 112, 208 

limit thwmm 62-5 
lihling distributions 76-82 

high-concentration apprunimatitms 

large-sanple approximations 76-8 

rank correlation coefficients 246-7 

78-80 

linear-circular correlation 245-8 

critical values listdtabubted 380 
linear histcipms 2-3, 5 
link functions 264 

regression using 258 
linked autoregressive moving-average 

location measures 15-17 

longitude 160 

loxodromes 281 

M-estimators 276 
machine vision applicirtions 10. 259 
Mackenzie-Stcphens correlation 

mallilrd data 3 
diagntnmatical representation 4. 5, 6 
kurtosis 22 
mean deviation 23 
median din-tion 23 
hkewness 22 
vanishing angle 2 

Mann-Whitney test 152. 156 
map projections 160-1 
mapping of spherical distributions onto 

Hilbert spar: 241 
Murdiu-Dryden distributions 325 
marginal likelihctod 

point estiniation using 8X-0 
uniformity test 97-8, 112 

processes 265 

population versions 29. 30-1 

plots 105, IM, 107 
tests 270. 27 1. 272 

coefficient 260 

marginal maximum likelihood estimates, 
von Mises-Fisher distributions 
198-201 

Murkov processes 5 I ,  265 
matrix angular central Gaussian 

distributions 295-6 
ch te r i sa t ion  296 

matrix Bingham distributions 295 
matrix Fisher distributions 289-92 
maximum-entropy approach 

von Mises distribution 42-3 
von Mises-%her distributions 172 

circular distributions 
maximum likelihood estimates 

rnixturcs of vim Mises 
distributions 90-1 
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von Mises distributions 85-8 
wrappod Cauchy distributions 89-90 

complex angular Gaussian 
distribution 343 

complex Binghani distributions 332 
complex Watson distributions 337-8, 

342 
matrix angular central Gaussian 

distribution 296 
matrix Fisher distributions 291 
spherical distributions 

angular central Gaussian 
distribution 206 

Binghm distributions 2 0 3 4  
von Mises-Fisher distributions 170-1. 

Watson distributions 202 
198-20 I 

see also moment estimators 
Mrutwell-Bolt;rmimn distributions 170 
mean dircction see circd ar... ; spherical 

mean direction 
mean xsultant length 

circle 15, 17, 18 
outliers detected using tests b a d  

on 267-8 
sphere 163 
see also circul ar...; spherical mean 

resultant length 
mean shqx 308-14 
medicine 

blood pressure 24Y 
examples of directional data 10 
leukaemia 9, 97 
schizophrenic patients 340-2 
vator cardiogram 10. 284 

mental maps 9 
meteomlogy 
actual data, wind directions 
examples of directional data 7 

HS example of shape analysis 306 
a sample from Fisher distributions 326 

137, 246 

microfossils data 327 

mode 4 
moment estimators 

Kent (spherical) distributions 2 0 5 4  
see also maxiinurn likelihood estimates 

moment of inertia 165-7 
Moore-Penrose g e n e d i d  inverse 331 
mouse vertebrit data 

complex Bingham distrihutions 333 
landmarks 308 
mean shape 3 1 1,312,313 
shapc variability 306 

uniformity test 324 
multimwlal distributions 5-6 
multiply wrapped distributions 52-4 
multi-sample pmbtem 

high-concentration approximations 80 
yon Miss  distributions 71-5 

axial data 239-40 
circular data 134-42 
spherical data 222-32 

Neumann addition fomiula 44, 74. 349 
Neyman-Pearson lemma 5%. 112, 126. 

non-pmmeteric methods 145-58 

multi-sample tests 

208 

multi-sample tests 154-8 
symmetry tests 

about given axis 1454 
/-fold symmetry 146 

two-sample tests I656 
Kuipcr's two-sample test 150 
from rank tests 156 
runs tmt 152-4 
from tests of uniformity 155-5 
uniformscores test 147-50 
Watson's two-.sample U 2  test 15&2 

normal wrapped see wrappcd normal 
distributions 

normalixd spatial median 275 
notation 39 1-393 

descriptive statistics 1-3-14 

offset directional distributions. sphere 

offset distributions. spherc 178 
offset nimnal distributions 

I78 

circle 46 
relation(s) with other distributions 343 
sphere 178 
see also projected normal distributions 

offset shape distributions 325 
offset uniform diktributions. sphere 178 
outliers 

tests 
based on exponential 

distributions 268-0 
based on mean rcsultant length 267-8 
infonnal, using probability plots 195. 

likelihood ratio tests 268 
ozme concentration-wind direction 

data 246 
correlation coefficients 246. 348 

267 
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palamurrent studies 7 
palawmqnctism studies 6, 159. 170. 263. 

Parseval's fomwla 58. I 12 
peakedness of data 22. 31 

perihelion direction 283 

periodic splines 281 
physics. examples of dixctional data 9 
pigeon homing data 93. 106. 108, 195, 

280 

see also kurtosis 

test for uniformity 288-9 

127, 131. 149 

drcular mean direction 126 
concentrution parameter 127 
equality of circular mean 

directions 13 1-2 
equality of concentration 

parameters 134 
equality of two populations 149-50, 

152, 153-4 
goodness of tit  116 
syinnwry 146 
uniformity Y6, 102-3, 105, 106-7. 

108. 125 
uniform probability plot 93. 94 

planetary orbit data 209 
test of uniformity 2008 

Poincwi's theorem 6.3-4 
example using 64-5 

point estimation 
circular distributions 83-92 

tests 

mixtures of von Mises 

von Mises distribudons 85-9 
wrapped Cauchy distributinns 8 Y - 0  

spherical distributions 197-206 
angular central Gaussian 

distribution 206 
B i n a m  distributions 203-5 
Kent distribution 205-6 
von Mises-Fisher distributim\ 107-201 
Watson distrihution 202-3 

distributions 9u-1 

Poisson see wrapped Poisson distributions 
polar moment generating function 60 
population mean direction 

sphere 164 
example calculation 223 

164 
population mean resultant length, sphere 

preshape 305, 346 
cenmd 305 
Helmertised 305 

p M d p l  component analysis, landmark 
dub 312-13 

probability density function see also 
circul ar..., shape ..., spherical 
distributions 

angular centrid Gaussian 
distribution 206 

Bingham distributions 203 
Bingham-Manlia distrihutions 177 
Brownian inotion distributions 173 
cardioid distribution 45 
circular 61 
complex Bingham distributions 327.330 
complex Watson 334 
Fisher 168 
Kent 175-6 
Mardia-Dryden distributions 325 
matrix Fisher distributions 293 
Maxwell-Boltzmann distribution 170 
multiply-wrapped distributions 53, 54 
projected nonnal distributions 46 
uniform distributions 35, 3 14 
von Mises distrihutions 44, 45 
Watson 181 
wrapped Cauchy distributions 5 I ,  89 

probability integml transformation 115 
probability plots, spherical data 194-5. 196 
Procruvks diststna: 309. .345 
h w w s t e s  form average 1 14,347 
Procrustes mean 

for higher dimensions 346-7 
partial 345 

Procrustes mean shape 3 10 
exnmple(sj 312, 31.3, 333 

Rocrusks shape analysis 
complex Bingham distributions 332 

Procrustes shape analysis (cotil.) 
directional averages 3 1-3- 14 
schizophrenic brain scans 341. 342 

projected distributions. sphere 178-9 
projected normal distributions 

circle 46-7 
notation 392 
relationship with wrapped 

sphere I78 
uniformity test 98 

distribution 47, 52 

project4 normal processes 264 
projecting I I  
projections 

Kendall's bell 319, 3lY, 322 
Lambert's equal-area projection 160-1. 

177, 193 
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pseudo-landmarks 306,308 
psychology, examples of directional data 

QR decomposition 346 
quality control 259 
quaternions 236 

random walk 
on circle 51.65-8 
on sphere 174. 293 

range test 107 
rank correlation coefficients 

circular-circular correlation 250-2 

linear-circular correlation 246-7 
critical values listdtabulated 380 

critical values listed/tabulated 380 
raw landmarks 303. .W6 
Raylrigh test 

circle Y4-9 
compared with other testq 
examplc(s) of use 99, 125 

1 15 

disadvantage 208 
infinite-dimensional version 242 
as special case of Benin’s class 

sphere 189. 206-8 

I I I. 
112, 114 

compared with other testq 210 
example of usc 208 
power 210 

Stiefel munibld 287, 289 
example of use 288-9 

uniform-scores tests 148, IS6 
when mean direction given 98-9 

reflection size-and-shape 346 
registration (in shape analysis) 306 
regression models 

circular response 257-8 
helical regression functions 257 
using link functions 258 

linear response 257 
spherical response 258-62 

for finding centre 261 
using rotation 258-61 

regular exponential models 32, 85 

remnant-magnetisation data 166 
properties 32-3 

goodness-of-fit 270-1 
mean diirctions 216. 228 
point estimation 201 
probability plo~s 195, 1% 

resultant length 
distrihutions 

on circle 60-1 

for von Miss populations 69-70,7 1-2 
9 see also circular mean resultant length 

Riemann-Lebesgue theoEm 6 I,  63 
Riemannian manifolds 174. 299-300 
robust methods 

estimation of concentration 2767  
estimation of mean direction 275-6 

rose diagrams 3, 6 
rotation 

matrix 283 
regression using 2 5 8 4 1  

rotational dependence measure 240-50 
rotational symmetrical shape 

distributions 344-5 
relation to other distributions 345 

models with 17WO 
tests 

rotational symmetry 

axial distributions 2 5 1 6  
spherical distributions 27 1, 272 

Kothman’s test 253 
mulette (Jaw 2 

circular plot 2 
circularrange 20 
mean direction and mean resultant 

median direction 17 

critical values IistedAabulated 378 
example of use 1534 
multi-simple test 158 

length IS. 16, 86 

runs test 152-3 

sand-grain orientation data 7 
sandstone data 223 

concentration parameter 227 
mean direction 22-34 

satellite-orientation system 259 
scatter matrix 165 

eigenvalues 194, 202, 233 
in example 167, 233 
in uniformity test 232 

schizophrenic patients, MR scans 340-2 
Schmidt net 161, 320 
Schmidt projection I6 I 
SCOiE tests 

circle 3 3 4 ,  121-2, 123 
sphere 207, 21 I ,  212-13, 217. 218 

goodness-of-fit tests 2 7 2 4  
shape 

defined 302 
mean 308 
variation 311 

shapes, high-dimensional 345-7 
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shape analysis 303-47 
shape coordinates 306, 307, 314-2-17 

Bookstein 306. 318 
Kendnll 306, 3 16-7 
Kent 3t5 
QK decomposition -246 

Iowa State 32&1 
microfossils 306. 326-7 
mouse vertebrae 306, 3 I 1-3, 3 2 3 4  
schizophrenia 140-2 

shape. distributions 
coniplex angular distribution 343 
complex Singham distribution 326 
complex Watson distribution 334 
Fisher distribution 333 
isometric distributions 325 
Mordia-Dryden distribution 125 
offset normal distribution 325 
rotationally symnietric distributions 344 
uniform 314 

shape space 306 
shape sphere 318-21 
sign test 145, 146 

signed rank coml;ltion coefficient 252 
significant digit law 64-5 
size-and-shape 346 

skewness 

shape data 

and Hodges-Ajne test 106 

Rocrustes (form) average 3 I4 

ci~ulwdafii  22 
population version 31 

small-circle distribution 178 
Sobolev tests of uniformity 

289, 299-300 
spacing tests 107-8 

yual-spacing test 108 
range test 107 

Spemnan's rho 246, 252 
spherical blackboard see Kendall's bell 
spherical data 159-62 

110, 343, 288. 

actual data 
uoss-bcllding 8 
Icelandic lava flows 166 

hivariate models 262-3 
hootstrap method$ 277 
descriptive meaSures 163-7 
embedding approach 161. 162 
examples 6, 7, 10-11, 159 
explordtory data analysis 193-7 
intrinsic approach I62 
probability plots 1Y4-5. IY6 
projection onto plane 160- 1, 1033 

rotation of 193 
wrapping approach 162 

spherical distributions 
angular centsJl Gaussian 182-3 
bimodal I61 
Binghain-Mdia 176-7 
Brownian motion 173-4 
concentmion pwmrter 

single-sample test 218 
tests for equality in two-sample 

tests for homogeneity in multi-sample 
case 220-2, 277 

case 226-7 
Dimroth-Scheidegger-Watson 18 1 
directional statistics 183-6 
Fisher 168 
Fisher-Bingham 174-5 
Fisher-Warson I76 
girdle 161 

heterogeneity of multi-saniple case 228 
Kent 175-6 
models with rotational symmetry 179-80 
multiple compnrisiins 226 
pint  estimation I Y7-206 
projected 17%-Y 
tests 

goodness-of-fit tests 269-74 

multi-sample tests 222-32 
single-sample tests 206-18 
two-sample tests 2 19-22 

uniform 167 
unirnodal 161 
van Mises-Fisher 167-73 
Watson 181 
Wood 178 

spherical isometric transformation 3 17 
spherical mm direction 163 

confidence intervals for angle between 

confidence regions 214-16 
from conditional distributions 2.14 
high-concentration 2 16 

equivariancc pnjperty I64 
robustness 274-6 
test@) 

two mean directions 220 

large-sample 214-15 

concentration parameter known 2 10-  1 2 
concentdon parameter 

unknown 212-14 
quality of mean dirrcticm in two- 

sample tests 2 19-20 
population mean directions in 

subspace 228-32 
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von Mises-Fisher distributions 168-9 
spherical man direction in given subspuce 

tests 
concentration parameter known 216- 

concenmtion parameter 
17 

unknown 217-18 
spherical man resultant length 163 

minimisjtion property 164 
spherical median 275 
spherical polar coordinates 195 
spherical shape spacc 3 18-2 1 
spherical smoothing splines 280-1 
spherical-spherical cmlation 254-7 
spherical variance 164 
splines 280-2 
standardised bias (93 )  robustness of 

standdised gross error scnsitivity 274 
s tandadid influence firnctions 274 
Stephens’s approximation SO, 130 
Stiefel manifolds 285-7 

estimators 275, 276 

distributions on 192, 289-93, 352 
notation 391 
spherical regression model 260 
uniformity 287-9 

Grassmann manifolds 293-4 
spherical inem directions in 217-18. 

subspaces 293-7 

228-32 
summary statistics, circle 13-23 
sun-azimuth compass theory 131 

symmetrical distributions 31 
symmetry tests 

about given axis 145-6 
Mold symmetry 146 

experiment(s) to study 131-2. 149 

tangcnt-normal decomposition 161. 162, 

govdnrss-vf-fit tests b a d  on 269-72 
in shape analysis 3 12 

tangential appmch, analysis of variance for 

tangcntial projections. to shape space 347 
tests of homogeneity. multi-sample tests of 

von Miscs distributions 139-41 
tests of symmetry 145-6 
tests of uniformity, circular 94-1 15, 

textures, orientation data 10 
time series models 

169, 179, 187 

circular data using I39 

154-5 

on circles 263-5 

on spheres 26-54 
torus. distributions on 54-5 
trandormation. spherical isometric 3 17 
transformation models, circular 

triangle@) 
distributions 33 

Delaunay 320-1,321 
distribution of shapes obtained by 

shape space 303,304 
uniform distributions in 317 

isometry 325-6 

triangular arrays on circle 49 
triangulation 320 
trigonometric moments 20-3 

leust-squaws fitting of %I 
population versions 2 I ,  27, 28-9 

diagrammatical representation I I 

non-parameteric 136-56 
Kuiper’s two-sample test 150 
rank tests on line 156 
N n S  test 152-4 
uniform-scores test 147-50 
Watson’s two-sample U’ test 150-2 

quality of concentration 

quality of mean directions 128-32 

M l e  data 1 0  

two-sample tests 

von Mises distributions 

pdrdlWtCl% 132-3 

two-variable plots t95, I%, 197 
two-variable tests 270, 271 

unbiased estimators 83-4 
uniform distributions 

on circle 32. 3.5-6 
centrd limit theorem applied 62 
distribution of mean direction and 
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